LECTURE 4 : ARMA PROCESSES

Moving-Average Processes

The MA (q) process, is defined by

$$
\begin{align*}
y(t) & =\mu_{0} \varepsilon(t)+\mu_{1} \varepsilon(t-1)+\cdots+\mu_{q} \varepsilon(t-q) \tag{5.3}\\
& =\mu(L) \varepsilon(t),
\end{align*}
$$

where $\mu(L)=\mu_{0}+\mu_{1} L+\cdots+\mu_{q} L^{q}$ and where $\varepsilon(t)$ is white noise.
An MA model should be invertible such that $\mu^{-1}(L) y(t)=\varepsilon(t)$. This $\mathrm{AR}(\infty)$ representation is is available if and only if all the roots of $\mu(z)=0$ lie outside the unit circle.

Example. Consider the MA(1) process

$$
\begin{equation*}
y(t)=\varepsilon(t)-\theta \varepsilon(t-1)=(1-\theta L) \varepsilon(t) . \tag{5.4}
\end{equation*}
$$

Provided that $|\theta|<1$, this can be written in autoregressive form as

$$
\begin{align*}
\varepsilon(t) & =(1-\theta L)^{-1} y(t) \tag{5.5}\\
& =\left\{y(t)+\theta y(t-1)+\theta^{2} y(t-2)+\cdots\right\} .
\end{align*}
$$

Imagine that $|\theta|>1$ instead. Then we have to write

$$
\begin{align*}
y(t+1) & =\varepsilon(t+1)-\theta \varepsilon(t) \\
& =-\theta\left(1-L^{-1} / \theta\right) \varepsilon(t), \tag{5.6}
\end{align*}
$$

where $L^{-1} \varepsilon(t)=\varepsilon(t+1)$. This gives

$$
\begin{align*}
\varepsilon(t) & =-\theta^{-1}\left(1-L^{-1} / \theta\right)^{-1} y(t+1) \\
& =-\theta^{-1}\left\{y(t+1) / \theta+y(t+2) / \theta^{2}+y(t-3) / \theta^{3}+\cdots\right\} . \tag{5.7}
\end{align*}
$$

Normally, an expression such as this, which embodies future values of $y(t)$, would have no reasonable meaning.

D.S.G. POLLOCK : LECTURES IN THE CITY 4

The Autocovariances of an MA Process

Consider

$$
\begin{align*}
\gamma_{\tau} & =E\left(y_{t} y_{t-\tau}\right) \\
& =E\left\{\sum_{i} \mu_{i} \varepsilon_{t-i} \sum_{j} \mu_{j} \varepsilon_{t-\tau-j}\right\} \tag{5.8}\\
& =\sum_{i} \sum_{j} \mu_{i} \mu_{j} E\left(\varepsilon_{t-i} \varepsilon_{t-\tau-j}\right) .
\end{align*}
$$

Since $\varepsilon(t)$ is white noise, it follows that

$$
E\left(\varepsilon_{t-i} \varepsilon_{t-\tau-j}\right)= \begin{cases}0, & \text { if } i \neq \tau+j \tag{5.9}\\ \sigma_{\varepsilon}^{2}, & \text { if } i=\tau+j\end{cases}
$$

Therefore

$$
\begin{equation*}
\gamma_{\tau}=\sigma_{\varepsilon}^{2} \sum_{j} \mu_{j} \mu_{j+\tau} \tag{5.10}
\end{equation*}
$$

Now let $\tau=0,1, \ldots, q$. This gives

$$
\begin{align*}
\gamma_{0} & =\sigma_{\varepsilon}^{2}\left(\mu_{0}^{2}+\mu_{1}^{2}+\cdots+\mu_{q}^{2}\right) \\
\gamma_{1} & =\sigma_{\varepsilon}^{2}\left(\mu_{0} \mu_{1}+\mu_{1} \mu_{2}+\cdots+\mu_{q-1} \mu_{q}\right), \tag{5.11}\\
& \vdots \\
\gamma_{q} & =\sigma_{\varepsilon}^{2} \mu_{0} \mu_{q} .
\end{align*}
$$

