
LECTURE 6

Forecasting
with ARMA Models

If the nonstationarity of a time series can be attributed to the presence of
d unit roots in the autoregressive operator, then the series can be forecast
by forecasting its dth difference. With the help of d initial conditions, the
forecasts of the difference can be aggregated to generate a forecast of the level
of the series.

Three Forms of Forecasting Equations

An ARMA model may be represented in three different ways

α(L)y(t) = µ(L)ε(t), Difference Equation Form

y(t) =
µ(L)
α(L)

ε(t) = ψ(L)ε(t), Moving-Average Form

α(L)
µ(L)

y(t) = π(L)y(t) = ε(t). Autoregressive Form

Here
ψ(L) = {1 + ψ1L+ ψ2L

2 + · · ·} and

π(L) = {1− π1L− π2L
2 − · · ·}

stand for the series expansions of the respective rational operators.
In developing the theory of forecasting, we may consider an infinite in-

formation set It = {yt, yt−1, yt−2, . . .}. Knowing the parameters in α(L) and
µ(L) enables us to recover the sequence {εt, εt−1, εt−2, . . .} from the sequence
{yt, yt−1, yt−2, . . .} and vice versa; so either of these constitute the information
set. This equivalence implies that the forecasts may be expressed in terms {yt}
or in terms {εt} or as a combination of the elements of both sets.

The one-step-ahead forecasts corresponding to these forms are given by

ŷt+1|t = −{α1yt + α2yt−1 + · · ·+ αpyt−p+1} Difference Equation Form

+ {µ1εt + µ2εt−1 + · · ·+ µqεt−q+1},

ŷt+1|t = {ψ1εt + ψ2εt−1 + · · ·}, Moving-Average Form

ŷt+1|t = {π1yt + π2yt−1 + · · ·}. Autoregressive Form
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Optimal Forecasts

Consider making a prediction at time t for h steps ahead. The value of the
process at time t+ h is

(10)
yt+h = {ψ0εt+h + ψ1εt+h−1 + · · ·+ ψh−1εt+1}

+ {ψhεt + ψh+1εt−1 + · · ·}.

The first term on the RHS embodies disturbances subsequent to the time t ,
and the second term embodies disturbances which are within the information
set {εt, εt−1, εt−2, . . .}. A linear forecasting function, based on the information
set, takes the form of

(11) ŷt+h|t = {ρhεt + ρh+1εt−1 + · · ·}.

Then, given that ε(t) is a white-noise process, it follows that the mean square
of the error in the forecast h periods ahead is

(12) E
{
(yt+h − ŷt+h)2

}
= σ2

ε

h−1∑
i=0

ψ2
i + σ2

ε

∞∑
i=h

(ψi − ρi)2.

This is minimised by setting ρi = ψi; and so the optimal forecast is given by

(13) ŷt+h|t = {ψhεt + ψh+1εt−1 + · · ·}.

This might have been derived from the equation y(t + h) = ψ(L)ε(t + h),
which generates the true value of yt+h, simply by putting zeros in place of the
unobserved disturbances εt+1, εt+2, . . . , εt+h which lie in the future when the
forecast is made.

On the assumption that the process is stationary, the mean-square error
of the forecast tends to the value of

(14) V
{
y(t)

}
= σ2

ε

∑
ψ2
i

as the lead time h of the forecast increases. This is nothing but the variance of
the process y(t).

The optimal forecast of (5) may also be derived by specifying that the
forecast error should be uncorrelated with the disturbances up to the time of
making the forecast. For, if the forecast errors were correlated with some of the
elements of the information set, then, as we have noted before, we would not
be using the information efficiently, and we could not be generating optimal
forecasts.
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Generating The Forecasts Recursively

The optimal (m.m.s.e) forecast of yt+h is the conditional expectation of
yt+h given the information set It. Taking expectations conditional on It gives

(21)

E(yt+k|It) = ŷt+k|t if k > 0,

E(yt−j |It) = yt−j if j ≥ 0,
E(εt+k|It) = 0 if k > 0,
E(εt−j |It) = εt−j if j ≥ 0.

In this notation, the forecast h periods ahead is

(22)

E(yt+h|It) =
h∑
k=1

ψh−kE(εt+k|It) +
∞∑
j=0

ψh+jE(εt−j |It)

=
∞∑
j=0

ψh+jεt−j .

The forecasts may be generated using a recursion based on the equation

(23)
y(t) = −

{
α1y(t− 1) + α2y(t− 2) + · · ·+ αpy(t− p)

}
+ µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q).

