
LECTURE 4 : ARMA PROCESSES

Moving-Average Processes

The MA(q) process, is defined by

(5.3)
y(t) = µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q)

= µ(L)ε(t),

where µ(L) = µ0 + µ1L+ · · ·+ µqL
q and where ε(t) is white noise.

An MA model should be invertible such that µ−1(L)y(t) = ε(t). This
AR(∞) representation is is available if and only if all the roots of µ(z) = 0 lie
outside the unit circle.

Example. Consider the MA(1) process

(5.4) y(t) = ε(t)− θε(t− 1) = (1− θL)ε(t).

Provided that |θ| < 1, this can be written in autoregressive form as

(5.5)
ε(t) = (1− θL)−1y(t)

=
{
y(t) + θy(t− 1) + θ2y(t− 2) + · · ·

}
.

Imagine that |θ| > 1 instead. Then we have to write

(5.6)
y(t+ 1) = ε(t+ 1)− θε(t)

= −θ(1− L−1/θ)ε(t),

where L−1ε(t) = ε(t+ 1). This gives

(5.7)
ε(t) = −θ−1(1− L−1/θ)−1y(t+ 1)

= −θ−1
{
y(t+ 1)/θ + y(t+ 2)/θ2 + y(t− 3)/θ3 + · · ·

}
.

Normally, an expression such as this, which embodies future values of y(t),
would have no reasonable meaning.
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The Autocovariances of an MA Process

Consider

(5.8)

γτ = E(ytyt−τ )

= E
{∑

i

µiεt−i
∑
j

µjεt−τ−j
}

=
∑
i

∑
j

µiµjE(εt−iεt−τ−j).

Since ε(t) is white noise, it follows that

(5.9) E(εt−iεt−τ−j) =
{ 0, if i 6= τ + j;

σ2
ε , if i = τ + j.

Therefore

(5.10) γτ = σ2
ε

∑
j

µjµj+τ .

Now let τ = 0, 1, . . . , q. This gives

(5.11)

γ0 = σ2
ε(µ

2
0 + µ2

1 + · · ·+ µ2
q),

γ1 = σ2
ε(µ0µ1 + µ1µ2 + · · ·+ µq−1µq),

...
γq = σ2

εµ0µq.

Also, γτ = 0 for all τ > q.

Example. The MA(1) process y(t) = ε(t)− θε(t− 1) has

(5.12)

γ0 = σ2
ε(1 + θ2),

γ1 = −σ2
εθ,

γτ = 0 if τ > 1.

Thus the dispersion matrix of y = [y1, y2, . . . , yT ]′ is

(5.13) D(y) = σ2
ε


1 + θ2 −θ 0 . . . 0
−θ 1 + θ2 −θ . . . 0
0 −θ 1 + θ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1 + θ2

 .

2



LECTURE 4 : ARMA PROCESSES

Autocovariance Generating Function

This is denoted by

(5.14) γ(z) =
∑
τ

γτz
τ ; with τ = {0,±1,±2, . . .} and γτ = γ−τ .

To find the autocovariance generating function of the MA(q) process, con-
sider

(5.15)

µ(z)µ(z−1) =
∑
i

µiz
i
∑
j

µjz
−j

=
∑
i

∑
j

µiµjz
i−j

=
∑
τ

(∑
j

µiµj+τ

)
zτ , τ = i− j.

From (10) it follows that

(5.16) γ(z) = σ2
εµ(z)µ(z−1).
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Autoregressive Processes

The AR(p) process, is defined by

(5.17) α0y(t) + α1y(t− 1) + · · ·+ αpy(t− p) = ε(t).

This can be written as α(L)y(t) = ε(t), where α(L) = α0 + α1L+ · · ·+ αpL
p.

For the process to be stationary, the roots of α(z) = 0 must lie outside the
unit circle. In that case the AR process can be written as an MA(∞) process:
y(t) = α−1(L)ε(t).

The autocovariance generating function for the AR(p) process is

(5.23) γ(z) =
σ2
ε

α(z)α(z−1)
.

Example. Consider the AR(1) process defined by

(5.18)
ε(t) = y(t)− φy(t− 1)

= (1− φL)y(t).

Provided that |φ| < 1, this can be represented in MA form as

(5.19)
y(t) = (1− φL)−1ε(t)

=
{
ε(t) + φε(t− 1) + φ2ε(t− 2) + · · ·

}
.

The autocovariances of the AR(1) process can be obtained via the formula (10)
for the autocovarainces of an MA process. Thus

(5.20)

γτ = E(ytyt−τ )

= E
{∑

i

φiεt−i
∑
j

φjεt−τ−j
}

=
∑
i

∑
j

φiφjE(εt−iεt−τ−j);

and it follows from (9) that

(5.21)

γτ = σ2
ε

∑
j

φjφj+τ

=
σ2
εφ

τ

1− φ2
.