Also, $\gamma_{\tau}=0$ for all $\tau>q$.
Example. The MA(1) process $y(t)=\varepsilon(t)-\theta \varepsilon(t-1)$ has

$$
\begin{align*}
& \gamma_{0}=\sigma_{\varepsilon}^{2}\left(1+\theta^{2}\right), \\
& \gamma_{1}=-\sigma_{\varepsilon}^{2} \theta, \tag{5.12}\\
& \gamma_{\tau}=0 \quad \text { if } \quad \tau>1 .
\end{align*}
$$

Thus the dispersion matrix of $y=\left[y_{1}, y_{2}, \ldots, y_{T}\right]^{\prime}$ is

$$
D(y)=\sigma_{\varepsilon}^{2}\left[\begin{array}{ccccc}
1+\theta^{2} & -\theta & 0 & \cdots & 0 \tag{5.13}\\
-\theta & 1+\theta^{2} & -\theta & \cdots & 0 \\
0 & -\theta & 1+\theta^{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1+\theta^{2}
\end{array}\right]
$$

LECTURE 4 : ARMA PROCESSES

Autocovariance Generating Function

This is denoted by

$$
\begin{equation*}
\gamma(z)=\sum_{\tau} \gamma_{\tau} z^{\tau} ; \quad \text { with } \quad \tau=\{0, \pm 1, \pm 2, \ldots\} \quad \text { and } \quad \gamma_{\tau}=\gamma_{-\tau} \tag{5.14}
\end{equation*}
$$

To find the autocovariance generating function of the MA (q) process, consider

$$
\begin{align*}
\mu(z) \mu\left(z^{-1}\right) & =\sum_{i} \mu_{i} z^{i} \sum_{j} \mu_{j} z^{-j} \\
& =\sum_{i} \sum_{j} \mu_{i} \mu_{j} z^{i-j} \tag{5.15}\\
& =\sum_{\tau}\left(\sum_{j} \mu_{i} \mu_{j+\tau}\right) z^{\tau}, \quad \tau=i-j
\end{align*}
$$

From (10) it follows that

$$
\begin{equation*}
\gamma(z)=\sigma_{\varepsilon}^{2} \mu(z) \mu\left(z^{-1}\right) \tag{5.16}
\end{equation*}
$$

Autoregressive Processes

The $\operatorname{AR}(p)$ process, is defined by

$$
\begin{equation*}
\alpha_{0} y(t)+\alpha_{1} y(t-1)+\cdots+\alpha_{p} y(t-p)=\varepsilon(t) \tag{5.17}
\end{equation*}
$$

This can be written as $\alpha(L) y(t)=\varepsilon(t)$, where $\alpha(L)=\alpha_{0}+\alpha_{1} L+\cdots+\alpha_{p} L^{p}$. For the process to be stationary, the roots of $\alpha(z)=0$ must lie outside the unit circle. In that case the AR process can be written as an MA (∞) process: $y(t)=\alpha^{-1}(L) \varepsilon(t)$.

The autocovariance generating function for the $\mathrm{AR}(p)$ process is

$$
\begin{equation*}
\gamma(z)=\frac{\sigma_{\varepsilon}^{2}}{\alpha(z) \alpha\left(z^{-1}\right)} . \tag{5.23}
\end{equation*}
$$

Example. Consider the $\operatorname{AR}(1)$ process defined by

$$
\begin{align*}
\varepsilon(t) & =y(t)-\phi y(t-1) \\
& =(1-\phi L) y(t) . \tag{5.18}
\end{align*}
$$

Provided that $|\phi|<1$, this can be represented in MA form as

$$
\begin{align*}
y(t) & =(1-\phi L)^{-1} \varepsilon(t) \\
& =\left\{\varepsilon(t)+\phi \varepsilon(t-1)+\phi^{2} \varepsilon(t-2)+\cdots\right\} . \tag{5.19}
\end{align*}
$$

