Moving-Average Processes

The MA(q) process, is defined by

(5.3)
$$y(t) = \mu_0 \varepsilon(t) + \mu_1 \varepsilon(t-1) + \dots + \mu_q \varepsilon(t-q) \\ = \mu(L) \varepsilon(t),$$

where $\mu(L) = \mu_0 + \mu_1 L + \dots + \mu_q L^q$ and where $\varepsilon(t)$ is white noise.

An MA model should be invertible such that $\mu^{-1}(L)y(t) = \varepsilon(t)$. This $AR(\infty)$ representation is available if and only if all the roots of $\mu(z) = 0$ lie outside the unit circle.

Example. Consider the MA(1) process

(5.4)
$$y(t) = \varepsilon(t) - \theta \varepsilon(t-1) = (1 - \theta L)\varepsilon(t).$$

Provided that $|\theta| < 1$, this can be written in autoregressive form as

(5.5)
$$\varepsilon(t) = (1 - \theta L)^{-1} y(t) = \{ y(t) + \theta y(t-1) + \theta^2 y(t-2) + \cdots \}.$$

Imagine that $|\theta| > 1$ instead. Then we have to write

(5.6)
$$y(t+1) = \varepsilon(t+1) - \theta \varepsilon(t) \\ = -\theta(1 - L^{-1}/\theta)\varepsilon(t),$$

where $L^{-1}\varepsilon(t) = \varepsilon(t+1)$. This gives

(5.7)
$$\varepsilon(t) = -\theta^{-1}(1 - L^{-1}/\theta)^{-1}y(t+1) \\ = -\theta^{-1} \{ y(t+1)/\theta + y(t+2)/\theta^2 + y(t-3)/\theta^3 + \cdots \}.$$

Normally, an expression such as this, which embodies future values of y(t), would have no reasonable meaning.

The Autocovariances of an MA Process

Consider

(5.8)

$$\gamma_{\tau} = E(y_t y_{t-\tau})$$

$$= E\left\{\sum_{i} \mu_i \varepsilon_{t-i} \sum_{j} \mu_j \varepsilon_{t-\tau-j}\right\}$$

$$= \sum_{i} \sum_{j} \mu_i \mu_j E(\varepsilon_{t-i} \varepsilon_{t-\tau-j}).$$

Since $\varepsilon(t)$ is white noise, it follows that

(5.9)
$$E(\varepsilon_{t-i}\varepsilon_{t-\tau-j}) = \begin{cases} 0, & \text{if } i \neq \tau+j; \\ \sigma_{\varepsilon}^2, & \text{if } i = \tau+j. \end{cases}$$

Therefore

(5.10)
$$\gamma_{\tau} = \sigma_{\varepsilon}^2 \sum_{j} \mu_j \mu_{j+\tau}.$$

Now let $\tau = 0, 1, \ldots, q$. This gives

(5.11)

$$\gamma_0 = \sigma_{\varepsilon}^2 (\mu_0^2 + \mu_1^2 + \dots + \mu_q^2),$$

$$\gamma_1 = \sigma_{\varepsilon}^2 (\mu_0 \mu_1 + \mu_1 \mu_2 + \dots + \mu_{q-1} \mu_q),$$

$$\vdots$$

$$\gamma_q = \sigma_{\varepsilon}^2 \mu_0 \mu_q.$$

Also, $\gamma_{\tau} = 0$ for all $\tau > q$.

Example. The MA(1) process $y(t) = \varepsilon(t) - \theta \varepsilon(t-1)$ has

(5.12)
$$\begin{aligned} \gamma_0 &= \sigma_{\varepsilon}^2 (1+\theta^2), \\ \gamma_1 &= -\sigma_{\varepsilon}^2 \theta, \\ \gamma_\tau &= 0 \quad \text{if} \quad \tau > 1. \end{aligned}$$

