
LECTURE 2 : MODELS AND METHODS

Time-Series Models: Feedback Form and Transfer-Function Form

A dynamic regression model is a relationship comprising any number of
consecutive elements of x(t), y(t) and ε(t):

(3.2)
p∑
i=0

αiy(t− i) =
k∑
i=0

βix(t− i) +
q∑
i=0

µiε(t− i),

It is taken for granted that α0 = 1.
A time-series model can assume a variety of forms. Consider a simple

dynamic regression model

(3.5) y(t) = φy(t− 1) + x(t)β + ε(t),

By repeated substitution, we obtain

(3.6)

y(t) = φy(t− 1) + βx(t) + ε(t)

= φ2y(t− 2) + β
{
x(t) + φx(t− 1)

}
+ ε(t) + φε(t− 1)

...
= φny(t− n) + β

{
x(t) + φx(t− 1) + · · ·+ φn−1x(t− n+ 1)

}
+ ε(t) + φε(t− 1) + · · ·+ φn−1ε(t− n+ 1).

If |φ| < 1, then lim(n→∞)φn = 0; and the limiting form is

(3.7) y(t) = β
∞∑
i=0

φix(t− i) +
∞∑
i=0

φiε(t− i).

The Lag Operator

We can define polynomials of the lag operator of the form p(L) = p0 +
p1L+ · · ·+ pnL

n =
∑
piL

i having the effect that

(3.11)

p(L)x(t) = p0x(t) + p1x(t− 1) + · · ·+ pnx(t− n)

=
n∑
i=0

pix(t− i).

In these terms, the equation under (2) becomes

(3.12) α(L)y(t) = β(L)x(t) + µ(L)ε(t).
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Complex Numbers: Euler’s Equations

There are three alternative ways of representing the conjugate complex
numbers λ and λ∗ :

(3.14)
λ = α+ iβ = ρ(cos θ + i sin θ) = ρeiθ,

λ∗ = α− iβ = ρ(cos θ − i sin θ) = ρe−iθ,

where

(3.15) ρ =
√
α2 + β2 and θ = tan−1

(
β

α

)
.

These are the Cartesian form, the trigonometrical form and the exponential
form.

To understand the exponential form consider the series expansions of cos θ
and i sin θ about the point θ = 0:

(3.16)
cos θ =

{
1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

}
,

i sin θ =
{
iθ − iθ3

3!
+
iθ5

5!
− iθ7

7!
+ · · ·

}
.

Adding these gives

(3.17)
cos θ + i sin θ =

{
1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+ · · ·

}
= eiθ.

Likewise, by subtraction, we get

(3.18)
cos θ − i sin θ =

{
1− iθ − θ2

2!
+
iθ3

3!
+
θ4

4!
− · · ·

}
= e−iθ.

These are Euler’s equations. It follows from adding (17) and (18) that

(3.19) cos θ =
eiθ + e−iθ

2
.

Subtracting (18) from (17) gives

(3.20)
sin θ =

−i
2

(eiθ − e−iθ)

=
1
2i

(eiθ − e−iθ).
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The Polynomial Equation of Order n.

Now consider the general equation of the nth order:

(3.21) φ0 + φ1z + φ2z
2 + · · ·+ φnz

n = 0.

On dividing by φn, we can factorise this as

(3.22) (z − λ1)(z − λ2) · · · (z − λn) = 0.

When we multiply the n factors together, we obtain the expansion

(3.23) 0 = zn −
∑
i

λiz
n−1 +

∑
i

∑
j

λiλjz
n−2 − · · · (−1)nλ1λ2 · · ·λn.

This is compared with the expression (φ0/φn) + (φ1/φn)z + · · · + zn = 0. By
equating coefficients of the two expressions, we find that (φ0/φn) = (−1)n

∏
λi

or, equivalently,

(3.24) φn = φ0

n∏
i=1

(−λi)−1.

Thus we can express the polynomial in any of the following forms:

(3.25)

∑
φiz

i = φn
∏

(z − λi)

= φ0

∏
(−λi)−1

∏
(z − λi)

= φ0

∏(
1− z

λi

)
.