The autocovariances of the $\mathrm{AR}(1)$ process can be obtained via the formula (10) for the autocovarainces of an MA process. Thus

$$
\begin{align*}
\gamma_{\tau} & =E\left(y_{t} y_{t-\tau}\right) \\
& =E\left\{\sum_{i} \phi^{i} \varepsilon_{t-i} \sum_{j} \phi^{j} \varepsilon_{t-\tau-j}\right\} \tag{5.20}\\
& =\sum_{i} \sum_{j} \phi^{i} \phi^{j} E\left(\varepsilon_{t-i} \varepsilon_{t-\tau-j}\right)
\end{align*}
$$

and it follows from (9) that

$$
\begin{align*}
\gamma_{\tau} & =\sigma_{\varepsilon}^{2} \sum_{j} \phi^{j} \phi^{j+\tau} \\
& =\frac{\sigma_{\varepsilon}^{2} \phi^{\tau}}{1-\phi^{2}} . \tag{5.21}
\end{align*}
$$

The dispersion matrix of $y=\left[y_{1}, y_{2}, \ldots, y_{T}\right]^{\prime}$ is

$$
D(y)=\frac{\sigma_{\varepsilon}^{2}}{1-\phi^{2}}\left[\begin{array}{ccccc}
1 & \phi & \phi^{2} & \ldots & \phi^{T-1} \tag{5.22}\\
\phi & 1 & \phi & \ldots & \phi^{T-2} \\
\phi^{2} & \phi & 1 & \ldots & \phi^{T-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\phi^{T-1} & \phi^{T-2} & \phi^{T-3} & \ldots & 1
\end{array}\right] .
$$

LECTURE 4 : ARMA PROCESSES

The Yule-Walker Equations

For an alternative way of finding the AR autocovariances, consider multiplying $\sum_{i} \alpha_{i} y_{t-i}=\varepsilon_{t}$ by $y_{t-\tau}$ and taking expectations to give

$$
\begin{equation*}
\sum_{i} \alpha_{i} E\left(y_{t-i} y_{t-\tau}\right)=E\left(\varepsilon_{t} y_{t-\tau}\right) \tag{5.24}
\end{equation*}
$$

Given that $\alpha_{0}=1$, it follows that

$$
E\left(\varepsilon_{t} y_{t-\tau}\right)= \begin{cases}\sigma_{\varepsilon}^{2}, & \text { if } \tau=0 \tag{5.25}\\ 0, & \text { if } \tau>0\end{cases}
$$

Therefore, on setting $E\left(y_{t-i} y_{t-\tau}\right)=\gamma_{\tau-i}$, equation (24) gives

$$
\sum_{i} \alpha_{i} \gamma_{\tau-i}= \begin{cases}\sigma_{\varepsilon}^{2}, & \text { if } \tau=0 \tag{5.26}\\ 0, & \text { if } \tau>0\end{cases}
$$

The second of these is a homogeneous difference equation which enables us to generate the sequence $\left\{\gamma_{p}, \gamma_{p+1}, \ldots\right\}$ once p starting values $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{p-1}$ are known. By letting $\tau=0,1, \ldots, p$ in (26), we generate a set of $p+1$ equations which can be arrayed in matrix form as follows:

$$
\left[\begin{array}{ccccc}
\gamma_{0} & \gamma_{1} & \gamma_{2} & \ldots & \gamma_{p} \tag{5.27}\\
\gamma_{1} & \gamma_{0} & \gamma_{1} & \ldots & \gamma_{p-1} \\
\gamma_{2} & \gamma_{1} & \gamma_{0} & \ldots & \gamma_{p-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\gamma_{p} & \gamma_{p-1} & \gamma_{p-2} & \ldots & \gamma_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{p}
\end{array}\right]=\left[\begin{array}{c}
\sigma_{\varepsilon}^{2} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

These are called the Yule-Walker equations, and they can be used either for generating the values $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{p}$ from the values $\alpha_{1}, \ldots, \alpha_{p}, \sigma_{\varepsilon}^{2}$ or vice versa.

