
LECTURE 8

Multivariate
ARMA Processes

A vector y(t) of n elements is said to follow an n-variate ARMA process
of orders p and q if it satisfies the equation

(1)
A0y(t) + A1y(t− 1) + · · · + Apy(t− p)

= M0ε(t) + M1ε(t− 1) + · · · + Mqε(t− q).

wherein A0, A1 . . . , Ap,M0,M1 . . . ,Mq are matrices of order n × n and ε(t) is
a disturbance vector of n elements.

In order to signify that the ith element of the vector y(t) is the dependent
variable of the ith equation, for every i, it is appropriate to have units for the
diagonal elements of the matrix A0. Moreover, unless it is intended to explain
the value of yi in terms of the remaining contemporaneous elements of y(t),
then it is natural to set A0 = I. It is also usual to set M0 = I.

It is assumed the disturbance vector ε(t) has E{ε(t)} = 0 for its expected
value. On the assumption that M0 = I, the dispersion matrix is an unrestricted
positive-definite matrix denoted by D{ε(t)} = Σ. However, the restriction may
be imposed that D{ε(t)} = I, in which case M0M 0

0 = Σ.
The equations of (1) can be written in summary notation as

(2) A(L)y(t) = M(L)ε(t),

where A(z) = A0 + A1z + · · · + Apzp and M(z) = M0 + M1z + · · · + Mqzq are
matrix-valued polynomials assumed to be of full rank. A multivariate process
of this nature is commonly described as a VARMA process—the initial letter
denoting “vector”.

Example. The multivariate first-order autoregressive VAR(1) process satisfies
the equation

(3) y(t) = Φy(t− 1) + ε(t).

On the assumption that lim(τ → ∞)Φτ = 0, the equation may be expanded,
by an process of back-substitution which continues indefinitely, so as become
an infinite-order moving average:

(4) y(t) =
©
ε(t) + Φε(t− 1) + Φ2ε(t− 2) + · · ·

™
.
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This expansion may also be effected in terms of the algebra of the lag operator
via the expression

(5) (I − ΦL)−1 =
©
I + ΦL + Φ2L2 + · · ·

™
.

For the convergence of the sequence {Φ,Φ2, . . .}, it is necessary and sufficient
that all of the eigenvalues or latent roots of Φ should be less than unity in
modulus.

The conditions of stationarity and invertibility which apply to a
VARMA(p, q) model A(L)y(t) = M(L)ε(t) are evident generalisations of those
which apply to scalar processes. The VARMA process is stationary if and only
if detA(z) 6= 0 for all z such that |z| < 1. If this condition is fulfilled, then
there exists a representation of the process in the form of

(6) y(t) =
©
Ψ0ε(t) + Ψ1ε(t− 1) + · · ·

™
,

wherein the matrices Ψj are determined by the equation

(7) A(z)Ψ(z) = M(z).

The process is invertible, on the other hand, if and only if detM(z) 6= 0 for all
z such that |z| < 1. In that case, the process can be represented by an equation
in the form of

(8) ε(t) =
©
y(t) + Π1y(t− 1) + Π2y(t− 2) + · · ·

™
,

wherein the matrices Πj are determined by the equation

(9) M(z)Π(z) = A(z).

Canonical Forms

There is a variety of ways in which a VARMA equation can be reduced
to a state-space model incorporating a transition equation which corresponds
to a first-order Markov process. One of the more common formulations is the
so-called controllable canonical state-space representation.

Consider writing equation (2) as

(10)
y(t) = M(L)

©
A−1(L)ε(t)

™

= M(L)ξ(t),
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where ξ(t) = A−1(L)ε(t). This suggests that, in generating the values of y(t),
we may adopt a two-stage procedure which begins by calculating the values of
ξ(t) via the equation

(11) ξ(t) = ε(t)−
©
A1ξ(t− 1) + · · · + Arξ(t− r)

™

and then proceeds to find those of y(t) via the equation

(12) y(t) = M0ξ(t) + M1ξ(t− 1) + · · · + Mr−1ξ(t− r + 1).

Here, r = max(p, q) and, if p 6= q, then either Ai = 0 for i = p + 1, . . . , q or
Mi = 0 for i = q + 1, . . . , p.

In order to implement the recursion under (11), we define a set of r state
variables as follows:

(13)

ξ1(t) = ξ(t),
ξ2(t) = ξ1(t− 1) = ξ(t− 1),

...
ξr(t) = ξr−1(t− 1) = ξ(t− r + 1).

Rewriting equation (11) in terms of the variables defined on the LHS gives

(14) ξ1(t) = ε(t)− {A1ξ1(t− 1) + · · · + Arξr(t− 1)}.

Therefore, by defining a state vector ξ(t) = [ξ1(t), ξ2(t), . . . , ξr(t)]0 and by com-
bining (13) and (14), we can construct a system in the form of

(15)





ξ1(t)
ξ2(t)

...
ξr(t)



 =





−A1 . . . −Ar−1 −Ar

1 . . . 0 0
...

. . .
...

