BRONZE AGE RING DITCHES AND PIT ALIGNMENTS AT MILL LANE, EARL SHILTON, LEICESTERSHIRE

Wayne Jarvis

with contributions from:
Matthew Beamish, Lynden Cooper, Nicholas J. Cooper, Patrick Marsden, Graham Morgan, Angela Monckton and John Thomas

A programme of archaeological fieldwork was carried out by ULAS between August 2007 and September 2008 in advance of the construction of the A47 Earl Shilton Bypass (SP 476 991 – SP 453 964). Survey and evaluation indicated potential impacts on two sites: a post-medieval fishpond at Elmesthorpe south of Earl Shilton (Jarvis 2009b, Site A); and the site discussed here (Site D), on land to the north of Mill Lane and east of Earl Shilton (SP 479 979). Here, prehistoric and transitional Roman features were revealed, including two ring ditches representing ploughed out Bronze Age round barrows, pit alignments and a series of parallel and inter-cutting ditches. They show the interaction between the monuments and the landscape, and a continuity of respect for these monuments over a long period of time. They also demonstrate how these features were referenced, ‘reclaimed’ and reworked, and additionally how the landscape was subdivided in a more formal manner, in the course of time.

INTRODUCTION

A programme of archaeological fieldwork was carried out by ULAS between August 2007 and December 2007, in advance of, and during, the construction of the A47 Earl Shilton Bypass. This work included trial trenching, photographic and field survey, excavation and a watching brief. Work included two main sites: fishpond earthworks at Elmesthorpe, south of Earl Shilton (reported separately; Jarvis 2009b Site A); and significant prehistoric and Roman features, reported here, between Mill Lane and Thurlaston Lane (SP 479 979; Site D).

The route of the bypass runs from the A47 in the north-east (SP 476 991) across Thurlaston Lane, then south-west rejoining the A47 north of Burbage Common (SP 453 964; see Fig. 1). The route crosses a series of agricultural fields, currently of mixed arable and pastoral use. The topography is varied, as the bypass transects a series of shallow east-west valleys. The ground level thus varies between c. 88m aOD and 110m aOD. The solid geology of the area is Triassic Mercia Mudstone, with superficial deposits consisting of alluvium (valleys), sands and gravels, and glacial tills (Ordnance Survey Geological Survey of England and Wales, Coalville, sheet 155). The total length of the bypass is c. 4.5km, and the total area within the easement is c. 0.215km². Site D reported on here lies between Mill Lane

and Thurlaston Lane (SP 479 979), and covers an area of c. 5,500 sq. m. at a height of c. 100m aOD (centre).

The Leicestershire and Rutland Historic Environment Record for areas surrounding the route of the bypass included a cropmark of a circular enclosure,
possibly of a Neolithic-Early Bronze Age ‘hengiform’ type, located close to the western edge of the site (SP 477 979; MLE9771 MLE9772, but see below). A Bronze Age copper alloy palstave was recorded close to Huit Farm (MLE6349) and a Bronze Age blade from north of Breach Lane farm (MLE9768). Other cropmarks include a possible Iron Age enclosure (MLE17049), while Iron Age pottery and quern fragments have been recovered from fieldwalking (MLE15924). Roman pottery has also been recovered from fieldwalking (MLE10232; MLE15864; MLE159310), and findspots of brooches (MLE9783; MLE10242) and a coin (MLE10243) are also known from this period. A mosaic recorded near Elmesthorpe may also be of Romano-British date (MLE10311).

There is considerable evidence for medieval and later settlement. This includes the settlement cores of Barwell and Earl Shilton (MLE2821; MLE9535), a moat north of Bracknells barn (MLE341), and well-preserved manorial earthworks and fishponds at Elmesthorpe (MLE69–72; MLE75–7; MLE2856; Jarvis2009b). A deer park and boundary features are known from Tooley Park (MLE3072/3).

Initial fieldwork in 2001 and 2002 over the area of the proposed Earl Shilton bypass comprised non-intrusive fieldwalking, metal-detecting, auger and geophysical surveys. Few significant finds were recovered during the fieldwalking and metal-detecting, other than small assemblages of medieval pottery and worked flint. The auger survey revealed indications of alluviation close to the existing streams. Little of significance was located in the course of magnetic susceptibility and gradiometer surveys (Browning et al. 2002, 1).

Although ferrous and thermoremanent anomalies (brick-type) were detected during the geophysical survey at the site, no significant anomalies were identified either within the roadline or over the area of the known cropmark just to the west (Browning et al. 2002, 7). Fieldwalked material from the site consisted of a small assemblage of struck flint, which appeared rather crude and potentially late in date (Bronze Age or Iron Age; Cooper 2002). Follow-up fieldwork at Site D incorporated a test-pit survey and evaluation trenches (Coward 2003). Only the north field here could be evaluated due to a standing crop in the south of the area. This work identified several undated ditches and a series of possible post-holes, and finds included worked flint, Romano-British and Saxon pottery. Because of these somewhat inconclusive results, a further stage of evaluation was undertaken in the southern field, which revealed, in the northernmost trenches, pits and two north-south aligned linear gullies, which produced late Iron Age–early Romano British pottery and a fragment of a saddle quern (Jarvis 2008). In view of these results the Senior Planning Archaeologist at Leicestershire County Council recommended a scheme of archaeological investigation (Clark 2007).

