LECTURE 2 : MODELS AND METHODS
Time-Series Models: Feedback Form and Transfer-Function Form

A dynamic regression model is a relationship comprising any number of
consecutive elements of x(t), y(t) and e(¢):

k q

(3.2) Syt —i) =) Biw(t—i)+ > et —1i),
1=0

1=0 i=0

It is taken for granted that ag = 1.
A time-series model can assume a variety of forms. Consider a simple
dynamic regression model

(3.5) y(t) = oyt — 1) + x(t) 8 + (1),
By repeated substitution, we obtain

y(t) = gy(t — 1) + fa(t) + (1)
= ¢%y(t — 2) + B{a(t) + gt — 1)} +e(t) + ge(t — 1)
(3.6) :
= ¢"y(t —n) + B{a(t) + dx(t — 1)+ +¢" a(t —n+1)}
+e(t)+ge(t—1) 4+ ¢" Te(t —n+1).

If |¢p| < 1, then lim(n — c0)¢™ = 0; and the limiting form is

(3.7) y(t) = ﬁZWfK(t— i)+ Z¢i€(t — ).

The Lag Operator

We can define polynomials of the lag operator of the form p(L) = py +
p1L+ -+ p, L™ = p;L* having the effect that

p(L)z(t) = pox(t) + pra(t —1) + - + ppa(t —n)
= Zpix(t —1).

In these terms, the equation under (2) becomes

(3.12) a(L)y(t) = B(L)x(t) + p(L)e(t).

(3.11)



D.S.G. POLLOCK : LECTURES IN THE CITY 2

Complex Numbers: Euler’s Equations

There are three alternative ways of representing the conjugate complex
numbers A and \* :

A=a+if = p(cosd +isinh) = pe',

(3.14) 0
N =a—1if = p(cosf —isinf) = pe™ ",
where
(3.15) p=+a?+ 32 and 0 = tan™* <é> :
a

These are the Cartesian form, the trigonometrical form and the exponential
form.

To understand the exponential form consider the series expansions of cos 6
and i sin 6 about the point 6 = 0:

0039:{1——+———+ },
ol "4l 6l
(3.16) 0
sing — Lo 0% i0° b7
ising = {i0 = S0+ r — S+
Adding these gives
. R A
(3.17) cosf +isinf = 1+29_§_§+ﬂ+“'}
i0
=e".

Likewise, by subtraction, we get

sin® =941 —40 — — 2~ 4+ 7 ...
(3.18) cosf —isind { 10 + + ' }

:e_

These are Euler’s equations. It follows from adding (17) and (18) that

i0 | ,—if
(3.19) cosf = e e
2
Subtracting (18) from (17) gives
sinf = _—Z(ew e )
(3.20) h
— ?(610 6—19)
i
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The Polynomial Equation of Order n.

Now consider the general equation of the nth order:
(3.21) b0+ P12 + $22% + -+ + P2 = 0.
On dividing by ¢,, we can factorise this as
(3.22) (z=XA)(z=A2)---(z—A) =0.

When we multiply the n factors together, we obtain the expansion

(323) 0=2z2"— Z )\iz"_l -+ Z Z )\i)\jz"_2 — e (—1)n)\1)\2 cee )\n-
) ) 7

This is compared with the expression (¢o/¢n) + (¢1/dn)z + -+ + 2™ = 0. By
equating coefficients of the two expressions, we find that (¢o/¢n) = (=1)" [ A
or, equivalently,

(3.24) b = o [J(=2) .

=1

Thus we can express the polynomial in any of the following forms:
(3.25) = oo [[(=2) 7 [z =)

If X is a root of the primary equation

$(2) = o+ ¢12+ - dnz" =0

where rising powers of z are associated with rising indices on the coefficients,
then g = 1/X is a root of the auxilliary equation

¢'(2) = 2"¢(z7") = go2" + 12"+ = 0
which has declining powers of z instead.

3
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Rational Functions of Polynomials

(3.27) If 0(2)/v(2) = 6(2)/{71(2)72(2)} is a proper rational function, and
if v1(2) and 72(z) have no common factor, then the function can
be uniquely expressed as

v(2) 71(2)  2(2)

where §1(2)/71(z) and d2(z)/v2(2) are proper rational functions.

Imagine that y(z) = [[(1—2/\;). Then repeated applications of this result
enables us to write

i(2) K1 Ko K

(3.28) v(2) - 1—2/M\ + 1—2/X et m

By adding the terms on the RHS, we find an expression with a numerator of
degree n—1. By equating the terms of the numerator with the terms of §(z), we
can find the values k1, K2, ..., k,. The series expansion of d(z)/v(z)converges
if and only if the expansion of each of the partial fractions converges. For

(3.29) =H{1+z/)\+(z/)\)2+---}

K
1—2z/A

to converge when |z| < 1, it is necessary and sufficient that |A| > 1.
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Linear Difference Equations

An nth-order linear difference equation is a relationship amongst n + 1
consecutive elements of a sequence z(t) of the form

(3.32) apx(t) + arz(t —1) + -+ + apx(t — n) = u(t),

where u(t) is some specified sequence which is described as the forcing function.
The equation can be written, in a summary notation, as

(3.33) a(L)x(t) = u(t),
where a(L) = ap+an L+ - + v, L.