Example. Consider the second-order autoregressive process. We have

$$
\begin{align*}
& {\left[\begin{array}{ccc}
\gamma_{0} & \gamma_{1} & \gamma_{2} \\
\gamma_{1} & \gamma_{0} & \gamma_{1} \\
\gamma_{2} & \gamma_{1} & \gamma_{0}
\end{array}\right]\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{ccccc}
\alpha_{2} & \alpha_{1} & \alpha_{0} & 0 & 0 \\
0 & \alpha_{2} & \alpha_{1} & \alpha_{0} & 0 \\
0 & 0 & \alpha_{2} & \alpha_{1} & \alpha_{0}
\end{array}\right]\left[\begin{array}{l}
\gamma_{2} \\
\gamma_{1} \\
\gamma_{0} \\
\gamma_{1} \\
\gamma_{2}
\end{array}\right]} \tag{5.28}\\
& =\left[\begin{array}{ccc}
\alpha_{0} & \alpha_{1} & \alpha_{2} \\
\alpha_{1} & \alpha_{0}+\alpha_{2} & 0 \\
\alpha_{2} & \alpha_{1} & \alpha_{0}
\end{array}\right]\left[\begin{array}{l}
\gamma_{0} \\
\gamma_{1} \\
\gamma_{2}
\end{array}\right]=\left[\begin{array}{c}
\sigma_{\varepsilon}^{2} \\
0 \\
0
\end{array}\right] .
\end{align*}
$$

Given $\alpha_{0}=1$ and the values for $\gamma_{0}, \gamma_{1}, \gamma_{2}$, we can find σ_{ε}^{2} and α_{1}, α_{2}. Conversely, given $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and σ_{ε}^{2}, we can find $\gamma_{0}, \gamma_{1}, \gamma_{2}$.

The Partial Autocorrelation Function

Let $\alpha_{r(r)}$ be the coefficient associated with $y(t-r)$ in an autoregressive process of order r whose parameters correspond to the autocovariances $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{r}$. Then the sequence $\left\{\alpha_{r(r)} ; r=1,2, \ldots\right\}$ of such coefficients, whose index corresponds to models of increasing orders, constitutes the partial autocorrelation function. In effect, $\alpha_{r(r)}$ indicates the role in explaining the variance of $y(t)$ which is due to $y(t-r)$ when $y(t-1), \ldots, y(t-r+1)$ are also taken into account.

The sequence of partial autocorrelations may be computed efficiently via the recursive Durbin-Levinson Algorithm which uses the coefficients of the AR model of order r as the basis for calculating the coefficients of the model of order $r+1$.

Imagine that we already have the values $\alpha_{0(r)}=1, \alpha_{1(r)}, \ldots, \alpha_{r(r)}$. Then, by extending the set of r th-order Yule-Walker equations to which these values correspond, we can derive the system

$$
\left[\begin{array}{ccccc}
\gamma_{0} & \gamma_{1} & \ldots & \gamma_{r} & \gamma_{r+1} \tag{5.29}\\
\gamma_{1} & \gamma_{0} & \ldots & \gamma_{r-1} & \gamma_{r} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\gamma_{r} & \gamma_{r-1} & \cdots & \gamma_{0} & \gamma_{1} \\
\gamma_{r+1} & \gamma_{r} & \cdots & \gamma_{1} & \gamma_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
\alpha_{1(r)} \\
\vdots \\
\alpha_{r(r)} \\
0
\end{array}\right]=\left[\begin{array}{c}
\sigma_{(r)}^{2} \\
0 \\
\vdots \\
0 \\
g
\end{array}\right]
$$

wherein

$$
\begin{equation*}
g=\sum_{j=0}^{r} \alpha_{j(r)} \gamma_{r+1-j} \quad \text { with } \quad \alpha_{0(r)}=1 \tag{5.30}
\end{equation*}
$$