If λ is a root of the primary equation

φ(z) = φ0 + φ1z + · · ·φnzn = 0

where rising powers of z are associated with rising indices on the coefficients,
then µ = 1/λ is a root of the auxilliary equation

φ′(z) = znφ(z−1) = φ0z
n + φ1z

n−1 + · · ·φn = 0

which has declining powers of z instead.
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Rational Functions of Polynomials

(3.27) If δ(z)/γ(z) = δ(z)/{γ1(z)γ2(z)} is a proper rational function, and
if γ1(z) and γ2(z) have no common factor, then the function can
be uniquely expressed as

δ(z)
γ(z)

=
δ1(z)
γ1(z)

+
δ2(z)
γ2(z)

,

where δ1(z)/γ1(z) and δ2(z)/γ2(z) are proper rational functions.

Imagine that γ(z) =
∏

(1−z/λi). Then repeated applications of this result
enables us to write

(3.28)
δ(z)
γ(z)

=
κ1

1− z/λ1
+

κ2

1− z/λ2
+ · · ·+ κn

1− z/λn
.

By adding the terms on the RHS, we find an expression with a numerator of
degree n−1. By equating the terms of the numerator with the terms of δ(z), we
can find the values κ1, κ2, . . . , κn. The series expansion of δ(z)/γ(z)converges
if and only if the expansion of each of the partial fractions converges. For

(3.29)
κ

1− z/λ = κ
{

1 + z/λ+ (z/λ)2 + · · ·
}

to converge when |z| ≤ 1, it is necessary and sufficient that |λ| > 1.
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Linear Difference Equations

An nth-order linear difference equation is a relationship amongst n + 1
consecutive elements of a sequence x(t) of the form

(3.32) α0x(t) + α1x(t− 1) + · · ·+ αnx(t− n) = u(t),

where u(t) is some specified sequence which is described as the forcing function.
The equation can be written, in a summary notation, as

(3.33) α(L)x(t) = u(t),

where α(L) = α0 + α1L+ · · ·+ αnL
n.

Solution of the Homogeneous Difference Equation

If λj is a root of the equation α(z) = α0 +α1z + · · ·+αnz
n = 0 such that

α(λj) = 0, then yj(t) = (1/λj)t is a solution of the equation α(L)y(t) = 0.
Thus

(3.34)

α(L)
(

1
λj

)t
=
(
α0 + α1L+ · · ·+ αnL

n
)( 1

λj

)t
= α0

(
1
λj

)t
+ α1

(
1
λj

)t−1

+ · · ·+ αn

(
1
λj

)t−n
=
(
α0 + α1λj + · · ·+ αnλ

n
j

)( 1
λj

)t
= α(λj)

(
1
λj

)t
= 0.

Also consider the factorisation α(L) = α0

∏
i(1 − L/λi). Within this product

is the term 1− L/λj ; and since(
1− L

λj

)(
1
λj

)t
=
(

1
λj

)t
−
(

1
λj

)t
= 0,

it follows that α(L)(1/λj)t = 0.
The general solution, in the case where α(L) = 0 has distinct real roots, is

given by

(3.35) y(t; c) = c1

(
1
λ1

)t
+ c2

(
1
λ2

)t
+ · · ·+ cn

(
1
λn

)t
,

where c1, c2, . . . , cn are the constants which are determined by the initial con-
ditions.
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Solution of Difference Equations: The Case of Repeated Roots

If two roots coincide at a value of λj , then α(L)y(t) = 0 has the solutions
y1(t) = (1/λj)t and y2(t) = t(1/λj)t.

To show that y2(t) is also a solution, consider

(3.36)

(
1− L

λj

)2

t

(
1
λj

)t
=

(
1− 2L

λj
+
L2

λ2
j

)
t

(
1
λj

)t
= t

(
1
λj

)t
− 2(t− 1)

(
1
λj

)t
+ (t− 2)

(
1
λj

)t
= 0.

If there are r repeated roots with a value of λj , then all of (1/λj)t, t(1/λj)t,
t2(1/λj)t, . . . , tr−1(1/λj)t are solutions, If there are r repeated roots of unit
value, then the functions 1, t, t2, . . . , tr−1 are all solutions. Therefore the general
solution of the homogeneous equation will contain a polynomial in t of degree
r − 1:

d0 + d1t+ d2t
2 + · · ·+ dr+1t

r+1.

