LECTURE 4 : ARMA PROCESSES

Moving-Average Processes

The MA(q) process, is defined by

y(t) = poe(t) + pae(t — 1) + -+ + pge(t — q)

= p(L)e(t),

where (L) = po + L + -+ - + pgL? and where () is white noise.

An MA model should be invertible such that p=*(L)y(t) = &(t). This
AR(00) representation is is available if and only if all the roots of u(z) =0 lie
outside the unit circle.

(5.3)

Example. Consider the MA(1) process

(5.4) y(t) =¢e(t) —0e(t — 1) = (1 — OL)e(t).

Provided that || < 1, this can be written in autoregressive form as

e(t) = (1= 0L) " y(t)

(5.5) = {y(t) + Oyt — 1) + 0%y(t —2) + - }.

Imagine that |#| > 1 instead. Then we have to write

y(t+1) =e(t+ 1) — 02(t)
= —0(1 —L71/0)e(t),

where L=1e(t) = (¢ + 1). This gives

et)=—0""(1—L/0) "y(t+1)
=0 {ylt+1)/0+y(t+2)/0° +y(t—3)/0°+ - }.

(5.6)

(5.7)

Normally, an expression such as this, which embodies future values of y(t),
would have no reasonable meaning.
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The Autocovariances of an M A Process

Consider

Vr = E(ysyi—r)

LD S
i J
= Z Z ,uz-/JJjE(??tfigthfj)'
i g

(5.8)

Since £(t) is white noise, it follows that

0, ifi#7+7;
(5.9) B ={ , o
oZ, iti=71+7].

Therefore

(5.10) Vr = O-? ZNJ’NJ#T'
J

Now let 7 =0,1,...,q. This gives
Yo = 02 (Mo + pF -+ hg),

(5.11) 94! : 052(,“0#1 + ppie + -+ fg—1fiq)s

Yq = USNOMq-
Also, v =0 for all 7 > q.
Example. The MA(1) process y(t) = e(t) — 0(t — 1) has

Yo =0Z2(1+06%),
(5.12) S
=0 if 7>1.

Thus the dispersion matrix of y = [y1,y2,...,yr] is
1+62 -4 0o ... 0
-0 1+6* -6 ... 0
(5.13) Dy)=o2| O -6 146> ... 0
0 0 0 oo 1407
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Autocovariance Generating Function

This is denoted by

(5.14) v(z) = nyTzT; with 7={0,£1,+2,...} and ~, =v_;.

To find the autocovariance generating function of the MA(q) process, con-
sider

IOTCED IIED e
i j
(5.15) = Z;Zj:“i“jzi_j
= Z (ZMz‘Ha‘+r>ZT, T=1—].
T
From (10) it follows that

(5.16) ¥(2) = oZu(z)u(z").
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Autoregressive Processes
The AR(p) process, is defined by
(5.17) aoy(t) + ony(t —1) + -+ + apy(t —p) = £(t).

This can be written as a(L)y(t) = e(t), where a(L) = agp + oy L + - - - + o, LP.
For the process to be stationary, the roots of a(z) = 0 must lie outside the
unit circle. In that case the AR process can be written as an MA(co) process:
y(t) = a=H(L)e(t).

The autocovariance generating function for the AR(p) process is

2
O¢

(5.23) 1) = SaT

Example. Consider the AR(1) process defined by
e(t) =y(t) — ¢yt = 1)
= (1= oL)y(®).
Provided that |¢| < 1, this can be represented in MA form as
y(t) = (1 - ¢L)~'e(t)
={e(t)+¢e(t — 1)+ ¢t —2)+--- }.

