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NUMBERS, LIMITS AND CONTINUITY
Numbers

The concept of a real number, which is entailed in many of the daily activi-
ties of science and commerce, if far more elusive that one in inclined to imagine
if one takes a common-sense approach to ordinary matters of calculation. In
fact, the concept of a real number seems, on closer examination, to be so elusive
and unreal that the 19th-century German mathematician Dedekind declared
that, if the natural numbers were created by God, then, surely, man must have
invented the other numbers—which is to say that the real numbers must be
some figment of the human imagination.

Integer Numbers. By talking of the natural numbers, one is usually refer-
ring to the set of positive integers Z = {1, 2, 3, . . .}. Some people would use
the phrase to denote the set of all integers I = {0,±1,±2,±3, . . .}. This is
surely a misnomer. The number zero 0 is a sophisticated invention of Renais-
sance commercial arithmetic. The unnatural concept of a negative number also
originated in the same era when it was first used in denoting financial deficits.
The advantage of negative numbers in axiomatising the rules of arithmetic is
that it enables us to dispense with the redundant operation of subtraction by
replacing all subtractions by additions of negative numbers.

Rational Numbers. The natural numbers are inadequate for the purposes
of measurement where fractions of units are required. The requirements of
measurement lead to the invention of rational numbers. A rational number
x = p/q is defined as the ratio two integers p and q, at least one of which is
odd and one of which one may be negative. It is understood that p and q have
no factors in common. Of course, if both p and q are even, then they can both
be reduced by a factor of 2. Also, we might insist that, if one of the numbers is
negative, then it must be p, since p/(−q) = −p/q. (we have already disallowed
(−p)/(−q) since there is no reason to write this in place of p/q, although most
computer languages will allow it so long as the denominator is in parentheses).

The rational numbers might seem to be adequate for the purposes of mea-
surement since they seem, at first sight, to correspond to all of the points on
a straight line. In particular, they cover the real line densely. By this it is
meant that, between any two points on the real line corresponding to a pair
of rational numbers, be they ever so close, there can be found an infinity of
rational numbers.

There is no need for a sophisticated demonstration of this point. Instead
we can use a simple construction. Consider the rational numbers a and b with
p1/q1 = a < b = p2/q2. The object is to find another number inside the interval
bounded by a and b. Observe that p1q2 < p2q1. Moreover, if q2.abc is formed
by appending a string of decimal digits to q2, then also p1(q2.abc) < p2q1 and,
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clearly,

(21)
p1

q1
<
p1(q2.abc)
q1q2

<
p2

q2
.

The term in the middle of the inequalities is a rational number, as is seen
when the numerator and denominator are raised by a factor of 1,000 and any
resulting common factors are eliminated.

In practice, the rational numbers, in the form of terminated decimals,
are the only numbers which are available for the purposes of calculation and
measurement. However, it is easy to see why they are inadequate in theory.
Consider a simple problem in building construction which is to form an isosceles
right-angle triangle from thee pieces of timber for use as a roof truss of as a
buttress of some sort. If the two timbers at right angles are of unit length, then
the length of the other timber, which forms the hypotenuse or the tie-beam, is
of length

√
2; and this is not a rational number.

Proof. If the square root of 2 were a a rational number, then it should be
possible to find integer numbers p and q, with no factor in common, satisfying
the equation (p/q)2 = 2, which is equivalent to the equation p2 = 2q2. Now,
if it is an integer, p must be a factor of the expression of the RHS. That is to
say, it is either a factor of 2 or of q2. But p is not a factor of 2 since the only
integers which divide 2 are 1 and 2, and p is neither of these. Also, p is not a
factor of q2 since p and q have no common factors. It follows that p is not an
integer, and hence (p/q) =

√
2 is not a rational number.

The Enumeration of Rational Numbers. In spite of their density over the
line, the rational numbers are capable of enumeration. That is to say, by virtue
of a simple construction, they can be placed in a one-to-one correspondence
with the set of natural numbers Z = {1, 2, 3, . . .}. Consider the following table:

(22)

1 2 3 4 5
1 1

1
2
1

3
1

4
1

5
1

2 1
2

2
2

3
2

4
2

5
2

3 1
3

2
3

3
3

4
3

5
3

4 1
4

2
4

3
4

4
4

5
4

5 1
5

2
5

3
5

4
5

5
5

Along the top of the table are the numerators of the rational numbers. In
the left margin of the table are the denominators. The table can be enlarged
indefinitely by extending its width and its depth. By reading along successive
diagonals, the following sequence can be constructed:

(23) 1
1 ,

1
2 ,

2
1 ,

1
3 ,

2
2 ,

3
1 ,

1
4 ,

2
3 ,

3
2 ,

4
1 , . . .
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From this sequence, the redundant elements such as 2
2 ,

3
3 etc, can be struck out.

By this process, which continues indefinitely, the positive rational numbers can
be generated. The resulting sequence bears a one-to-one correspondence with
the set of positive integers.

