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OPTIMISATION OF BIVARIATE FUNCTIONS

Unconstrained Optimisation of a Bivariate Function

In the case of a continuous function f(x) of a single variable x, a maximum
or a minimum point is a stationary point on the graph of the function where
the first derivative of the function is zero-valued. The function f(x) defines a
one-dimensional entity which is plotted on a two-dimensional graph.

A continuous bivariate function z = f(x, y) can be envisaged as a surface—
which is a two-dimensional entity—residing in a three-dimensional space. A
maximum or a minimum point of the function—which is an extreme value in
other words—corresponds to a peak or a trough in the surface.

These situations are easily envisaged since they can be represented in terms
of the topology of our everyday experience. Thus, the task of maximising a con-
tinuous bivariate function of an unknown mathematical form can be compared
to that of climbing a hill in a dense fog without the benefit of a map in the faith
that the ground is smooth and that there are no pitfalls or cliffs to endanger the
unwary climber. However, as befits a scientific expedition, we may assume that
a compass is provided and that the directions taken and the distances travelled
are accurately recorded.

The intuition which can be derived by studying the case of a bivariate
function can be employed in cases of multivariate functions; and, therefore, it
is appropriate to consider the bivariate case in detail.

Much of the analysis of multivariate functions is conducted by treating a
succession of their univariate components. Thus, in the case of the bivariate
function, we may begin the analysis by taking two cross sections of the function
which are at right angles. These give rise to a pair of ordinary two-dimensional
graphs.

It simplifies matters if the sections are taken in directions parallel to the
zx and zy planes. Then the two cross-sectional functions may be denoted
by z = f(x, b) and z = f(b, y), where a and b are fixed values of x and y
respectively.

The derivatives of these functions are called partial derivatives. The partial
derivative of the function f(x, y) in respect of x is denoted by fx(x, y) or by
∂f/∂x. The value of fx(x, y) when (x, y) = (a, b) is denoted by fx(a, b); and it
is defined formally by

(1) fx(a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h
.

The partial derivative in respect of y, which pertains to the other cross section,
is defined similarly.
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Successive partial derivatives may be defined as in the case of the deriva-
tives of a function of a single variable. However, since ∂z/∂x is a function of
two variables, there will be two second-order derivatives. These are

(2) fxx(x, y) =
∂

∂x

(
∂z

∂x

)
and fyx(x, y) =

∂

∂y

(
∂z

∂x

)
.

They may be abbreviated as ∂2f/∂x2 and ∂2f/∂x∂x respectively.
We might expect a bivariate function to have four distinct partial deriva-

tives denoted by fxx, fyx, fxy and fyy. However, it is a fundamental theorem
of multivariate analysis that

(3) If the partial derivatives fxy(x, y) and fyx(x, y) of the bivariate
function f(x, y) exist and are continuous everywhere in an open
rectangle containing the point (a, b), then their values are equal
at (a, b).

A proof of this may be found in most books of mathematical analysis of at
intermediate or advanced level.

Conditions for an Optimum

A sure way of climbing a hill in the fog is to proceed in a fixed direction
until one ceases to ascend. Then, if one has not yet reached the top, one may
continue the ascent in a direction at right angles to the previous direction. One
can imagine that, if the hill were shaped more or less as a inverted pudding
basin, then, regardless of the original direction, we should need to turn through
a right angle only once before reaching the summit. Moreover, with a hill of
this shape, we would know that we had reached the summit simply by noting
that the ground falls away in both directions along the N–S and the E–W axes.
On a hill of a more complicated shape, in would not be sufficient to check these
two axes alone—one would have to be assured that the ground falls away in
every direction.

The conditions for having reached the summit can be expressed easily in
mathematical form. Let the hill be described by the function z = f(x, y) and
let the N–S and the E–W directions correspond to the directions of the x and
the y axes. Let the point at which we are standing be denoted by (a, b). Then

(4) For the point (a, b) to correspond to a maximum of the function
f(x, y), it is necessary, (but not sufficient) that (i) fx(a, b) = 0,
fxx(a, b) < 0 and that (ii) fy(a, b) = 0, fyy(a, b) < 0.