The autocovariances of the AR(1) process can be obtained via the formula (10)
for the autocovarainces of an MA process. Thus

(5.18)

(5.19)

Vr = EYiyi—r)

- E{ d ey ¢j€t—7—j}
i J
= Z Z ¢'¢ E(er—ict—r—j);
v J

and it follows from (9) that

(5.20)

Yr = U? Z ¢j¢j+7
(5.21) 7

_ o7
1— g2
The dispersion matrix of y = [y1,y2,...,y7r| is
1 o @2 ... T
2 ¢2 1 ¢ ... ¢;:§
(5.22) D(y) = 5 _€¢2 cb cb 1 - ¢ |
S g gt
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The Yule-Walker Equations

For an alternative way of finding the AR autocovariances, consider multi-
plying Y, a;y+—; = €¢ by y:—~ and taking expectations to give

(5.24) ZaiE(yt—iyt—T) = E(etYt—r)-

Given that ag = 1, it follows that

2 e _ ().
oz, itT=0;

5.25 E(eyi—r) =
(5.25) (Ety1—) {0, it 7> 0.

Therefore, on setting F(y:—;yt—r) = Vr—i, equation (24) gives

2 ifr=0;

g )
(526) Zai%_i = { c

0, ifr>0.

The second of these is a homogeneous difference equation which enables us to
generate the sequence {7V,,Vp+1,- ..} once p starting values o, v1,...,vp—1 are
known. By letting 7 = 0,1,...,p in (26), we generate a set of p + 1 equations
which can be arrayed in matrix form as follows:

Yo 71 Y2 - Yp 1 U?
7 Y0 Y1 <o p—1 oq 0
(5.27) Y20MN Yo o o--- VYp—2 as| — 0
Yo VYp—1 Vp—-2 --- Yo ay, 0

These are called the Yule-Walker equations, and they can be used either for

enerating the values 1yen. from the values a1, ..., a,, o2 or vice versa.
0> ) s Ip ) y py Ye

Example. Consider the second-order autoregressive process. We have

Y2
Yo 1 2 o az ay apg 0 0 1
7 Y% M ar| =10 ap a1 a O Y0
2 0 Qg 0 0 a a1 ag
(5.28) Y 1 Ba!
Y2
o7y} aq Q2 Y0 U?
=|lag agt+ay O yi|=10
Qo aq ao | [ 0

Given ag = 1 and the values for 7g,v1,72, we can find o2 and a;,az. Con-
versely, given ag, a1, as and o2, we can find vg,71, V2.

5
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The Partial Autocorrelation Function

Let o,y be the coefficient associated with y(t — r) in an autoregres-
sive process of order r whose parameters correspond to the autocovariances
Y0,V1s - - -5 Yr- Then the sequence {a,(y;7 = 1,2, ...} of such coefficients, whose
index corresponds to models of increasing orders, constitutes the partial auto-
correlation function. In effect, ., indicates the role in explaining the variance
of y(t) which is due to y(t — r) when y(t — 1),...,y(t — r + 1) are also taken
into account.

The sequence of partial autocorrelations may be computed efficiently via
the recursive Durbin—Levinson Algorithm which uses the coefficients of the AR
model of order r as the basis for calculating the coefficients of the model of
order r + 1.

Imagine that we already have the values ag,y = 1, a1(py, .-, apry. Then,
by extending the set of rth-order Yule-Walker equations to which these values
correspond, we can derive the system

o oM e % ] [ 1 ot

gl Yo oo V=1 Wr Q1(r) 0
(5.29) : T : : = |

Vr Yr—1 .- Yo 71 Qo () 0

Yr+1 Y -0 M Yo | 0 ] Y
wherein
(530) g= Zaj(T)’y?“+1*j with Qo(r) = 1.
§=0

The system can also be written as

Yo M - % v+l [ O g

Y1 Yo cee Yr—1 Yr ar(fr) 0

Yo Y1 o0 M| o 0
Y41 Y - M Y 4| 1 | I(r)

The two systems of equations (29) and (31) can be combined to give

oM o w wn] | ! 1 [9%) tey
71 Y0 cee r—1 Tr Q1 (r) + COr (1) 0
(5:32) | : =
TYr Yr—1 - 0 T Qp(r) T COY(r) 0 9
Vr41 Yr S 4! Yo | C | g+ Ca(r)
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If we take the coeflficient of the combination to be

g
(533) C = —K,

then the final element in the vector on the RHS becomes zero and the system
becomes the set of Yule-Walker equations of order r» + 1. The solution of the
equations, from the last element @, ;(,41) = ¢ through to the variance term
0(2T 41) is given by

1 T
Cpp1(r+1) = 5 {Z Oéj(r)%ﬂ—j}

T(r) §=0

(5.34) Q1 (r+1) A1(r) A (r)
. - + ar—l—l(r—i—l) .