The dispersion matrix of y = [y1, y2, . . . , yT ]′ is

(5.22) D(y) =
σ2
ε

1− φ2


1 φ φ2 . . . φT−1

φ 1 φ . . . φT−2

φ2 φ 1 . . . φT−3

...
...

...
. . .

...
φT−1 φT−2 φT−3 . . . 1

 .
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The Yule-Walker Equations

For an alternative way of finding the AR autocovariances, consider multi-
plying

∑
i αiyt−i = εt by yt−τ and taking expectations to give

(5.24)
∑
i

αiE(yt−iyt−τ ) = E(εtyt−τ ).

Given that α0 = 1, it follows that

(5.25) E(εtyt−τ ) =

{
σ2
ε , if τ = 0;

0, if τ > 0.

Therefore, on setting E(yt−iyt−τ ) = γτ−i, equation (24) gives

(5.26)
∑
i

αiγτ−i =

{
σ2
ε , if τ = 0;

0, if τ > 0.

The second of these is a homogeneous difference equation which enables us to
generate the sequence {γp, γp+1, . . .} once p starting values γ0, γ1, . . . , γp−1 are
known. By letting τ = 0, 1, . . . , p in (26), we generate a set of p+ 1 equations
which can be arrayed in matrix form as follows:

(5.27)


γ0 γ1 γ2 . . . γp
γ1 γ0 γ1 . . . γp−1

γ2 γ1 γ0 . . . γp−2

...
...

...
. . .

...
γp γp−1 γp−2 . . . γ0




1
α1

α2
...
αp

 =


σ2
ε

0
0
...
0

 .
These are called the Yule–Walker equations, and they can be used either for
generating the values γ0, γ1, . . . , γp from the values α1, . . . , αp, σ

2
ε or vice versa.

Example. Consider the second-order autoregressive process. We have

(5.28)

 γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

α0

α1

α2

 =

α2 α1 α0 0 0
0 α2 α1 α0 0
0 0 α2 α1 α0



γ2

γ1

γ0

γ1

γ2


=

α0 α1 α2

α1 α0 + α2 0
α2 α1 α0

 γ0

γ1

γ2

 =

σ2
ε

0
0

 .
Given α0 = 1 and the values for γ0, γ1, γ2, we can find σ2

ε and α1, α2. Con-
versely, given α0, α1, α2 and σ2

ε , we can find γ0, γ1, γ2.
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The Partial Autocorrelation Function

Let αr(r) be the coefficient associated with y(t − r) in an autoregres-
sive process of order r whose parameters correspond to the autocovariances
γ0, γ1, . . . , γr. Then the sequence {αr(r); r = 1, 2, . . .} of such coefficients, whose
index corresponds to models of increasing orders, constitutes the partial auto-
correlation function. In effect, αr(r) indicates the role in explaining the variance
of y(t) which is due to y(t − r) when y(t − 1), . . . , y(t − r + 1) are also taken
into account.

The sequence of partial autocorrelations may be computed efficiently via
the recursive Durbin–Levinson Algorithm which uses the coefficients of the AR
model of order r as the basis for calculating the coefficients of the model of
order r + 1.

Imagine that we already have the values α0(r) = 1, α1(r), . . . , αr(r). Then,
by extending the set of rth-order Yule–Walker equations to which these values
correspond, we can derive the system

(5.29)


γ0 γ1 . . . γr γr+1

γ1 γ0 . . . γr−1 γr
...

...
. . .

...
...

γr γr−1 . . . γ0 γ1

γr+1 γr . . . γ1 γ0




1
α1(r)

...
αr(r)

0

 =


σ2

(r)

0
...
0
g

 ,

wherein

(5.30) g =
r∑
j=0

αj(r)γr+1−j with α0(r) = 1.

The system can also be written as

(5.31)


γ0 γ1 . . . γr γr+1

γ1 γ0 . . . γr−1 γr
...

...
. . .

...
...

γr γr−1 . . . γ0 γ1

γr+1 γr . . . γ1 γ0




0
αr(r)

...
α1(r)

1

 =


g
0
...
0
σ2

(r)

 .

The two systems of equations (29) and (31) can be combined to give

(5.32)


γ0 γ1 . . . γr γr+1

γ1 γ0 . . . γr−1 γr
...

...
. . .

...
...

