EC3070 FINANCIAL DERIVATIVES

PRESENT VALUES

The Initial Value of a Forward Contract. One of the parties to a forward contract assumes a *long position* and agrees to buy the underlying asset at a certain price on a certain specified future date denoted $t = \tau$. The other party assumes a short position and agrees to sell the asset on the same date. The date when the contract is made is t = 0. The agreed settlement price is $K_{\tau} = F_{\tau|0}$, where $F_{\tau|0}$ denotes the price at time t = 0 for a delivery of the asset at time $t = \tau$.

Let t = 0 be the current time so that S_0 is the spot price of an asset. Let the current risk-free rate of compound interest be r. Then, the spot price and the forward price are related by the formulae

(i)
$$F_{\tau|0} = S_0 e^{r\tau}$$
 and (ii) $S_0 = F_{\tau|0} e^{-r\tau}$.

Here, we understand that the forward price $F_{\tau|0}$ must be discounted by the factor $e^{-r\tau}$ to equate it to the present value of S_0 . Equally, if the sum of S_0 were to be invested for τ periods under a regime of compound interest, then it would grow to $S_0 e^{r\tau}$. To establish the necessity of the relationships, we may consider how, in their absence, there would be possibilities for arbitrage, which may be ruled out by assumption.

Imagine that $S_0 e^{r\tau} > F_{\tau|0}$. An investor could sell the asset today for S_0 and invest the proceeds to derive a sum of $S_0 e^{r\tau}$ at time τ . At the same time, he could enter a long forward contract to buy the asset at time τ for $F_{\tau|0}$. In this way, he would derive a riskless arbitrage profit of $S_0 e^{r\tau} - F_{\tau|0} > 0$. This should not be possible under the assumption that all arbitrage opportunities are immediately exploited and that they vanish on the instant.

Imagine, conversely, that $F_{\tau|0} > S_0 e^{r\tau}$. The investor could borrow S_0 today and undertake to repay $S_0 e^{r\tau}$ at time τ . Then, he could buy the asset for S_0 and enter a short forwards contract to sell it for $F_{\tau|0}$ at time τ . In this way, he could derive a riskless arbitrage profit of $F_{\tau|0} - S_0 e^{r\tau} > 0$. Such a possibility is also ruled out. If neither $S_0 e^{r\tau} > F_{\tau|0}$ nor $F_{\tau|0} > S_0 e^{r\tau}$ are possible, then it must be true that $F_{\tau|0} = S_0 e^{r\tau}$.

The Current Value of a Forward Contract. After a forward contact has been established there may be a marked divergence between the current forward price and the settlement price. Image that the contract was made at time t = 0, when the condition $F_{\tau|0} = S_0 e^{r\tau}$ would have prevailed, which links the spot price S_0 to the forwards price $F_{\tau|0}$ via the risk free rate of interest r. At a subsequent date t, the value of a long forward contract to accept delivery of the asset at time τ will be

$$f_t = (F_{\tau|t} - K_\tau)e^{-r(\tau-t)},$$

D.S.G. Pollock: stephen_pollock@sigmapi.u-net.com

PRESENT VALUES

where $\tau - t$ is the time remaining until the settlement date.

The contract matures at time $t = \tau$. At that time, there will be $F_{\tau|\tau} = S_{\tau}$, which is to say that the forward price will coincide with the spot price. Both K_{τ} and S_{τ} will be present values. Therefore the profit or loss for the long position will be

$$f_{\tau} = S_{\tau} - K_{\tau}.$$

Forward Price of an Income Bearing Asset. Consider an asset that generates an income stream. Let t = 0 be the current time, and let $t = \tau$ be the time at which the asset is to be sold under a forwards contract. The present value of the income stream from now till then can be denoted by $I_{\tau|0}$. Then, the forward price of the asset is

$$F_{\tau|0} = (S_0 - I_{\tau|0})e^{r\tau}.$$

This follows since the income stream up to time τ , which will not be received by the party purchasing the forward contract, must be discounted to its present value and subtracted from the spot price. The factor $e^{r\tau}$ serves to carry $S_0 - I_{\tau|0}$ forward from time t = 0 to time $t = \tau$.

To confirm this formula, consider buying a unit of the asset at time t = 0for S_0 . This is certain to lead to a payment of $F_{\tau|0}$ when delivered to another party in fulfilment of the forward contract. The present value of this payment is $F_{\tau|0}e^{-r\tau}$, which can be added to the present value $I_{\tau|0}$ of the income stream up to time τ . This sum must equal the spot price. So $S_0 = I_{\tau|0} + F_{\tau|0}e^{-r\tau}$, which is equivalent to the stated result.

Forward Price of an Asset Yielding Dividends. A dividend is calculated as a fixed percentage of the asset price. Let the dividend be paid continuously at an annual rate of q and imagine that the payments are compounded with the asset. Let the risk free rate of interest be r. Then, the forwards price of an investment asset providing a continuous dividend yield at the rate q is

$$F_{\tau|0} = S_0 e^{(r-q)\tau}.$$

To rationalise this, consider buying N units of the asset at a unit price of S_0 . By the process of continuous compounding these become $Ne^{q\tau}$ units at time τ , which, according to the forwards contract, will sell at a unit price of $F_{0|\tau}$ yielding a cash flow of $NF_{0|\tau}e^{q\tau}$. The present value of this cash flow at time t = 0, discounted using the risk free rate of interest r, is $N\{F_{0|\tau}Ne^{q\tau}\}e^{-r\tau}$. This must equal the spot value, which is NS_0 . Therefore, $S_0 = F_{0|\tau}e^{(q-r)\tau}$, which is equivalent to the stated condition.

D.S.G. Pollock: stephen_pollock@sigmapi.u-net.com

The Present Value of a Fixed-Interest Bond. Let r be the current annual rate of interest paid on an fixed-interest bond that matures in n years when the principal is repaid, and let $\delta = (1+r)^{-1}$ be the annual discount factor. Then, the present value of the income stream is equal the face value of the bond.

To show this, let A be be the face value of the bond, and let Q be the present value of the income stream. Then, Ar is the size of the annual interest payment, calculated as a fixed percentage of the face value, and the present value of the income stream is

$$Q = Ar\delta(1 + \delta + \delta^2 + \dots + \delta^{n-1}) + A\delta^n.$$

We observe that

$$1 + \delta + \delta^2 + \dots + \delta^{n-1} = \frac{1 - \delta^n}{1 - \delta}$$

and that

$$1 - \delta = r\delta.$$

Substituting these into the expression for the present value gives

$$Q = A(1 - \delta^n) + A\delta^n = A.$$

D.S.G. Pollock: stephen_pollock@sigmapi.u-net.com