
MATHEMATICAL THEORY FOR SOCIAL SCIENTISTS

TAYLOR’S THEOREM AND SERIES EXPANSIONS

Taylor’s Theorem. If f is a function continuous and n times differentiable
in an interval [x, x+h], then there exists some point in this interval, denoted
by x+ λh for some λ ∈ [0, 1], such that

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) + · · ·

· · ·+ h(n−1)

(n− 1)!
f (n−1)(x) +

hn

n!
fn(x+ λh).

If f is a so-called analytic function of which the derivatives of all orders exist,
then one may consider increasing the value of n indefinitely. Thus, if the
condition holds that

lim
n→∞

hn

n!
fn(x) = 0,

which is to say that the terms of the series converge to zero as their order
increases, then an infinite-order Taylor-series expansion is available in the form
of

f(x+ h) =
∞∑
j=0

hj

j!
f j(x).

This is obtained simply by extending indefinitely the expression from Taylor’s
Theorem. In interpreting the summary notation for the expansion, one must
be aware of the convention that 0! = 1.

A Taylor-series expansion is available for functions which are analytic
within a restricted domain. An example of such a function is (1 − x)−1. The
function and its derivatives are undefined at the point x = 1. Nevertheless,
Taylor-series expansions exists for the function at all other points and for all
|h| < 1. Another example is provided by the function log(x) which is defined
only for strictly positive numbers x > 0.

The expression for Taylor’s series given above may be described as the
expansion of f(x+h) about the point x. It is also common to expand a function
f(x) about the point x = 0. The resulting series is described as Maclaurin’s
series:

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + · · ·+ xn

n!
f (n)(0) + · · · .

We shall give a number of examples of such expansions; all of which may be
memorised profitably.
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Example 1. log(1 + x)

f(x) = log(1 + x)

f ′(x) =
1

1 + x

f ′′(x) =
−1

(1 + x)2

f ′′′(x) =
2

(1 + x)3

f (4)(x) =
−2.3

(1 + x)4

f(0) = 0

f ′(0) = 1

f ′′(0) = −1

f ′′′(0) = 2

f (4)(0) = −6

It follows that, for |x| < 1—which is the necessary and sufficient condition for
the convergence of the series—we have

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · .

Example 2. ex

f(x) = ex

f (n)(x) = ex

f(0) = 1

f (n)(0) = 1

It follows that, for |x| < 1, we have

ex = 1 + x+
x2

2
+
x3

3!
+ · · ·+ xn

n!
+ · · · .

Example 3. sinx

f(x) = sinx
f ′(x) = cosx
f ′′(x) = − sinx
f ′′′(x) = − cosx

f (4)(x) = sinx

f (5)(x) = cosx

f(0) = 0
f ′(0) = 1
f ′′(0) = 0
f ′′′(0) = −1

f (4)(0) = 0

f (5)(0) = 1

It follows that, for |x| < 1, we have

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · .
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Example 4. cosx

f(x) = cosx
f ′(x) = − sinx
f ′′(x) = − cosx
f ′′′(x) = sinx

f (4)(x) = cosx

f(0) = 1
f ′(0) = 0
f ′′(0) = −1
f ′′′(0) = 0

f (4)(0) = 1

It follows that, for |x| < 1, we have

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

Example 5. 1/(1− x)

f(x) = (1− x)−1

f (n)(x) = n!(1− x)−n
f(0) = 1

f (n)(0) = n!

It follows that, for |x| < 1, we have

1
1− x = 1 + x+ x2 + x3 + x4 + · · · .

The last of these examples is a familiar one which may have been en-
countered for the first time in the context of the summation of a geometric
progression. There is a wide variety of alternative ways of demonstrating this
expansion. Amongst these is simple long division:

1 +x+x2 + · · ·
1− x

)
1
1− x

x
x−x2

x2

x2 −x3

We can also proceed in the opposite direction. That is to say, we can
evaluate S = {1 + x + x2 + · · ·} to show that S = (1 − x)−1. The calculation
is as follows:

S = 1 + x+ x2 + · · ·
xS = x+ x2 + · · ·
S − xS = 1.
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Then S(1− x) = 1 immediately implies that S = 1/(1− x).
There is also a formula for the partial sum of the first n terms of the series

which is Sn = 1 + x+ · · ·+ xn−1. Consider the following subtraction:

S = 1 + x+ · · ·+ xn−1 + xn + xn+1 + · · ·
xnS = xn + xn+1 + · · ·
S − xnS = 1 + x+ · · ·+ xn−1.

This shows that S(1− xn) = Sn whence

Sn =
1− xn
1− x .

Example. An annuity is a sequence of regular payments, made once a year,
until the end of the nth year. Usually, such an annuity may be sold to another
holder; and, almost invariably, its outstanding value can be redeemed from the
institution which has contracted to make the payments. There is clearly a need
to determine the present value of the annuity if it is to be sold or redeemed.
The principle which is applied for this purpose is that of discounting.

Imagine that a sum of £a is invested for one year at an annual rate of
interest of r×100%. At the end the year, the principal sum is returned together
with the interest via a payment of £(1 + r)a. A straightforward conclusion is
that £(1 + r)a to be payed one year hence has the value of £a payed today.
By the same token, £a to be payed one year hence has a present value of

V =
a

1 + r
= aδ, where δ =

1
1 + r

is the discount rate.

It follows that £a to be payed two years hence has a present value of £aδ2.
More generally, if the sum of £a is to be payed j years hence, then it is worth
£aδj today. The present value of an annuity of £a to be payed for the next n
years is therfore

Vn = aδ + aδ2 + · · ·+ aδn

= aδ
(
1 + δ + · · ·+ δn−1

)
= aδ

1− δn
1− δ .

A special case is that of a perpetuity which is an annuity to be payed for ever.
Its present value is

V = lim
n→∞

aδ
1− δn
1− δ = a

δ

1− δ =
a

r
.
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