O (r41) A (r) A1 (r)

U(Qr—i-l) = 0(2r){1 - (ar+1(7’+1))2}'
Thus the solution of the Yule-Walker system of order r + 1 is easily derived

from the solution of the system of order r, and there is scope for devising a
recursive procedure. The starting values for the recursion are

(5.35) a1y = —71/% and 0(21) =70{1 — (e1(1))*}-
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Autoregressive Moving Average Processes

The ARMA (p, q) process, is defined by

apy(t) + oyt —1)+ -+ apy(t — p)

(5.36) = poe(t) 4+ pae(t — 1) + - + pge(t — q).

This can also be written as a(L)y(t) = u(L)e(t). If the roots of a(z) =
0 lie outside the unit circle, then the process has an MA(oco) form: y(t) =
a~Y(L)u(L)e(t). If the roots of u(z) = 0 lie outside the unit circle, then it has
an AR(co) form: p=1(L)a(L)y(t) = &(t).

The autocovariance generating function for the ARMA process is

(5.37) v(z) = 0?%.

To find the autocovariances in practice, consider multiplying the equation
Yo iYi—i = Y ; hi€t—; by y:—r and taking expectations. This gives

(5.38) Z QYr—i = Z i0i—7

where v,_; = E(yt—ryt—;) and §;—r = E(yi—re¢—;). Since £;_; is uncorrelated
with y;_, whenever it is subsequent to the latter, it follows that §;_, = 0 if
7 > i. Since the index ¢ in the RHS of the equation (38) runs from 0 to g, it
follows that

(5.39) Y aivi, =0 if T>q
i
Given the ¢+ 1 nonzero values dg, d1, . . ., d4, and p initial values vo, 71, ..., Yp—1,
the equations can be solved recursively for {v,, vp+1,...}.
To find the requisite values dg, d1, . .., 4, consider multiplying the equation

Y il = Y. [igr—; by €., and taking expectations. This gives
(540) Z a/’i(sﬂ'—i - 1“’7'0-57
i

where §,_; = E(y;—iet+—,). The equation may be rewritten as

(5.41) 5 = aio (ror? - ; bri)

and, by setting 7 = 0,1,...,q, we can generate recursively the required values
00,01, .,0q.
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Example. Consider the ARMA(2, 2) model which gives the equation
(5.42) oYt + a1Yp—1 + QYr—2 = o€t + H1E¢—1 + H2E¢—2.

Multiplying by v:, y:—1 and y;_o and taking expectations gives

Yo Y1 V2 Qg do 01 02 o
(5.43) 1Y% M ar | =0 d o 1
Y2 M Y| a2 0 0 do]| [pe

Multiplying by €4, €;—1 and ;2 and taking expectations gives

b0 0 O Qp U? 0 0 4o
(544) 51 50 0 (651 = 0 0'? 0 j251
da 01 o 2 0 0 0'3 Ho

When the latter equations are written as

ap 0 0 do o
(545) a1 Qg 0 (51 = O'? M1 ],
Gz a1 Qg o 2

they can be solved recursively for dg, 6; and do on the assumption that that
the values of ag, a1, as and o2 are known. Notice that, when we adopt the
normalisation ag = pg = 1, we get 6o = 2. When the equations (43) are
rewritten as

@0 Qi az | [ po p1 o pe2 | | do
(546) a1 Qg+ ag 0 Y1 = | 41 M2 0 51 ;
Q2 Qq Qo Y2 w2 0 0 0o

they can be solved for vg, 71 and 2. Thus the starting values are obtained
which enable the equation

(5.47) aoYr + 1Yr—1 @Yo =0; T >2

to be solved recursively to generate the succeeding values {73, 4, ...} of the
autocovariances.