The system can also be written as

$$
\left[\begin{array}{ccccc}
\gamma_{0} & \gamma_{1} & \ldots & \gamma_{r} & \gamma_{r+1} \tag{5.31}\\
\gamma_{1} & \gamma_{0} & \ldots & \gamma_{r-1} & \gamma_{r} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\gamma_{r} & \gamma_{r-1} & \ldots & \gamma_{0} & \gamma_{1} \\
\gamma_{r+1} & \gamma_{r} & \cdots & \gamma_{1} & \gamma_{0}
\end{array}\right]\left[\begin{array}{c}
0 \\
\alpha_{r(r)} \\
\vdots \\
\alpha_{1(r)} \\
1
\end{array}\right]=\left[\begin{array}{c}
g \\
0 \\
\vdots \\
0 \\
\sigma_{(r)}^{2}
\end{array}\right] .
$$

The two systems of equations (29) and (31) can be combined to give

$$
\left[\begin{array}{ccccc}
\gamma_{0} & \gamma_{1} & \cdots & \gamma_{r} & \gamma_{r+1} \tag{5.32}\\
\gamma_{1} & \gamma_{0} & \cdots & \gamma_{r-1} & \gamma_{r} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\gamma_{r} & \gamma_{r-1} & \cdots & \gamma_{0} & \gamma_{1} \\
\gamma_{r+1} & \gamma_{r} & \cdots & \gamma_{1} & \gamma_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
\alpha_{1(r)}+c \alpha_{r(r)} \\
\vdots \\
\alpha_{r(r)}+c \alpha_{1(r)} \\
c
\end{array}\right]=\left[\begin{array}{c}
\sigma_{(r)}^{2}+c g \\
0 \\
\vdots \\
0 \\
g+c \sigma_{(r)}^{2}
\end{array}\right]
$$

LECTURE 4 : ARMA PROCESSES

If we take the coefficient of the combination to be

$$
\begin{equation*}
c=-\frac{g}{\sigma_{(r)}^{2}}, \tag{5.33}
\end{equation*}
$$

then the final element in the vector on the RHS becomes zero and the system becomes the set of Yule-Walker equations of order $r+1$. The solution of the equations, from the last element $\alpha_{r+1(r+1)}=c$ through to the variance term $\sigma_{(r+1)}^{2}$ is given by

$$
\begin{align*}
\alpha_{r+1(r+1)} & =\frac{1}{\sigma_{(r)}^{2}}\left\{\sum_{j=0}^{r} \alpha_{j(r)} \gamma_{r+1-j}\right\} \\
{\left[\begin{array}{c}
\alpha_{1(r+1)} \\
\vdots \\
\alpha_{r(r+1)}
\end{array}\right] } & =\left[\begin{array}{c}
\alpha_{1(r)} \\
\vdots \\
\alpha_{r(r)}
\end{array}\right]+\alpha_{r+1(r+1)}\left[\begin{array}{c}
\alpha_{r(r)} \\
\vdots \\
\alpha_{1(r)}
\end{array}\right] \tag{5.34}\\
\sigma_{(r+1)}^{2} & =\sigma_{(r)}^{2}\left\{1-\left(\alpha_{r+1(r+1)}\right)^{2}\right\} .
\end{align*}
$$

Thus the solution of the Yule-Walker system of order $r+1$ is easily derived from the solution of the system of order r, and there is scope for devising a recursive procedure. The starting values for the recursion are

$$
\begin{equation*}
\alpha_{1(1)}=-\gamma_{1} / \gamma_{0} \quad \text { and } \quad \sigma_{(1)}^{2}=\gamma_{0}\left\{1-\left(\alpha_{1(1)}\right)^{2}\right\} . \tag{5.35}
\end{equation*}
$$