The 2nd-order Difference Equation with Complex Roots

Let α(L)y(t) = α0y(t) + α1y(t − 1) + α2y(t − 2) = 0 and suppose that
α(z) = 0 has complex roots λ = 1/µ and λ∗ = 1/µ∗. If λ, λ∗ are conjugate
complex numbers, then so too are µ, µ∗. Therefore

(3.37)
µ = γ + iδ = κ(cosω + i sinω) = κeiω,

µ∗ = γ − iδ = κ(cosω − i sinω) = κe−iω.

These will appear in a general solution of the difference equation of the form

(3.38) y(t) = cµt + c∗(µ∗)t.

This represents a real-valued sequence; and, since a real term must equal its
own conjugate, it follows that c and c∗ must be conjugate numbers of the form

(3.39)
c∗ = ρ(cos θ + i sin θ) = ρeiθ,

c = ρ(cos θ − i sin θ) = ρe−iθ.

Thus the general solution becomes

(3.40)

cµt + c∗(µ∗)t = ρe−iθ(κeiω)t + ρeiθ(κe−iω)t

= ρκt
{
ei(ωt−θ) + e−i(ωt−θ)

}
= 2ρκt cos(ωt− θ).

6



LECTURE 2 : MODELS AND METHODS

Transfer Functions

Consider the equation

(3.65) α(L)y(t) = β(L)x(t) + ε(t),

where

(3.66)

α(L) = 1 + α1L+ · · ·+ αpL
p

= 1− φ1L− · · · − φpLp,

β(L) = 1 + β1L+ · · ·+ βkL
k

are polynomials of the lag operator. The transfer-function form of the model
is simply

(3.67) y(t) =
β(L)
α(L)

x(t) +
1

α(L)
ε(t),

The rational function associated with x(t) has a series expansion

(3.68)
β(z)
α(z)

= ω(z)

=
{
ω0 + ω1z + ω2z

2 + · · ·
}

;

and the sequence of the coefficients of this expansion constitutes the impulse-
response function. The partial sums of the coefficients constitute the step-
response function. The gain of the transfer function is defined by

(3.69) γ =
β(1)
α(1)

=
β0 + β1 + · · ·+ βk
1 + α1 + · · ·+ αp

.
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Finding the Coefficients of the Impulse Response

Consider the second-order case:

(3.70)
β0 + β1z

1− φ1z − φ2z2
=
{
ω0 + ω1z + ω2z

2 + · · ·
}
.

We rewrite this equation as

(3.71) β0 + β1z =
{

1− φ1z − φ2z
2
}{
ω0 + ω1z + ω2z

2 + · · ·
}
.

Then, by performing the multiplication on the RHS, and by equating the co-
efficients of the same powers of z on the two sides of the equation, we find
that

(3.72)

β0 = ω0,

β1 = ω1 − φ1ω0,

0 = ω2 − φ1ω1 − φ2ω0,
...

0 = ωn − φ1ωn−1 − φ2ωn−2,

ω0 = β0,

ω1 = β1 + φ1ω0,

ω2 = φ1ω1 + φ2ω0,
...

ωn = φ1ωn−1 + φ2ωn−2.

The coefficents are genereated by a homogeneous second-order difference
equation:

(3.73) ω(n) = φ1ω(n− 1) + φ2ω(n− 2),
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The Frequency Response

Consider mapping the signal x(t) = cos(ωt) through the transfer function
γ(L) = γ0 + γ1L+ · · ·+ γgL

g. The output is

(3.74)

y(t) = γ(L) cos(ωt)

=
g∑
j=0

γj cos
(
ω[t− j]

)
.

The trigonometrical identity cos(A−B) = cosA cosB + sinA sinB enables us
to write this as

(3.75)
y(t) =

{∑
j

γj cos(ωj)
}

cos(ωt) +
{∑

j

γj sin(ωj)
}

sin(ωt)

= α cos(ωt) + β sin(ωt) = ρ cos(ωt− θ).

Here we have defined

(3.76)

α =
g∑
j=0

γj cos(ωj), β =
g∑
j=0

γj sin(ωj),

ρ =
√
α2 + β2 and θ = tan−1

(β
α

)
.

It can be seen from (75) that the effect of the filter upon the signal is
twofold. First there is a gain effect whereby the amplitude of the sinusoid has
been increased or diminished by a factor of ρ. Also there is a phase effect
whereby the peak of the sinusoid is displaced by a time delay of θ/ω periods.
Figures 3 and 4 represent the two effects of a simple rational transfer function
on the set of sinusoids whose frequencies range from 0 to π.
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