Solution of the Homogeneous Difference Equation

If \; is a root of the equation a(z) = ap + 12 + - - - + @, 2" = 0 such that
a(Aj) = 0, then y;(t) = (1/A;)" is a solution of the equation a(L)y(t) = 0.
Thus

(L) (A_lj)t = (ap+ a1 L+ +a,L") (%)t

1\ 1\t ! 1\
=0 | - +ap . +oFay .
J J J

t
= (a0 + a1dj + -+ apA}) (i>

Aj
()0

Also consider the factorisation a(L) = ao [[;(1 — L/X;). Within this product
is the term 1 — L/\;; and since

() -()- () -

it follows that a(L)(1/A;)t = 0.
The general solution, in the case where a(L) = 0 has distinct real roots, is
given by

(3.35) y(tie) = &1 (/\il)t—f—cQ (Aig)t+---+cn (i)t

where cq1,ca, ..., c, are the constants which are determined by the initial con-
ditions.

(3.34)
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Solution of Difference Equations: The Case of Repeated Roots

If two roots coincide at a value of A;, then a(L)y(t) = 0 has the solutions
yi(t) = (1/X;)" and yo(t) = £(1/X;)".
To show that ys(t) is also a solution, consider

() (25 ()
() e (2 ven(d) o

If there are r repeated roots with a value of \;, then all of (1/X;)*, t(1/X;)*,
2 (1/X)t, ., " (1/N))! are solutions, If there are r repeated roots of unit
value, then the functions 1,¢,¢2,...,t"~! are all solutions. Therefore the general
solution of the homogeneous equation will contain a polynomial in ¢ of degree
r—1:

(3.36)

do 4 dit + dot® + -+ - + dpyq t"h

The 2nd-order Difference Equation with Complex Roots

Let a(L)y(t) = apy(t) + aqy(t — 1) + asy(t — 2) = 0 and suppose that
a(z) = 0 has complex roots A = 1/p and \* = 1/p*. If A, \* are conjugate
complex numbers, then so too are u, u*. Therefore

=~+10 = k(cosw + isinw Zliewa
(3.37) =T ( )

pw =~ —1id = k(cosw — isinw) = ke *“.

These will appear in a general solution of the difference equation of the form
(3.38) y(t) = cp’ + ()",

This represents a real-valued sequence; and, since a real term must equal its
own conjugate, it follows that ¢ and ¢* must be conjugate numbers of the form

c* = p(cosf + isinf) = pe',

(3.39) y

¢ = p(cosf —isinh) = pe~
Thus the general solution becomes
cpt + ¢ (u*)t = pe i (kei®)t + peid (kemi)t
(3.40) _ p,it{eiw—e) i e—i(wt—&)}

= 2pk" cos(wt — 0).
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Transfer Functions

Consider the equation

(3.65) a(L)y(t) = B(L)z(t) + (1),
where

a(l)=14ao L+ - +a,LP
(3.66) =l=¢1L == pl?,
B(L)=1+BiL+ -+ BL"

are polynomials of the lag operator. The transfer-function form of the model
is simply

(3.67) y(t) = x(t) +

The rational function associated with z(¢) has a series expansion

B(z)
(3.68) a(z)

= w(z)
= {wo +wiz +we2® + -}

and the sequence of the coefficients of this expansion constitutes the impulse-
response function. The partial sums of the coefficients constitute the step-
response function. The gain of the transfer function is defined by

_B(A)  Bo+ P+ B
(3.69) T itmt T,
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Finding the Coefficients of the Impulse Response

Consider the second-order case:

Bo + Bz
1—¢12— ¢222

(3.70) ={wo +wiz+wrz® + - }.

We rewrite this equation as

(371) 60 +ﬁlz - {1 —¢1Z—¢222}{WO +W1Z+WQZ2 + ... }

Then, by performing the multiplication on the RHS, and by equating the co-
efficients of the same powers of z on the two sides of the equation, we find
that

Bo = wo, wo = Po,
B1 = w1 — p1wo, w1 = B + p1wo,
(3.72) 0 =ws — P1w1 — Pawo, w2 = P1w1 + Pawo,
0=wp — Prwn—1 — Pawp_2, Wy = G1wp—1 + Pawn_2.

The coefficents are genereated by a homogeneous second-order difference
equation:

(3.73) w(n) = grw(n — 1) + gaw(n — 2),
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The Frequency Response

Consider mapping the signal z(¢) = cos(wt) through the transfer function
(L) =7y +mL+ - +74L9 The output is

y(t) = (L) cos(wr)

= 27j cos (wlt — 7).

(3.74)

<.
I
=

The trigonometrical identity cos(A — B) = cos A cos B + sin A sin B enables us
to write this as

(3.75) yt) = { zj: Vi COS(Wj)} cos(wt) + { Zj: Vi Sin(wj)} sin(wt)

= acos(wt) + fBsin(wt) = pcos(wt — 0).

Here we have defined

g g
a= Z'yj cos(wj), 0= Z’yj sin(wj),
=0

J=0

p= \/ﬁﬂ2 and — tan" ! <é)

(0%

(3.76)

It can be seen from (75) that the effect of the filter upon the signal is
twofold. First there is a gain effect whereby the amplitude of the sinusoid has
been increased or diminished by a factor of p. Also there is a phase effect
whereby the peak of the sinusoid is displaced by a time delay of /w periods.
Figures 3 and 4 represent the two effects of a simple rational transfer function
on the set of sinusoids whose frequencies range from 0 to .