Autoregressive Moving Average Processes

The $\operatorname{ARMA}(p, q)$ process, is defined by

$$
\begin{align*}
& \alpha_{0} y(t)+\alpha_{1} y(t-1)+\cdots+\alpha_{p} y(t-p) \\
& \quad=\mu_{0} \varepsilon(t)+\mu_{1} \varepsilon(t-1)+\cdots+\mu_{q} \varepsilon(t-q) . \tag{5.36}
\end{align*}
$$

This can also be written as $\alpha(L) y(t)=\mu(L) \varepsilon(t)$. If the roots of $\alpha(z)=$ 0 lie outside the unit circle, then the process has an MA (∞) form: $y(t)=$ $\alpha^{-1}(L) \mu(L) \varepsilon(t)$. If the roots of $\mu(z)=0$ lie outside the unit circle, then it has an $\operatorname{AR}(\infty)$ form: $\mu^{-1}(L) \alpha(L) y(t)=\varepsilon(t)$.

The autocovariance generating function for the ARMA process is

$$
\begin{equation*}
\gamma(z)=\sigma_{\varepsilon}^{2} \frac{\mu(z) \mu\left(z^{-1}\right)}{\alpha(z) \alpha\left(z^{-1}\right)} \tag{5.37}
\end{equation*}
$$

To find the autocovariances in practice, consider multiplying the equation $\sum_{i} \alpha_{i} y_{t-i}=\sum_{i} \mu_{i} \varepsilon_{t-i}$ by $y_{t-\tau}$ and taking expectations. This gives

$$
\begin{equation*}
\sum_{i} \alpha_{i} \gamma_{\tau-i}=\sum_{i} \mu_{i} \delta_{i-\tau} \tag{5.38}
\end{equation*}
$$

where $\gamma_{\tau-i}=E\left(y_{t-\tau} y_{t-i}\right)$ and $\delta_{i-\tau}=E\left(y_{t-\tau} \varepsilon_{t-i}\right)$. Since ε_{t-i} is uncorrelated with $y_{t-\tau}$ whenever it is subsequent to the latter, it follows that $\delta_{i-\tau}=0$ if $\tau>i$. Since the index i in the RHS of the equation (38) runs from 0 to q, it follows that

$$
\begin{equation*}
\sum_{i} \alpha_{i} \gamma_{i-\tau}=0 \quad \text { if } \quad \tau>q \tag{5.39}
\end{equation*}
$$

Given the $q+1$ nonzero values $\delta_{0}, \delta_{1}, \ldots, \delta_{q}$, and p initial values $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{p-1}$, the equations can be solved recursively for $\left\{\gamma_{p}, \gamma_{p+1}, \ldots\right\}$.

To find the requisite values $\delta_{0}, \delta_{1}, \ldots, \delta_{q}$, consider multiplying the equation $\sum_{i} \alpha_{i} y_{t-i}=\sum_{i} \mu_{i} \varepsilon_{t-i}$ by $\varepsilon_{t-\tau}$ and taking expectations. This gives

$$
\begin{equation*}
\sum_{i} \alpha_{i} \delta_{\tau-i}=\mu_{\tau} \sigma_{\varepsilon}^{2} \tag{5.40}
\end{equation*}
$$

where $\delta_{\tau-i}=E\left(y_{t-i} \varepsilon_{t-\tau}\right)$. The equation may be rewritten as

$$
\begin{equation*}
\delta_{\tau}=\frac{1}{\alpha_{0}}\left(\mu_{\tau} \sigma_{\varepsilon}^{2}-\sum_{i=1} \delta_{\tau-i}\right), \tag{5.41}
\end{equation*}
$$

and, by setting $\tau=0,1, \ldots, q$, we can generate recursively the required values $\delta_{0}, \delta_{1}, \ldots, \delta_{q}$.