By taking the conditional expectation of this function, we get

(24)
ŷt+h = −{α1ŷt+h−1 + · · ·+ αpyt+h−p}

+ µhεt + · · ·+ µqεt+h−q when 0 < h ≤ p, q,

(25) ŷt+h = −{α1ŷt+h−1 + · · ·+ αpyt+h−p} if q < h ≤ p,

(26)
ŷt+h = −{α1ŷt+h−1 + · · ·+ αpŷt+h−p}

+ µhεt + · · ·+ µqεt+h−q if p < h ≤ q,

and

(27) ŷt+h = −{α1ŷt+h−1 + · · ·+ αpŷt+h−p} when p, q < h.

It can be seen from (27) that, for h > p, q, the forecasting function becomes
a pth-order homogeneous difference equation in y. The p values of y(t) from
t = r = max(p, q) to t = r− p+ 1 serve as the starting values for the equation.
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The Analytic Form of the Forecast Function

Beyond the reach of the starting values, the forecast function can be rep-
resented by a homogeneous difference equation. The unit roots can be incorpo-
rated within the analytic solution of the difference equation. In the long run,
the unit roots dominate the solution.

In general, if d of the roots are unity, then the general solution will comprise
a polynomial in t of order d− 1.

Example. For an example of the analytic form of the forecast function, we
may consider the Integrated Autoregressive (IAR) Process defined by

(30)
{
1− (1 + φ)L+ φL2

}
y(t) = ε(t),

wherein φ ∈ (0, 1). The roots of the auxiliary equation z2 − (1 + φ)z + φ = 0
are z = 1 and z = φ. The solution of the homogeneous difference equation

(31)
{
1− (1 + φ)L+ φL2

}
ŷ(t+ h|t) = 0,

which defines the forecast function, is

(32) ŷ(t+ h|t) = c1 + c2φ
h,

where c1 and c2 are constants which reflect the initial conditions. These con-
stants are found by solving the equations

(33)
yt−1 = c1 + c2φ

−1,

yt = c1 + c2.

The solutions are

(34) c1 =
yt − φyt−1

1− φ and c2 =
φ

φ− 1
(yt − yt−1).

The long-term forecast is ȳ = c1 which is the asymptote to which the forecasts
tend as the lead period h increases.
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Ad-hoc Methods of Forecasting : The Holt–Winters Method

The Holt–Winters algorithm is useful in extrapolating local linear trends.
The prediction h periods ahead of a series y(t) = {yt, t = 0,±1,±2, . . .} which
is made at time t is given by

(38) ŷt+h|t = α̂t + β̂th,

where

(39)
α̂t = λyt + (1− λ)(α̂t−1 + β̂t−1)

= λyt + (1− λ)ŷt|t−1

is the estimate of an intercept or levels parameter formed at time t and

(40) β̂t = µ(α̂t − α̂t−1) + (1− µ)β̂t−1

is the estimate of the slope parameter, likewise formed at time t. The coeffi-
cients λ, µ ∈ (0, 1] are the smoothing parameters.

The algorithm may also be expressed in error-correction form. Let

(41) et = yt − ŷt|t−1 = yt − α̂t−1 − β̂t−1

be the error at time t arising from the prediction of yt on the basis of information
available at time t− 1. Then the formula for the levels parameter can be given
as

(42)
α̂t = λet + ŷt|t−1

= λet + α̂t−1 + β̂t−1,

which, on rearranging, becomes

(43) α̂t − α̂t−1 = λet + β̂t−1.

When the latter is drafted into equation (40), we get an analogous expression
for the slope parameter:

(44)
β̂t = µ(λet + β̂t−1) + (1− µ)β̂t−1

= λµet + β̂t−1.
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The Holt–Winters Method and the IMA(2, 2) Model

In order reveal the underlying nature of the Holt–Winters method, it is
helpful to combine the two equations (42) and (44) in a simple state-space
model:

(45)
[
α̂(t)
β̂(t)

]
=
[

1 1
0 1

] [
α̂(t− 1)
β̂(t− 1)

]
+
[
λ
λµ

]
e(t).

This can be rearranged to give

(46)
[

1− L −L
0 1− L

] [
α̂(t)
β̂(t)

]
=
[
λ
λµ

]
e(t).

The solution of the latter is

(47)
[
α̂(t)
β̂(t)

]
=

1
(1− L)2

[
1− L L

0 1− L

] [
λ
λµ

]
e(t).

Therefore, from (38), it follows that

(48)

ŷ(t+ 1|t) = α̂(t) + β̂(t)

=
(λ+ λµ)e(t) + λe(t− 1)

(1− L)2
.

This can be recognised as the forecasting function of an IMA(2, 2) model of
the form

(49) (I − L)2y(t) = µ0ε(t) + µ1ε(t− 1) + µ2ε(t− 2)

for which

(50) ŷ(t+ 1|t) =
µ1ε(t) + µ2ε(t− 1)

(1− L)2
.
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