
    

MATRIX ALGEBRA

Simultaneous Equations

Consider a system of m linear equations in n unknowns:

(1)

y1 = a11x1 + a12x2 + · · ·+ a1nxn,

y2 = a21x1 + a22x2 + · · ·+ a2nxn,
...

ym = am1x1 + am2x2 + · · ·+ amnxn.

There are three sorts of elements here:

The constants: {yi; i = 1, . . . ,m},
The unknowns: {xj ; j = 1, . . . , n},
The coefficients: {aij ; i = 1, . . . ,m, j = 1, . . . , n};

and they can be gathered into three arrays:

(2) y =


y1

y2
...
ym

 , A =


a11 a12 · · · a13

a21 a22 · · · a23
...

...
...

am1 am2 · · · amn

 , x =


x1

x2
...
xn

 .
The arrays y and x are column vectors of order m and n respectively whilst the
array A is a matrix of order m × n, which is to say that it has m rows and n
columns. A summary notation for the equations under (1) is then

(3) y = Ax.

There are two objects on our initial agenda. The first is to show, in detail,
how the summary matrix representation corresponds to the explicit form of the
equation under (1). For this purpose we need to define, at least, the operation of
matrix multiplication.

The second object is to describe a method for finding the values of the un-
known elements. Each of the m equations is a statement about a linear relationship
amongst the n unknowns. The unknowns can be determined if and only if there
can be found, amongst the m equations, a subset of n equations which are mutually
independent in the sense that none of the corresponding statements can be deduced
from the others.

Example. Consider the system

(4)

9 = x1 + 3x2 + 2x3,

8 = 4x1 + 5x2 − 6x3,

8 = 3x1 + 2x2 + x3.
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The corresponding arrays are

(5) y =

 9
8
8

 , A =

 1 3 2
4 5 −6
3 2 1

 , x =

 1
2
1

 .
Here we have placed the solution for x1, x2 and x3 within the vector x. The cor-
rectness of these values may be confirmed by substituting them into the equations
of (4).

Elementary Operations with Matrices

It is often useful to display the generic element of a matrix together with the
symbol for the matrix in the summary notation. Thus, to denote the m×n matrix
of (2), we write A = [aij ]. Likewise, we can write y = [yi] and x = [xj ] for the
vectors. In fact, the vectors y and x may be regarded as degenerate matrices of
orders m × 1 and n × 1 respectively. The purpose of this is to avoid having to
enunciate rules of vector algebra alongside those of matrix algebra.

Matrix Addition. If A = [aij ] and B = [bij ] are two matrices of order m × n,
then their sum is the matrix C = [cij ] whose generic element is cij = aij + bij.

The sum of A and B is defined only if the two matrices have the same order
which is m × n; in which case they are said to be conformable with respect to
addition. Notice that the notation reveals that the matrices are conformable by
giving the same indices i = 1, . . . ,m and j = 1, . . . , n to their generic elements.

The operation of matrix addition is commutative such that A + B = B + A
and associative such that A+ (B+C) = (A+B) +C. These results are, of course,
trivial since they amount to nothing but the assertions that aij + bij = bij + aij
and that aij + (bij + cij) = (bij + aij) + cij for all i, j.

Scalar Multiplication of Matrices. The product of the matrix A = [aij ] with
an arbitrary scalar, or number, λ is the matrix λA = [λaij ].

Matrix Multiplication. The product of the matrices A = [aij ] and B = [bjk] of
orders m × n and n × p respectively is the matrix AB = C = [cik] of order m × p
whose generic element is cik =

∑
j aijbjk = ai1b1k + ai2b2k + · · ·+ ainbnk.

The product of AB is defined only if B has a number n of rows equal to the
number of columns of A, in which case A and B are said to be conformable with
respect to multiplication. Notice that the notation reveals that the matrices are
conformable by the fact that j is, at the same time, the column index of A = [aij ]
and the row index of B = [bjk]. The manner in which the product C = AB inherits
its orders from its factors is revealed in the following display:

(6) (C : m× p) = (A : m× n)(B : n× p).