LECTURE 4 : ARMA PROCESSES

Example. Consider the $\operatorname{ARMA}(2,2)$ model which gives the equation

$$
\begin{equation*}
\alpha_{0} y_{t}+\alpha_{1} y_{t-1}+\alpha_{2} y_{t-2}=\mu_{0} \varepsilon_{t}+\mu_{1} \varepsilon_{t-1}+\mu_{2} \varepsilon_{t-2} . \tag{5.42}
\end{equation*}
$$

Multiplying by y_{t}, y_{t-1} and y_{t-2} and taking expectations gives

$$
\left[\begin{array}{lll}
\gamma_{0} & \gamma_{1} & \gamma_{2} \tag{5.43}\\
\gamma_{1} & \gamma_{0} & \gamma_{1} \\
\gamma_{2} & \gamma_{1} & \gamma_{0}
\end{array}\right]\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\delta_{0} & \delta_{1} & \delta_{2} \\
0 & \delta_{0} & \delta_{1} \\
0 & 0 & \delta_{0}
\end{array}\right]\left[\begin{array}{l}
\mu_{0} \\
\mu_{1} \\
\mu_{2}
\end{array}\right] .
$$

Multiplying by $\varepsilon_{t}, \varepsilon_{t-1}$ and ε_{t-2} and taking expectations gives

$$
\left[\begin{array}{ccc}
\delta_{0} & 0 & 0 \tag{5.44}\\
\delta_{1} & \delta_{0} & 0 \\
\delta_{2} & \delta_{1} & \delta_{0}
\end{array}\right]\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\sigma_{\varepsilon}^{2} & 0 & 0 \\
0 & \sigma_{\varepsilon}^{2} & 0 \\
0 & 0 & \sigma_{\varepsilon}^{2}
\end{array}\right]\left[\begin{array}{l}
\mu_{0} \\
\mu_{1} \\
\mu_{2}
\end{array}\right] .
$$

When the latter equations are written as

$$
\left[\begin{array}{ccc}
\alpha_{0} & 0 & 0 \tag{5.45}\\
\alpha_{1} & \alpha_{0} & 0 \\
\alpha_{2} & \alpha_{1} & \alpha_{0}
\end{array}\right]\left[\begin{array}{l}
\delta_{0} \\
\delta_{1} \\
\delta_{2}
\end{array}\right]=\sigma_{\varepsilon}^{2}\left[\begin{array}{l}
\mu_{0} \\
\mu_{1} \\
\mu_{2}
\end{array}\right],
$$

they can be solved recursively for δ_{0}, δ_{1} and δ_{2} on the assumption that that the values of $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and σ_{ε}^{2} are known. Notice that, when we adopt the normalisation $\alpha_{0}=\mu_{0}=1$, we get $\delta_{0}=\sigma_{\varepsilon}^{2}$. When the equations (43) are rewritten as

$$
\left[\begin{array}{ccc}
\alpha_{0} & \alpha_{1} & \alpha_{2} \tag{5.46}\\
\alpha_{1} & \alpha_{0}+\alpha_{2} & 0 \\
\alpha_{2} & \alpha_{1} & \alpha_{0}
\end{array}\right]\left[\begin{array}{l}
\gamma_{0} \\
\gamma_{1} \\
\gamma_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\mu_{0} & \mu_{1} & \mu_{2} \\
\mu_{1} & \mu_{2} & 0 \\
\mu_{2} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\delta_{0} \\
\delta_{1} \\
\delta_{2}
\end{array}\right],
$$

they can be solved for γ_{0}, γ_{1} and γ_{2}. Thus the starting values are obtained which enable the equation

$$
\begin{equation*}
\alpha_{0} \gamma_{\tau}+\alpha_{1} \gamma_{\tau-1}+\alpha_{2} \gamma_{\tau-2}=0 ; \quad \tau>2 \tag{5.47}
\end{equation*}
$$

to be solved recursively to generate the succeeding values $\left\{\gamma_{3}, \gamma_{4}, \ldots\right\}$ of the autocovariances.