Thus the dispersion matrix of $y = [y_1, y_2, \dots, y_T]'$ is

(5.13)
$$D(y) = \sigma_{\varepsilon}^{2} \begin{bmatrix} 1+\theta^{2} & -\theta & 0 & \dots & 0\\ -\theta & 1+\theta^{2} & -\theta & \dots & 0\\ 0 & -\theta & 1+\theta^{2} & \dots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \dots & 1+\theta^{2} \end{bmatrix}.$$

Autocovariance Generating Function

This is denoted by

(5.14)
$$\gamma(z) = \sum_{\tau} \gamma_{\tau} z^{\tau}; \text{ with } \tau = \{0, \pm 1, \pm 2, \ldots\} \text{ and } \gamma_{\tau} = \gamma_{-\tau}.$$

To find the autocovariance generating function of the $\mathrm{MA}(q)$ process, consider

(5.15)
$$\mu(z)\mu(z^{-1}) = \sum_{i} \mu_{i} z^{i} \sum_{j} \mu_{j} z^{-j}$$
$$= \sum_{i} \sum_{j} \mu_{i} \mu_{j} z^{i-j}$$
$$= \sum_{\tau} \left(\sum_{j} \mu_{i} \mu_{j+\tau} \right) z^{\tau}, \quad \tau = i - j.$$

From (10) it follows that

(5.16)
$$\gamma(z) = \sigma_{\varepsilon}^2 \mu(z) \mu(z^{-1}).$$

D.S.G. POLLOCK : LECTURES IN THE CITY 4

Autoregressive Processes

The AR(p) process, is defined by

(5.17)
$$\alpha_0 y(t) + \alpha_1 y(t-1) + \dots + \alpha_p y(t-p) = \varepsilon(t).$$

This can be written as $\alpha(L)y(t) = \varepsilon(t)$, where $\alpha(L) = \alpha_0 + \alpha_1 L + \dots + \alpha_p L^p$. For the process to be stationary, the roots of $\alpha(z) = 0$ must lie outside the unit circle. In that case the AR process can be written as an MA(∞) process: $y(t) = \alpha^{-1}(L)\varepsilon(t)$.

The autocovariance generating function for the AR(p) process is

(5.23)
$$\gamma(z) = \frac{\sigma_{\varepsilon}^2}{\alpha(z)\alpha(z^{-1})}.$$

Example. Consider the AR(1) process defined by

(5.18)
$$\varepsilon(t) = y(t) - \phi y(t-1)$$
$$= (1 - \phi L)y(t).$$

Provided that $|\phi| < 1$, this can be represented in MA form as

(5.19)
$$y(t) = (1 - \phi L)^{-1} \varepsilon(t) \\ = \left\{ \varepsilon(t) + \phi \varepsilon(t - 1) + \phi^2 \varepsilon(t - 2) + \cdots \right\}.$$

The autocovariances of the AR(1) process can be obtained via the formula (10) for the autocovariances of an MA process. Thus

(5.20)

$$\gamma_{\tau} = E(y_t y_{t-\tau})$$

$$= E\left\{\sum_{i} \phi^i \varepsilon_{t-i} \sum_{j} \phi^j \varepsilon_{t-\tau-j}\right\}$$

$$= \sum_{i} \sum_{j} \phi^i \phi^j E(\varepsilon_{t-i} \varepsilon_{t-\tau-j});$$

and it follows from (9) that

(5.21)
$$\gamma_{\tau} = \sigma_{\varepsilon}^{2} \sum_{j} \phi^{j} \phi^{j+\tau}$$
$$= \frac{\sigma_{\varepsilon}^{2} \phi^{\tau}}{1 - \phi^{2}}.$$

The dispersion matrix of $y = [y_1, y_2, \dots, y_T]'$ is

(5.22)
$$D(y) = \frac{\sigma_{\varepsilon}^{2}}{1 - \phi^{2}} \begin{bmatrix} 1 & \phi & \phi^{2} & \dots & \phi^{T-1} \\ \phi & 1 & \phi & \dots & \phi^{T-2} \\ \phi^{2} & \phi & 1 & \dots & \phi^{T-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi^{T-1} & \phi^{T-2} & \phi^{T-3} & \dots & 1 \end{bmatrix}.$$