The operation of matrix multiplication is not commutative in general. Thus,
whereas the product of A = [aij ] and B = [bjk] is well-defined by virtue of the
common index j, the product BA is not defined unless the indices i = 1, . . . ,m
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and k = 1, . . . , p have the same range, which is to say that we must have m = p.
Even if BA is defined, there is no expectation that AB = BA, although this is a
possibility when A and B are conformable square matrices with equal numbers of
rows and columns.

The rule for matrix multiplication which we have stated is sufficient for deriving
the explicit expression for m equation in n unknowns found under (1) from the
equation under (3) and the definitions under (2).

Example. If

(7) A =

[
1 −4 2
2 3 6

]
and B =

 4 2
1 2
−3 1


Then

(8)

AB =

[
1(4)− 4(1)− 2(3) 1(2)− 4(2) + 2(1)
2(4) + 3(1)− 6(3) 2(2) + 3(2) + 6(1)

]
=

[
−6 −4
−7 16

]
and

BA =

 4(1) + 2(2) −4(4) + 2(3) 4(2) + 2(6)
1(1) + 2(2) −1(4) + 2(3) 1(2) + 2(6)
−3(1) + 1(2) 3(4) + 1(3) −3(2) + 1(6)

 =

 8 −10 20
5 2 14
−1 15 0

 .
Transposition. The transpose of the matrix A = [aij ] of order m×n is the matrix
A′ = [aji] of order n×m which has the rows of A for its columns and the columns
of A for its rows.

Thus the element of A from the ith row and jth column becomes the element of
the jth row and ith column of A′. The symbol {′} is a prime, and we refer to A′

equally as A–prime or A–transpose.

Example. Let D be the sub-matrix formed by taking the first two columns of the
matrix A of (5). Then

(9) D =

 1 3
4 5
3 2

 and D′ =

[
1 4 3
3 5 2

]
.

The basic rules of transposition are as follows

(10)

(i) The transpose of A′ is A, that is (A′)′ = A,

(ii) If C = A+B then C ′ = A′ +B′,

(iii) If C = AB then C ′ = B′A′.

Of these, only (iii), which is called the reversal rule, requires explanation. For a
start, when the product is written as

(11) (C ′ : p×m) = (B′ : p× n)(A′ : n×m)
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and when the latter is compared with the expression under (6), it becomes clear
that the reversal rule ensures the correct orders for the product. More explicitly,

(12)

if A = [aij ], B = [bjk] and AB = C = [cik],

where cik =
n∑
j=1

aijbjk,

then A′ = [aji], B′ = [bkj ] and B′A′ = C ′ = [cki]

where cki =

n∑
j=1

bkjaji.

Matrix Inversion. If A = [aij ] is a square matrix of order n×n, then its inverse,
if it exists, is a uniquely defined matrix A−1 of order n × n which satisfies the
condition AA−1 = A−1A = I, where I = [δij ] is the identity matrix of order n
which has units on its principal diagonal and zeros elsewhere.

In this notation, δij is Kronecker’s delta defined by

(13) δij =

{
0, if i 6= j;

1, if i = j.

Usually, we may rely upon the computer to perform the inversion of a numerical
matrix of order 3 or more. Also, for orders of three or more, the symbolic expressions
for the individual elements of the inverse matrix become intractable.

In order to derive the explicit expression for the inverse of a 2 × 2 matrix A,
we may consider the following equation BA = I:

(14)

[
b11 b12

b21 b22

] [
a11 a12

a21 a22

]
=

[
1 0
0 1

]
.

The elements of the inverse matrix A−1 = B are obtained by solving the following
equations in pairs:

(15)
(i) b11a11 + b12a21 = 1,

(iii) b21a11 + b22a21 = 0,

(ii) b11a12 + b12a22 = 0,

(iv) b21a12 + b22a22 = 1.

From (i) and (ii) we get

(16) b11 =
a22

a11a22 − a12a21
and b12 =

−a12

a11a22 − a12a21
,

whereas, from (iii) and (iv), we get

(17) b21 =
−a21

a11a22 − a12a21
and b22 =

a11

a11a22 − a12a21
.

The common denominator in these expressions is the so-called determinant of the
original matrix A.
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