...
0 . . . 1 0









ξ1(t− 1)
ξ2(t− 1)

...
ξr(t− 1)



 +





1
0
...
0



 ε(t).

The sparse matrix on the RHS of this equation is an example of a so-called com-
panion matrix. The accompanying measurement equation which corresponds
to equation (12) is given by

(16) y(t) = M0ξ1(t) + · · · + Mr−1ξr(t).

Even for a VARMA system of a few variables and of low AR and MA
orders, a state-space system of this sort is liable to involve matrices of very
large dimensions. In developing practical computer algorithms for dealing with
such systems, one is bound to pay attention to the sparseness of the companion
matrix.
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The Final Form and Transfer Function Form

A VARMA model is mutable in the sense that it can be represented in
many different ways. It is particularly interesting to recognise that it can be
reduced in a straightforward way to a set of n interrelated ARMA models. It
is quite acceptable to ignore the interrelations and to concentrate on building
models for the individual series. However, ignoring the wider context in which
these series arise will result in a loss of statistical efficiency in the course of
generating estimates of their parameters.

The assumption that A(z) is of full rank allows us to write equation (2) as

(17)
y(t) = A−1(L)M(L)ε(t)

=
1

|A(L)|A
∗(L)M(L)ε(t),

where |A(L)| is the scalar-valued determinant of A(L) and A∗(L) is the adjoint
matrix. The process can be written equally as

(18) |A(L)|y(t) = A∗(L)M(L)ε(t).

Here is a system of n ARMA processes that share a common autoregressive
operator α(L) = |A(L)|. The moving-average component of the ith equation is
the ith row of A∗(L)M(L)ε(t). This corresponds to a sum of n moving-average
processes—one for each element of the vector ε(t). A sum of moving-average
processes is itself a moving-average process with an order which is no greater
than the maximal order of its constituent processes. It follows that the ith
equation of the system can be written as

(19) α(L)yi(t) = µi(L)ηi(t).

The interdependence of the n univariate ARMA equations is manifested
by the fact (a) that they share the same autoregressive operator α(L) and by
the fact (b) that their disturbance processes ηi(t); i = 1, . . . , n are mutually
correlated.

It is possible that α(L) and µi(L) will have certain factors in common.
Such common factors must be cancelled from these operators. The effect will
be that the operator α(L) will no longer be found in its entirely in each of the
n equations. Indeed, it is possible that, via such cancellations, the resulting au-
toregressive operators αi(L) of the n equations will become completely distinct
with no factors in common.

By a certain specialisation, the VARMA model can give rise to a dynamic
version of the classical simultaneous-equation model of econometrics. This
specialisation requires a set of restrictions that serve to classify some of the
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variables in y(t) as exogenous with respect to the others which, in turn, are
classified as endogenous variables. In that case, the exogenous variables may be
regarded as the products of processes that are independent of the endogenous
processes.

To represent this situation, let us partition the equations under (2) as

(20)
∑

A11(L) A12(L)
A21(L) A22(L)

∏ ∑
y1(t)
y2(t)

∏
=

∑
M11(L) M12(L)
M21(L) M22(L)

∏ ∑
ε1(t)
ε2(t)

∏
.

If the restriction are imposed that

(21) A21(L) = 0, M21(L) = 0 and M12(L) = 0,

then the system will be decomposed into a set of structural equations

(22) A11(L)y1(t) + A12(L)x(t) = M11ε1(t),

and a set of equations that describe the processes generating the exogenous
variables,

(23) A22(L)x(t) = M22ε1(t).

Here, in order to emphasise the distinction between endogenous and exogenous
equations, we have set y2(t) = x(t).

The leading matrix of A11(z), which is associated with z0, may be denoted
by A110. If this is nonsingular, then the equations of (22) may be premultiplied
by A−1

110 to give the so-called reduced-form equations, which express the cur-
rent values of the endogenous variables as functions of the lagged endogenous
variables and of the exogenous variables:

(24)

y1(t) =−A−1
110

rX

j=1

A11jL
jy(t)−A−1

110

rX

j=1

A12jL
jx(t)

+ A−1
110

rX

j=1

M11jL
jε(t).

Each of the equations is in the form of a so-called ARMAX model.
The final form of the equation of (22) is given by

(25) y1(t) = −A−1
11 (L)A12(L)x(t) + A−1

11 (L)M11(L)ε(t).

Here, the current values of the endogenous variables are expressed as functions
of only the exogenous variables and the disturbances. Each of the individual
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equations of the final form constitutes a so-called rational transfer-function
model or RTM.

The Rational Model and the ARMAX Model

An ARMAX model is represented by the equation

(26) α(L)y(t) = β(L)x(t) + µ(L)ε(t),

where y(t) and x(t) are observable sequences and ε(t) is a white-noise distur-
bance sequence which is statistically independent of x(t). For the model to
be viable, the roots of the polynomial equations α(z) = 0 and µ(z) = 0 must
lie outside the unit circle. This is to ensure that the coefficients of the series
expansions of α−1(z) and µ−1(z) form convergent sequences. The rational form
of equation (26) is

(27) y(t) =
β(L)
α(L)

x(t) +
µ(L)
α(L)

ε(t).