The Yule-Walker Equations

For an alternative way of finding the AR autocovariances, consider multiplying $\sum_{i} \alpha_{i} y_{t-i} = \varepsilon_{t}$ by $y_{t-\tau}$ and taking expectations to give

(5.24)
$$\sum_{i} \alpha_{i} E(y_{t-i} y_{t-\tau}) = E(\varepsilon_{t} y_{t-\tau}).$$

Given that $\alpha_0 = 1$, it follows that

(5.25)
$$E(\varepsilon_t y_{t-\tau}) = \begin{cases} \sigma_{\varepsilon}^2, & \text{if } \tau = 0; \\ 0, & \text{if } \tau > 0. \end{cases}$$

Therefore, on setting $E(y_{t-i}y_{t-\tau}) = \gamma_{\tau-i}$, equation (24) gives

(5.26)
$$\sum_{i} \alpha_{i} \gamma_{\tau-i} = \begin{cases} \sigma_{\varepsilon}^{2}, & \text{if } \tau = 0; \\ 0, & \text{if } \tau > 0. \end{cases}$$

The second of these is a homogeneous difference equation which enables us to generate the sequence $\{\gamma_p, \gamma_{p+1}, \ldots\}$ once p starting values $\gamma_0, \gamma_1, \ldots, \gamma_{p-1}$ are known. By letting $\tau = 0, 1, \ldots, p$ in (26), we generate a set of p + 1 equations which can be arrayed in matrix form as follows:

(5.27)
$$\begin{bmatrix} \gamma_0 & \gamma_1 & \gamma_2 & \dots & \gamma_p \\ \gamma_1 & \gamma_0 & \gamma_1 & \dots & \gamma_{p-1} \\ \gamma_2 & \gamma_1 & \gamma_0 & \dots & \gamma_{p-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \gamma_p & \gamma_{p-1} & \gamma_{p-2} & \dots & \gamma_0 \end{bmatrix} \begin{bmatrix} 1 \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_p \end{bmatrix} = \begin{bmatrix} \sigma_{\varepsilon}^2 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

These are called the Yule–Walker equations, and they can be used either for generating the values $\gamma_0, \gamma_1, \ldots, \gamma_p$ from the values $\alpha_1, \ldots, \alpha_p, \sigma_{\varepsilon}^2$ or vice versa.

Example. Consider the second-order autoregressive process. We have

$$(5.28) \qquad \begin{bmatrix} \gamma_0 & \gamma_1 & \gamma_2 \\ \gamma_1 & \gamma_0 & \gamma_1 \\ \gamma_2 & \gamma_1 & \gamma_0 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \alpha_2 & \alpha_1 & \alpha_0 & 0 & 0 \\ 0 & \alpha_2 & \alpha_1 & \alpha_0 & 0 \\ 0 & 0 & \alpha_2 & \alpha_1 & \alpha_0 \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_1 \\ \gamma_2 \end{bmatrix}$$
$$= \begin{bmatrix} \alpha_0 & \alpha_1 & \alpha_2 \\ \alpha_1 & \alpha_0 + \alpha_2 & 0 \\ \alpha_2 & \alpha_1 & \alpha_0 \end{bmatrix} \begin{bmatrix} \gamma_0 \\ \gamma_1 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} \sigma_{\varepsilon}^2 \\ 0 \\ 0 \end{bmatrix}.$$

Given $\alpha_0 = 1$ and the values for $\gamma_0, \gamma_1, \gamma_2$, we can find σ_{ε}^2 and α_1, α_2 . Conversely, given $\alpha_0, \alpha_1, \alpha_2$ and σ_{ε}^2 , we can find $\gamma_0, \gamma_1, \gamma_2$.