THE EXCAVATION

Two areas were examined either side of an east-west field boundary (Fig. 2). North of the boundary two ring ditches, two parallel north-west to south-east aligned gullies and a series of pits were revealed, while to the south a group of pits and ditches on a north-south alignment were present. On the evidence of
stratigraphic relationships and datable material, four phases of activity could be identified from the excavation. In the text cut numbers are shown in square brackets (e.g. [37]), while fills where referred to are without brackets (e.g. 87).

Phase 1. Mesolithic and Neolithic activity

A small Mesolithic component of unstratified flint, including two blade-like flakes, a flake with bladelet scars and a truncated bladelet, possibly an obliquely truncated point, was recovered. A single sherd of Neolithic pottery (possibly Peterborough Ware) was also recovered in a residual context, from the fill of the southern Ring Ditch. On the basis of current understandings of its chronology, Peterborough Ware dates to between 3530 and 2880 BC (Marshall et al. 2009).
Phase 2. The ring ditches and associated features (Figs 3–9)

Ring Ditch 1 (south) – [37]
Ring Ditch 2 (north) – [218]

Ring Ditch 1 measured 26m in internal diameter, while Ring Ditch 2 to the north-west was slightly smaller at 25m (Figs 4–6, 8). Where it could definitely be ascertained, the width of Ring Ditch 1 varied between 1.33m (north excavated section) to as wide as 2.49m in the excavated south-east section. Ring Ditch 2 (Figs 4, 7–9) was wider, varying between 2.72m wide at the east and 3.05m in the north section.

Sections through the ring ditches identified a series of fills, with four fills in Ring Ditch 1 and eight in Ring Ditch 2 (Fig. 9a–e). The fills generally consisted of rather leached and sterile material, brown silty-clay sands with sub-rounded gravel, being a combination of weathering and eroding material from the natural substratum, and probably some slumping of mound material. Occasional concentrations of distinctive material (e.g. coarse pebbly material such as fill 274, Fig. 9e) could not be traced for any distance; hence, it is impossible to say what structure

![Diagram](image-url)
the mound may have had. Infrequent lenses produced some pottery and charcoal from upper (later) fills.

The profile of Ring Ditch 1 is a shallow open U-shape, tending towards being flat-bottomed (Fig. 9a–c). It is proportionately very shallow in comparison to its width, having a maximum depth of 0.71m. Ring Ditch 2 is completely different, its profile being steep and V-shaped (Fig. 9d–e). This may have been due to variations in the natural substrata between the two ring-ditch areas. Ring Ditch 1 cuts clayey substrata, whilst to the north Ring Ditch 2 is cut into more sandy deposits. It might follow from this that Ring Ditch 2 was in-filled relatively quickly (perhaps deliberately), preserving the V-shaped profile with little erosion, and may have survived only as a mound and partly in-filled ditch. That Ring Ditch 1 survived as a landscape feature is certainly supported by the fact that both pit alignments clearly respected it, whilst Ring Ditch 2 has little evidence of being referenced by later features. An alternative explanation for the difference in profiles is that the two features were not constructed at the same time, although there is insufficient dating evidence to support this. It is also possible that both ring ditches were at least partly re-cut at some stage, as suggested by the profiles. Neither ring ditch
showed any survival of bank material, either as a central or external mound, with asymmetry in the ditch fills being most likely due to an undated re-cutting episode.

Other features – [67], [101], [113], [189], [191], [198], [217], [244]
(Figs 6–7, 11–14)

A series of six features adjacent to the ring ditches may have been associated with them, although an absence of dating material meant that this could not be confirmed. Their distinctive form and proximity to the ring ditch suggested they were possibly contemporary features. Two of these resembled grave cuts, although the absence of any artefactual material makes this impossible to verify. One pit located within the interior area of Ring Ditch 2 (cut [217], Figs 7, 11h) contained flint, five sherds of late Bronze Age–Iron Age pottery, and occasional burnt stone fragments. This may suggest a later insertion, although the pottery may be intrusive. Another pit was located close to the centre of this ring ditch (cut [244], Figs 7, 11(i)).
Phase 3 The pit alignments and associated features (Figs 3–6, 10–13)

Northern Pit Alignment – [54], [129], [133], [136], [160], [173]

Southern Pit Alignment – [2], [14], [17], [19], [21], [23], [25], [27], [29], [31], [50], [105]

The northern Pit Alignment could be traced across the stripped area for 37m, running north-north-east to south-south-west (Figs 4, 6, 11), and consisted of 11 pits of which six were excavated. A pit 70m to the north (in the further trial trenched area, Fig. 3a) was very similar in form to the main alignment pits, but appears to be on a slightly different line. If this pit is within the same alignment, the alignment would have curved slightly to the west downslope (to the north). Close to Ring Ditch 1, the northern Pit Alignment appears to veer to the west slightly, before intersecting with the ring ditch at the western edge of the monument. In this area, and between the northern Pit Alignment and Ring Ditch 1, a large pit was located [142], possibly functioning as a ‘marker’ (Fig. 6, see below).

