
     

MATHEMATICAL THEORY FOR SOCIAL SCIENTISTS

SETS AND SUBSETS
Definitions

(1) A set A in any collection of objects which have a common characteristic.
If an object x has the characteristic, then we say that it is an element
or a member of the set and we write x ∈ A. If x is not a member of the
set A, then we write x /∈ A.

It may be possible to specify a set by writing down all of its elements. If
x, y, z are the only elements of the set A, then the set can be written as

(2) A = {x, y, z}.

Similarly, if A is a finite set comprising n elements, then it can be denoted by

(3) A = {x1, x2, . . . , xn}.

The three dots, which stand for the phase “and so on”, are called an ellipsis.
The subscripts which are applied to the x’s place them in a one-to-one cor-
respondence with set of integers {1, 2, . . . , n} which constitutes the so-called
index set. However, this indexing imposes no necessary order on the elements
of the set; and its only pupose is to make it easier to reference the elements.

Sometimes we write an expression in the form of

(4) A = {x1, x2, . . .}.

Here the implication is that the set A may have an infinite number of elements;
in which case a correspondence is indicated between the elements of the set and
the set of natural numbers or positive integers which we shall denote by

(5) Z = {1, 2, . . .}.

(Here the letter Z, which denotes the set of natural numbers, derives from the
German verb zahlen: to count)

An alternative way of denoting a set is to specify the characteristic which
is common to its elements. Examples are provided by

(6) A = {x; x is a cracked billiard ball},

and by

(7) A =
{
x; x = 1

n , n ∈ Z
}
.
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The latter is just another way of denoting the set

(8) A =
{

1, 1
2 ,

1
3 , . . .

}
.

It may seem like an abstruse way; but, in fact, it has the advantage of being
unambiguous.

Sometimes, we are bound to use such notation for the reason that the
elements of the set cannot be enumerated. That is to say, it may not be
possible to establish a correspondence between the elements of the set and a
set of consecutive integers. An example is provided by the set of all positive
real numbers which can be denoted by

(9) R+ = {x; x ≥ 0}.

We shall be somewhat more specific about the contents of this set at a later
stage.

One should make a clear distinction between the set A = {x} and the
the singleton element x. Thus it makes sense to write x ∈ {x} = A; but it is
incorrect to assert that A ∈ A, since a set is not the same as any or all of its
elements.

It is helpful to have a notation for the special set which contains no ele-
ments. This might be denoted simply by writing an empty pair of braces {}.
In fact, the symbol ∅ is commonly used. By definition, a statement such as
x ∈ ∅ must be false, since the empty set contains no elements. It is certainly
true that the empty set ∅ and the number zero 0 are two quite different entities.
The notation for the empty set, which may have originated as a zero struck
through, is a helpful reminder of this point.

A basic relationship between sets is that of inclusion which entails the
definition of a subset:

(10) We say that B is a subset of A, and we write B ⊂ A or A ⊃ B (i.e. A
includes B) if every element of B is also an element of A. Alternatively,
we may express this relationship by asserting that, if x ∈ B, then x ∈ A,
or simply by asserting that x ∈ B implies x ∈ A.

Observe that, if A ⊂ B and B ⊂ A, then A and B are one and the same;
and we may write A = B. If B ⊂ A and B 6= A, then B is a proper subset of
A.

In any context, there is a set which contain all others. This set is called
the universal set, denoted by S.

Operations on Sets

(11) A binary operation of union, denoted by the symbol ∪, may be defined
relative to any two sets A and B. The operation generates the set

A ∪B = {x; x ∈ A or x ∈ B}.
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Here the word “or” is used in the inclusive sense to imply that x is either
in A or in B or in both. For example, if S is the set of all vertebrates, A is
the characteristic of having fur and B is the characteristic of laying eggs, then
A∪B certainly has the duck-bill platypus amongst its elements as well as foxes
and geese.

(12) A binary operation of intersection, denoted by the symbol ∩, may be
defined relative to any two sets A and B. The operation generates the
set

A ∩B = {x; x ∈ A and x ∈ B}.

In terms of the previous example, A ∩ B (unless I am mistaken) has only
the duck-bill platypus and the spiny ant eater as its two elements.

(13) Two sets A and B are said to be disjoint if their intersection is the
empty set

A ∩B = ∅.

If A is the set of vertebrate fish and B is the set of mammals, then,
according to modern usage, their intersection is the empty set. However, as
recently as Victorian times, whales, which are mammals, were liable to be
described as fish.

(14) Let A ⊂ S. Then the complement of A in S, denoted by Ac, is the set
of all the elements of S which do not belong to A:

Ac = {x; x /∈ A}.

The Rules of Boolean Algebra

The binary operations of union ∪ and intersection ∩ are roughly analogous
to the arithmetic operations of addition + and multiplication ×, and they
obey a similar set of laws. In fact, the laws of Boolean algebra are virtually
symmetric with respect to the two operations in the sense that, in any statement
of the laws, the symbols can be interchanged without affecting the truth of the
statements. This in not the case in arithmetic. The laws are as follows:

(15) Commutative law: A ∪B = B ∪A,

A ∩B = B ∩A,

(16) Associative law: (A ∪B) ∪ C = A ∪ (B ∪ C),

(A ∩B) ∩ C = A ∩ (B ∩ C),

(17) Distributive law: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),
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(18) Idempotency law: A ∪A = A,

A ∩A = A.

These various laws have the status of axioms.
There are several useful identities which are deducible from the axioms.

Thus De Morgan’s Rules state that

(19) (A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc.

Amongst other useful results are the following:

(20)

(i) A ∪Ac = S,

(ii) A ∩Ac = ∅,
(iii) A ∪ S = S,

(iv) A ∩ S = A,

(v) A ∪ ∅ = A,

(vi) A ∩ ∅ = ∅.

Problems

1. Prove De Morgans’ rules using a Venn diagram.

2. Substitute the symbols + for addition and × for multiplication in place of
∪ and ∩ respectively in the statements (15)–(18) of the laws of Boolean
algebra. Determine whether the resulting statements concerning the arith-
metic operations are true or false. Attempt to give a complete statement
of the rules of arithmetic.

3. Evaluate the following expressions:

(a) A ∪ (Bc ∪A)c,

(b) A ∩ (B ∪Ac),
(c) A ∩ (Bc ∩A)c.
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