D.S.G. POLLOCK : LECTURES IN THE CITY 4

The Partial Autocorrelation Function

Let $\alpha_{r(r)}$ be the coefficient associated with y(t-r) in an autoregressive process of order r whose parameters correspond to the autocovariances $\gamma_0, \gamma_1, \ldots, \gamma_r$. Then the sequence $\{\alpha_{r(r)}; r = 1, 2, \ldots\}$ of such coefficients, whose index corresponds to models of increasing orders, constitutes the partial autocorrelation function. In effect, $\alpha_{r(r)}$ indicates the role in explaining the variance of y(t) which is due to y(t-r) when $y(t-1), \ldots, y(t-r+1)$ are also taken into account.

The sequence of partial autocorrelations may be computed efficiently via the recursive Durbin–Levinson Algorithm which uses the coefficients of the AR model of order r as the basis for calculating the coefficients of the model of order r + 1.

Imagine that we already have the values $\alpha_{0(r)} = 1, \alpha_{1(r)}, \ldots, \alpha_{r(r)}$. Then, by extending the set of *r*th-order Yule–Walker equations to which these values correspond, we can derive the system

(5.29)
$$\begin{bmatrix} \gamma_0 & \gamma_1 & \cdots & \gamma_r & \gamma_{r+1} \\ \gamma_1 & \gamma_0 & \cdots & \gamma_{r-1} & \gamma_r \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \gamma_r & \gamma_{r-1} & \cdots & \gamma_0 & \gamma_1 \\ \gamma_{r+1} & \gamma_r & \cdots & \gamma_1 & \gamma_0 \end{bmatrix} \begin{bmatrix} 1 \\ \alpha_{1(r)} \\ \vdots \\ \alpha_{r(r)} \\ 0 \end{bmatrix} = \begin{bmatrix} \sigma_{(r)}^2 \\ 0 \\ \vdots \\ 0 \\ g \end{bmatrix},$$

wherein

(5.30)
$$g = \sum_{j=0}^{r} \alpha_{j(r)} \gamma_{r+1-j}$$
 with $\alpha_{0(r)} = 1$.

The system can also be written as

(5.31)
$$\begin{bmatrix} \gamma_0 & \gamma_1 & \dots & \gamma_r & \gamma_{r+1} \\ \gamma_1 & \gamma_0 & \dots & \gamma_{r-1} & \gamma_r \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \gamma_r & \gamma_{r-1} & \dots & \gamma_0 & \gamma_1 \\ \gamma_{r+1} & \gamma_r & \dots & \gamma_1 & \gamma_0 \end{bmatrix} \begin{bmatrix} 0 \\ \alpha_{r(r)} \\ \vdots \\ \alpha_{1(r)} \\ 1 \end{bmatrix} = \begin{bmatrix} g \\ 0 \\ \vdots \\ 0 \\ \sigma_{(r)}^2 \end{bmatrix}$$

The two systems of equations (29) and (31) can be combined to give

(5.32)
$$\begin{bmatrix} \gamma_0 & \gamma_1 & \dots & \gamma_r & \gamma_{r+1} \\ \gamma_1 & \gamma_0 & \dots & \gamma_{r-1} & \gamma_r \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \gamma_r & \gamma_{r-1} & \dots & \gamma_0 & \gamma_1 \\ \gamma_{r+1} & \gamma_r & \dots & \gamma_1 & \gamma_0 \end{bmatrix} \begin{bmatrix} 1 \\ \alpha_{1(r)} + c\alpha_{r(r)} \\ \vdots \\ \alpha_{r(r)} + c\alpha_{1(r)} \\ c \end{bmatrix} = \begin{bmatrix} \sigma_{(r)}^2 + cg \\ 0 \\ \vdots \\ 0 \\ g + c\sigma_{(r)}^2 \end{bmatrix}.$$

If we take the coefficient of the combination to be

$$(5.33) c = -\frac{g}{\sigma_{(r)}^2},$$

then the final element in the vector on the RHS becomes zero and the system becomes the set of Yule–Walker equations of order r + 1. The solution of the equations, from the last element $\alpha_{r+1(r+1)} = c$ through to the variance term $\sigma_{(r+1)}^2$ is given by