Irrational Numbers. Ancient Greek mathematicians, such as Pythagoras,
were inclined to treat the irrational numbers such as

√
2 , π and e as handful

of oddities and, at times, they even asserted that these are not numbers at
all. However, there are strong arguments for including the irrationals in any
system of numbers. Consider a number such as

√
2. This can be placed inside

an interval bounded by two rational numbers, say 1 and 4. (These are positive
integers, but we can also describe them as rational since the set of rational
numbers includes all of the integers). We can use the first of these numbers
as the starting point of an ordinary arithmetic process for the extraction of a
square root. The process generates the following sequence of rational numbers:

(24) A : 1, 1.4, 1.41, 1.414, 1.4142, . . .

of which the squares are

(25) B : 1, 1.96, 1.9881, 1.999396, 1.99996164, . . .

These are all less that 2; but they are becoming ever closer to it. Adding a
unit to the final decimal figure of each element of the sequence A generates the
sequence

(26) C : 2, 1.5, 1.42, 1.415, 1.4143, . . .

of which the squares are

(27) D : 4, 2.25, 2.0164, 2.002225, 2.00024449, . . .

These are all greater that 2 but are becoming ever closer to it. They are also
becoming ever closer to elements of the sequence B. In fact, by extending these
processes, we can make elements of A and C and those of B and D as close to
each other as we wish, but not equal. We have no problem in declaring the 2
is the common limit of B and D. It therefore seems almost unavoidable that
we should postulate the existence of a number

√
2 which is the common limit

of A and C.
The foregoing is an argument in favour of including the irrationals in our

number system which is based only on simple arithmetic. When we consider
the requirements of simple algebra, there is no avoiding the irrationals. It is
an easily proven fact that there is no rational number whose square is m/n,
where m and n are integers, unless m and n are also perfect squares. Therefore,
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without the irrational numbers, the business of solving quadratic equations, for
example, could hardly begin.

The final point to be made regarding the irrational numbers concerns their
density over the real line. Far from representing a mere handful of pathologi-
cal cases, as the ancient Greeks believed, the irrational numbers are far more
prevalent that the rationals. In fact, they cover the real line so densely that
there is no possibility of enumerating them. As we have seen, There are in-
finitely many rational numbers in a given interval on the line. However, this
is a so-called denumerable infinity. The infinity which characterises the set of
irrational numbers in the same interval is of a far higher order. It is called a
non-denumerable infinity.

The rational and irrational numbers, taken together, constitute the set of
real numbers. It is in reference to the set of real number that the majority of
the concepts of calculus and analysis are developed, including those of limits
and of continuity.

Intervals and Inequalities. Before elaborating some simple concepts in anal-
ysis, it helps to refine the concept of an interval of the real line and to develop
some associated notations. For this purpose, we need to employ the notation
of inequalities. If a and b are two numbers such that a is strictly less than b,
then we may denote this circumstance by writing a < b or, equivalently, b > a
(b is strictly greater that a). These are a case of a strong inequality. If, on the
other hand, it is certain only that a does not exceed b, then we write a ≤ b (a
is less than or equal to b) or, equivalently, b ≥ a (b is greater than or equal to
a). These are cases of a weak inequality.

(28) If a and b are two numbers such that a < b, then the set of numbers x
satisfying a ≤ x ≤ b is described as a closed interval from a to b, denoted
by [a, b] .

A closed interval is one which includes its endpoints, and the brackets [, ] signify
its closure.

(29) If a and b are two numbers such that a < b, then the set of numbers x
satisfying a < x < b is described as an open interval from a to b denoted
by (a, b).

An open interval is one which does not include its endpoints, and this is signified
by the use of parentheses (, ) instead of brackets.

It is also common to define intervals which are half-open and half-closed,
Thus

(30) (a, b] = {x; a < x ≤ b} and [a, b) = {x; a ≤ x < b}.
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Examples of such intervals arise in integration. We commonly define the inte-
gral of the function f(x) from a to b by the expression

(31)
∫ b

a

f(x)dx =
∫ b

−∞
f(x)dx−

∫ a

−∞
f(x)dx.

This integral, which is defined over the interval (a, b], is obtained by subtracting
the integral over (−∞, a] from the integral over (−∞, b]. If we want to recon-
struct an integral over an given interval from the integral over its constituent
sub-intervals, then we ought to be punctilious in the matter of assigning the
end-points correctly to the intervals. Admittedly, if f(x) is a continuous func-
tion, then no significant penalty is liable to result from getting things slightly
wrong.

In other circumstances the correct assignment of the end points is crucial.
For example, in an old system of degree assessment, examination scripts were
marked out of 100 and were then graded as follows:

(32)

A ∈ [75, 100],

B ∈ [65, 75),

C ∈ [55, 65),

D ∈ [45, 55),

E ∈ [35, 45),

F ∈ [0, 35).

Then, when there were five papers of a given grade, the grade was automat-
ically translated into a honours class: A corresponding to first-class honours,
B corresponding to the upper-second class honours, and so on. Lengthy dis-
cussions could arise in the examiners’ meeting on the issue of whether a given
script merited a mark of 65 or a mark below 65, albeit within an iota (or an
epsilon ε) or it. Such fine points were all-important in determining the class of
a degree.
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