γr γr−1 . . . γ0 γ1

γr+1 γr . . . γ1 γ0




1
α1(r) + cαr(r)

...
αr(r) + cα1(r)

c

 =


σ2

(r) + cg
0
...
0

g + cσ2
(r)

 .
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If we take the coefficient of the combination to be

(5.33) c = − g

σ2
(r)

,

then the final element in the vector on the RHS becomes zero and the system
becomes the set of Yule–Walker equations of order r + 1. The solution of the
equations, from the last element αr+1(r+1) = c through to the variance term
σ2

(r+1) is given by

(5.34)

αr+1(r+1) =
1
σ2

(r)

{ r∑
j=0

αj(r)γr+1−j

}
α1(r+1)

...
αr(r+1)

 =

α1(r)

...
αr(r)

+ αr+1(r+1)

αr(r)...
α1(r)


σ2

(r+1) = σ2
(r)

{
1− (αr+1(r+1))2

}
.

Thus the solution of the Yule–Walker system of order r + 1 is easily derived
from the solution of the system of order r, and there is scope for devising a
recursive procedure. The starting values for the recursion are

(5.35) α1(1) = −γ1/γ0 and σ2
(1) = γ0

{
1− (α1(1))2

}
.
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Autoregressive Moving Average Processes

The ARMA(p, q) process, is defined by

(5.36)
α0y(t) + α1y(t− 1) + · · ·+ αpy(t− p)

= µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q).

This can also be written as α(L)y(t) = µ(L)ε(t). If the roots of α(z) =
0 lie outside the unit circle, then the process has an MA(∞) form: y(t) =
α−1(L)µ(L)ε(t). If the roots of µ(z) = 0 lie outside the unit circle, then it has
an AR(∞) form: µ−1(L)α(L)y(t) = ε(t).

The autocovariance generating function for the ARMA process is

(5.37) γ(z) = σ2
ε

µ(z)µ(z−1)
α(z)α(z−1)

.

To find the autocovariances in practice, consider multiplying the equation∑
i αiyt−i =

∑
i µiεt−i by yt−τ and taking expectations. This gives

(5.38)
∑
i

αiγτ−i =
∑
i

µiδi−τ ,

where γτ−i = E(yt−τyt−i) and δi−τ = E(yt−τεt−i). Since εt−i is uncorrelated
with yt−τ whenever it is subsequent to the latter, it follows that δi−τ = 0 if
τ > i. Since the index i in the RHS of the equation (38) runs from 0 to q, it
follows that

(5.39)
∑
i

αiγi−τ = 0 if τ > q.

Given the q+1 nonzero values δ0, δ1, . . . , δq, and p initial values γ0, γ1, . . . , γp−1,
the equations can be solved recursively for {γp, γp+1, . . .}.

To find the requisite values δ0, δ1, . . . , δq, consider multiplying the equation∑
i αiyt−i =

∑
i µiεt−i by εt−τ and taking expectations. This gives

(5.40)
∑
i

αiδτ−i = µτσ
2
ε ,

where δτ−i = E(yt−iεt−τ ). The equation may be rewritten as

(5.41) δτ =
1
α0

(
µτσ

2
ε −

∑
i=1

δτ−i
)
,

and, by setting τ = 0, 1, . . . , q, we can generate recursively the required values
δ0, δ1, . . . , δq.
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Example. Consider the ARMA(2, 2) model which gives the equation

(5.42) α0yt + α1yt−1 + α2yt−2 = µ0εt + µ1εt−1 + µ2εt−2.

Multiplying by yt, yt−1 and yt−2 and taking expectations gives

(5.43)

 γ0 γ1 γ2

γ1 γ0 γ1

γ2 γ1 γ0

α0

α1

α2

 =

 δ0 δ1 δ2
0 δ0 δ1
0 0 δ0

µ0

µ1

µ2

 .
Multiplying by εt, εt−1 and εt−2 and taking expectations gives

(5.44)

 δ0 0 0
δ1 δ0 0
δ2 δ1 δ0

α0

α1

α2

 =

σ2
ε 0 0
0 σ2

ε 0
0 0 σ2

ε

µ0

µ1

µ2

 .
When the latter equations are written as

(5.45)

α0 0 0
α1 α0 0
α2 α1 α0

 δ0δ1
δ2

 = σ2
ε

µ0

µ1

µ2

 ,
they can be solved recursively for δ0, δ1 and δ2 on the assumption that that
the values of α0, α1, α2 and σ2

ε are known. Notice that, when we adopt the
normalisation α0 = µ0 = 1, we get δ0 = σ2

ε . When the equations (43) are
rewritten as

(5.46)

α0 α1 α2

α1 α0 + α2 0
α2 α1 α0

 γ0

γ1

γ2

 =

µ0 µ1 µ2

µ1 µ2 0
µ2 0 0

 δ0

δ1
δ2

 ,
they can be solved for γ0, γ1 and γ2. Thus the starting values are obtained
which enable the equation

(5.47) α0γτ + α1γτ−1 + α2γτ−2 = 0; τ > 2

to be solved recursively to generate the succeeding values {γ3, γ4, . . .} of the
autocovariances.
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