(5.34)
$$\begin{aligned} \alpha_{r+1(r+1)} &= \frac{1}{\sigma_{(r)}^2} \left\{ \sum_{j=0}^r \alpha_{j(r)} \gamma_{r+1-j} \right\} \\ & \left[\begin{array}{c} \alpha_{1(r+1)} \\ \vdots \\ \alpha_{r(r+1)} \end{array} \right] = \left[\begin{array}{c} \alpha_{1(r)} \\ \vdots \\ \alpha_{r(r)} \end{array} \right] + \alpha_{r+1(r+1)} \left[\begin{array}{c} \alpha_{r(r)} \\ \vdots \\ \alpha_{1(r)} \end{array} \right] \\ & \sigma_{(r+1)}^2 = \sigma_{(r)}^2 \left\{ 1 - (\alpha_{r+1(r+1)})^2 \right\}. \end{aligned}$$

Thus the solution of the Yule–Walker system of order r + 1 is easily derived from the solution of the system of order r, and there is scope for devising a recursive procedure. The starting values for the recursion are

(5.35)
$$\alpha_{1(1)} = -\gamma_1/\gamma_0$$
 and $\sigma_{(1)}^2 = \gamma_0 \{1 - (\alpha_{1(1)})^2\}.$

Autoregressive Moving Average Processes

The ARMA(p,q) process, is defined by

(5.36)
$$\alpha_0 y(t) + \alpha_1 y(t-1) + \dots + \alpha_p y(t-p)$$
$$= \mu_0 \varepsilon(t) + \mu_1 \varepsilon(t-1) + \dots + \mu_q \varepsilon(t-q).$$

This can also be written as $\alpha(L)y(t) = \mu(L)\varepsilon(t)$. If the roots of $\alpha(z) = 0$ lie outside the unit circle, then the process has an MA(∞) form: $y(t) = \alpha^{-1}(L)\mu(L)\varepsilon(t)$. If the roots of $\mu(z) = 0$ lie outside the unit circle, then it has an AR(∞) form: $\mu^{-1}(L)\alpha(L)y(t) = \varepsilon(t)$.

The autocovariance generating function for the ARMA process is

(5.37)
$$\gamma(z) = \sigma_{\varepsilon}^2 \frac{\mu(z)\mu(z^{-1})}{\alpha(z)\alpha(z^{-1})}.$$

To find the autocovariances in practice, consider multiplying the equation $\sum_{i} \alpha_{i} y_{t-i} = \sum_{i} \mu_{i} \varepsilon_{t-i}$ by $y_{t-\tau}$ and taking expectations. This gives

(5.38)
$$\sum_{i} \alpha_{i} \gamma_{\tau-i} = \sum_{i} \mu_{i} \delta_{i-\tau},$$

where $\gamma_{\tau-i} = E(y_{t-\tau}y_{t-i})$ and $\delta_{i-\tau} = E(y_{t-\tau}\varepsilon_{t-i})$. Since ε_{t-i} is uncorrelated with $y_{t-\tau}$ whenever it is subsequent to the latter, it follows that $\delta_{i-\tau} = 0$ if $\tau > i$. Since the index *i* in the RHS of the equation (38) runs from 0 to *q*, it follows that

(5.39)
$$\sum_{i} \alpha_{i} \gamma_{i-\tau} = 0 \quad \text{if} \quad \tau > q.$$

Given the q+1 nonzero values $\delta_0, \delta_1, \ldots, \delta_q$, and p initial values $\gamma_0, \gamma_1, \ldots, \gamma_{p-1}$, the equations can be solved recursively for $\{\gamma_p, \gamma_{p+1}, \ldots\}$.