The conditions under (i) and (ii) are simply the conditions for the max-
imisation of the univariate functions z = f(x, b) and z = f(a, y) respectively.
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The first-order condition of (i) assures us that, for small departures from (a, b)
in either direction along the x axis, we should find that dz = fx(x, b)dx = 0.
Likewise the first-order condition of (ii) insures that, along of the y axis, we
should find that dz = fy(a, y)dy = 0. However, for (a, b) to be a stationary
point, it is required that dz = 0 for small departures in every direction. This
is also assured, since it follows from the existing first-order conditions that

(5)
dz =

∂z(a, b)

∂x
dx+

∂z(a, b)

∂y
dy = 0

for all dx, dy in the neighbourhood of zero.

The second-order conditions given under (4) are clearly insufficient to in-
sure that (a, b) is a maximising point. Thus, when we think of the problem of
reaching the top of a hill, we recognise that, although the ground may fall away
along both the N–S and the E–W axes, it may yet be rising in the direction
of one or other of intermediate points of the compass. In the corresponding
mathematical framework, what is required is that the second derivative of a
univariate cross-sectional function should be negative regardless of the direc-
tion in which the section is taken. In terms of the differential dz, the condition
is that d(dz) < 0 for all values of dx and dy. The second-order differential is
given by

(6)

d(dz) =
∂(dz)

∂x
dx+

∂(dz)

∂y
dy

=
∂

∂x

(
fxdx+ fydy

)
dx+

∂

∂y

(
fxdx+ fydy

)
dy

= fxxd
2x+ 2fxydxdy + fyyd

2y.

This is a quadratic function in the variables dx and dy. The condition that the
point (a, b) corresponds to a maximum is the condition that, when the various
second-order derivatives are fixed at the values attained at (a, b), the quadratic
is negative-valued for all values of dx and dy.

To make this condition more tractable, we must must reform the final
expression of (6) by completing the square. It can be see that

(7)

fxxd
2x+ 2fxydxdy + fyyd

2y

= fxx

(
d2x+ 2

fxy
fxx

dxdy
)

+ fyyd
2y

= fxx

(
dxx +

fxy
fxx

dy
)2

+
1

fxx

(
fxxfyy − f2

xy

)
d2y.

This is a sum comprising two squared terms.
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In order for the expression to have a negative value for all values of dx and
dy, it is necessary and sufficient that the coefficients associated with the squares
should both be negative. Therefore, the first requirement is that fxx < 0. If
this condition is met, then, also, 1/fxx < 0; and so the second requirement is
that fxxfyy−f2

xy > 0. Observe, however, that fxx and −f2
xy are both negative;

and so, if the requirement it to have any chance of being met, it is necessary
that fyy < 0. This reasoning leads us to the following conclusion:

(8) For the point (a, b) to correspond to a maximum of the function
f(x, y), it is necessary and sufficient that, when they are evaluated
at this point, the derivatives should fulfil the following conditions:

(i) fx = fy = 0 and

(ii) fxx, fyy < 0 and fxxfyy − f2
xy > 0.

It is notable that conditions which are both necessary and sufficient are
obtained by supplementing the necessary conditions of (4) by the single re-
quirement that fxxfyy − f2

xy > 0. At a later stage, we shall be able to express
this requirement as the condition that a certain two-by-two matrix of partial
derivatives fufills a condition of positive definiteness.

So far, we have dealt exclusively with the problem of maximising a function
f(x, y). It is as important to derive the conditions for minimising a bivariate
function. This can be achieved by making a single modification to the argu-
ments above. Now, in place of the condition that d(dz) < 0, we require, for a
minimum, that it should the case that d(dz) > 0 for all dx and dz in a neigh-
bourhood of zero. It follows immediately from the final expression of equation
(7) that

(9) For the point (a, b) to correspond to a minimum of the function
f(x, y), it is necessary and sufficient that, when they are evaluated
at this point, the derivatives should fulfil the following conditions:

(i) fx = fy = 0 and

(ii) fxx, fyy > 0 and fxxfyy − f2
xy > 0.

Notice that, in comparison with (8), it is only the conditions affecting fxx and
fyy on their own which have changed.

4