The Rational Transfer-Function Model or RTM is represented by

(28) y(t) =
δ(L)
γ(L)

x(t) +
θ(L)
φ(L)

ε(t),

or, alternatively, by

(29) γ(L)φ(L)y(t) = φ(L)δ(L)x(t) + γ(L)θ(L)ε(t).

The leading coefficients of γ(L),φ(L) and θ(L) are set to unity. The roots of
the equations γ(z) = 0,φ(z) = 0 and θ(z) = 0 must lie outside the unit circle.

Notice that equation (29) can be construed as a case of (26) in which the
factors of α(L) = γ(L)φ(L) are shared between β(L) = φ(L)δ(L) and µ(L) =
γ(L)θ(L). Likewise, equation (27) can be construed as a case of equation (28) in
which the two transfer functions have the same denominator α(L). There may
be scope for cancellation between the numerators and denominators of these
transfer functions; after which they might have nothing in common. However,
if none of the factors of α(L) are to be found in either β(L) or µ(L), then
α(L) is present in its entirety in the denominators of both the systematic and
disturbance parts of the rational form of the model. In that case, the two parts
of the model have dynamic properties which are essentially the same.

An advantage of the ARMAX model when µ(L) = 1 is that it may be
estimated simply by ordinary least-squares regression. The advantage disap-
pears when µ(L) 6= 1. Its disadvantage lies in the fact that the two transfer
functions of the rational form of the model are constrained to have the same de-
nominators. Unless the relationship which is being modelled does have similar
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dynamic properties in its systematic and disturbance parts, then the restriction
is liable to induce severe biases in the estimates. This is a serious problem if
the estimated relationship is to be used as part of a control mechanism. If the
only concern is to forecast the values of y(t), then there is less harm in such
biases.

The advantages of a rational transfer-function model with distinct param-
eters in both transfer functions is an added flexibility in modelling complex
dynamic relationships as well as a degree of robustness that allows the system-
atic part of the model to be estimated consistently even when the stochastic
part is misspecified. A disadvantage of the rational model may be the complex-
ity of the processes of identification and estimation. In certain circumstances,
the pre-whitening technique may help in overcoming such difficulties.

Fitting the Rational Model by Pre-whitening

Consider, once more, the rational transfer-function model of (28). This
can be written as

(29) y(t) = ω(L)x(t) + η(t),

where ω(z) = {ω0 +ω1z + · · ·} stands for the expansion of the rational function
δ(z)/γ(z) and where η(t) = {θ(L)/φ(L)}ε(t) is a disturbance generated by an
ARMA process.

If the input signal x(t) happens to be white noise, which it might be by
some contrivance, then the estimation of the coefficients of ω(z) is straightfor-
ward. For, given that the signal x(t) and the noise η(t) are uncorrelated, it
follows that

(30) ωτ =
C(yt, xt−τ )

V (xτ )
.

The principal of estimation known as the method of moments suggest that, in
order to estimate ωτ consistently, we need only replace the theoretical moments
C(yt, xt−τ ) and V (xτ ) within this expression by their empirical counterparts.

Imagine that, instead of being a white-noise sequence, x(t) is a stochastic
sequence that can be represented by an ARMA process, which is stationary
and invertible:

(31) ρ(L)x(t) = ψ(L)ξ(t).

Then, x(t) can be reduced to the white-noise sequence ξ(t) by the application of
the filter π(L) = ρ(L)/ψ(L). The application of the same filter to y(t) and η(t)
will generate the sequences q(t) = π(L)y(t) and ζ(t) = π(L)η(t) respectively.
Hence, if the model of equation (29) can be transformed into

(32) q(t) = ω(L)ξ(t) + ζ(t),
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then the parameters of ω(L) will, once more, become accessible in the form of

(30) ωτ =
C(qt, ξt−τ )

V (ξτ )
.

Given the coefficients of ω(z), it is straightforward to recover the parameters
of δ(z) and γ(z), when the degrees of these polynomials are known.

In practice, the filter π(L), which would serve to reduce x(t) to white
noise, requires to be identified and estimated via the processes of ARMA model
building, which we have described already. The estimated filter may then be
applied to the sequences of observations on x(t) and y(t) in order to construct
the empirical counterparts of the white-noise sequence ξ(t) and the filtered
sequence q(t). From the empirical moments of the latter, the estimates of the
coefficients of ω(z) may be obtained.

These estimates of ω(z), which are obtained via the technique of pre-
whitening, are liable to be statistically inefficient. The reasons for their in-
efficiency lie partly in the use of an estimated whitening filter—in place of a
known one—and partly in the fact that no attention is paid, in forming the
estimates, the nature of the disturbance processes η(t) and ζ(t). However, the
“pre-whitening” estimates of ω(z), together with the corresponding estimates
of δ(z) and γ(z), may serve as useful starting values for an iterative procedure
aimed at finding the efficient maximum-likelihood estimates.
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