To find the requisite values $\delta_0, \delta_1, \ldots, \delta_q$, consider multiplying the equation $\sum_i \alpha_i y_{t-i} = \sum_i \mu_i \varepsilon_{t-i}$ by $\varepsilon_{t-\tau}$ and taking expectations. This gives

(5.40)
$$\sum_{i} \alpha_i \delta_{\tau-i} = \mu_{\tau} \sigma_{\varepsilon}^2,$$

where $\delta_{\tau-i} = E(y_{t-i}\varepsilon_{t-\tau})$. The equation may be rewritten as

(5.41)
$$\delta_{\tau} = \frac{1}{\alpha_0} \Big(\mu_{\tau} \sigma_{\varepsilon}^2 - \sum_{i=1} \delta_{\tau-i} \Big),$$

and, by setting $\tau = 0, 1, ..., q$, we can generate recursively the required values $\delta_0, \delta_1, \ldots, \delta_q$.

Example. Consider the ARMA(2, 2) model which gives the equation

(5.42)
$$\alpha_0 y_t + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} = \mu_0 \varepsilon_t + \mu_1 \varepsilon_{t-1} + \mu_2 \varepsilon_{t-2}.$$

Multiplying by y_t , y_{t-1} and y_{t-2} and taking expectations gives

(5.43)
$$\begin{bmatrix} \gamma_0 & \gamma_1 & \gamma_2 \\ \gamma_1 & \gamma_0 & \gamma_1 \\ \gamma_2 & \gamma_1 & \gamma_0 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \delta_0 & \delta_1 & \delta_2 \\ 0 & \delta_0 & \delta_1 \\ 0 & 0 & \delta_0 \end{bmatrix} \begin{bmatrix} \mu_0 \\ \mu_1 \\ \mu_2 \end{bmatrix}.$$

Multiplying by ε_t , ε_{t-1} and ε_{t-2} and taking expectations gives

(5.44)
$$\begin{bmatrix} \delta_0 & 0 & 0\\ \delta_1 & \delta_0 & 0\\ \delta_2 & \delta_1 & \delta_0 \end{bmatrix} \begin{bmatrix} \alpha_0\\ \alpha_1\\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \sigma_{\varepsilon}^2 & 0 & 0\\ 0 & \sigma_{\varepsilon}^2 & 0\\ 0 & 0 & \sigma_{\varepsilon}^2 \end{bmatrix} \begin{bmatrix} \mu_0\\ \mu_1\\ \mu_2 \end{bmatrix}.$$

When the latter equations are written as

(5.45)
$$\begin{bmatrix} \alpha_0 & 0 & 0\\ \alpha_1 & \alpha_0 & 0\\ \alpha_2 & \alpha_1 & \alpha_0 \end{bmatrix} \begin{bmatrix} \delta_0\\ \delta_1\\ \delta_2 \end{bmatrix} = \sigma_{\varepsilon}^2 \begin{bmatrix} \mu_0\\ \mu_1\\ \mu_2 \end{bmatrix},$$

they can be solved recursively for δ_0 , δ_1 and δ_2 on the assumption that that the values of α_0 , α_1 , α_2 and σ_{ε}^2 are known. Notice that, when we adopt the normalisation $\alpha_0 = \mu_0 = 1$, we get $\delta_0 = \sigma_{\varepsilon}^2$. When the equations (43) are rewritten as

(5.46)
$$\begin{bmatrix} \alpha_0 & \alpha_1 & \alpha_2 \\ \alpha_1 & \alpha_0 + \alpha_2 & 0 \\ \alpha_2 & \alpha_1 & \alpha_0 \end{bmatrix} \begin{bmatrix} \gamma_0 \\ \gamma_1 \\ \gamma_2 \end{bmatrix} = \begin{bmatrix} \mu_0 & \mu_1 & \mu_2 \\ \mu_1 & \mu_2 & 0 \\ \mu_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} \delta_0 \\ \delta_1 \\ \delta_2 \end{bmatrix},$$

they can be solved for γ_0 , γ_1 and γ_2 . Thus the starting values are obtained which enable the equation

(5.47)
$$\alpha_0 \gamma_\tau + \alpha_1 \gamma_{\tau-1} + \alpha_2 \gamma_{\tau-2} = 0; \quad \tau > 2$$

to be solved recursively to generate the succeeding values $\{\gamma_3, \gamma_4, \ldots\}$ of the autocovariances.