The southern Pit Alignment was traced for 47m within the excavated area (Figs 3, 5, 10, 13), with 18 pits in the alignment of which 12 were excavated. This

![Fig. 6. Ring Ditch 1 close up and main associated features.](image-url)
alignment is on a slightly different axis, being closer to true north-south and perpendicular to the contour of the hill, and appearing to intersect with the south side of Ring Ditch 1 at a sharper angle. East of the southern alignment are two more possible ‘marker’ pits (see below).

In plan the pits are more or less sub-rectangular, a shape which conforms to Hingley’s suggestions on alignment pit forms varying by date (Hingley 1989, 2–3), with this shape of pit tending to date to the late Bronze Age to middle Iron Age. The Site D alignment pit sides were always steep to vertical, and the bases close to being flat-bottomed. There is little variation in the form, size and spacing of the pits through the linear sequence. The pits in both alignments are on average 1.8m across (north-south) by 1.77m (east-west), although this varies. The northern pits were slightly wider (east-west) compared to their north-south axis, whereas the southern pits were slightly elongated on their north-south axis. The latter pattern is paralleled at the Eye Kettleby pit alignment in that the long axis of the pit corresponded with the axis of the alignment as a whole (Finn forthcoming). The southern pit alignment also appeared to increase in plan size slightly as they approach Ring Ditch 1, although this could not be verified after...
excavation and this may be an artefact of the visibility of the fills. On average, the northern pits were very slightly deeper (0.6m compared to 0.54m), although this may be due to variations in the level of truncation.

Most of the alignment pits had more than one fill. Primary and single fills were invariably clayey sands with occasional gravels, naturally derived material from primary silting, although somewhat sandier than the natural substratum and later pit fills. Upper fills were similar eroded material. Only two alignment pits had fills different to this pattern, both adjacent to each other midway along the northern Pit Alignment. Both contained secondary fills of thin layers rich in charcoal and late Bronze Age–Iron Age pottery, in addition to flint and unidentifiable burnt bone flecks. It is difficult to explain these fills as being related to occupation, as no other features occurred in the vicinity, and they may be ‘special’ deposits placed within the features after an initial silting episode.

Other pits [10], [107], [142], [172]

Four outlying pits are most likely related to the pit alignments based on their locations and dates. These are quite different in form to the alignment pits, however, and also vary from each other. Just to the east of the southern Pit Alignment, two sub-circular pits were excavated – [10] and [107]. Pit [10] measured 1.59m (east-west) × 1.24m (north-south) and 0.24m deep, and was located 1.2m east of the alignment. It contained two fills of clayey sand, which contained later Iron Age or ‘transitional’ Conquest period pottery, seven sherds of late Bronze Age–Iron Age pottery and a substantial fragment of a saddle quern (see Thomas, below). Pit [107] averaged 1.02m in diameter, was 0.09m deep, and lay 0.7m east of the alignment. The clayey-sand fill contained three sherds of late Bronze Age–Iron Age pottery.

A third pit [142] was situated between the northern Pit Alignment and Ring Ditch 1 (Figs 6, 11g). This was D-shaped in plan and measured 1.94m east-west × 1.75m north-south, with a depth of 0.45m. The sides were near vertical and the
Fig. 9. Ring-ditch sections. (a–c) Ring Ditch 1; (d–e) Ring Ditch 2.
base was flat. A series of fills were identified, the primary fill consisting of disturbed natural orangey red sand and clay, incorporating burnt bone flecks, charcoal and pottery. The pottery assemblage comprised 16 late Bronze Age–Iron Age sherds and one sherd of Iron Age Scored ware. This primary fill was overlain by a concentration of granite fragments each up to 0.2m across, in a matrix of pale orange clayey sand. Six more sherds of late Bronze Age–Iron Age date were present in this fill. At the centre of the feature was a post-setting [215] showing clearly in section and plan, and extending down for 0.27m beyond the base of the pit. The post-hole itself was packed with granite, but did not produce any dating evidence. It was not possible to determine the relationship between this feature and the pit itself, but it is most likely that the post was set within the larger pit that was also completely packed with stone. The upper fill contained three further small sherds of late Bronze Age–Iron Age pottery; 11m to the east of this feature, a further possible post-hole was identified, also packed with granite. This was very truncated and disturbed by ploughing, however, measuring 0.55m in diameter by 0.13m deep, and containing no finds. To the west of the northern Pit Alignment by 3.6m, a further possible pit was excavated measuring approximately 1.75m in diameter and 0.6m deep (Fig. 4).

Fig. 10. Detail of the southern Pit Alignment and associated ‘marker’ pits.
Linear gullies [66], [97]

Two parallel linear gullies could be traced for 36.3m and 28.2m respectively, running north-west from an area adjacent to Ring Ditch 1, to the south of Ring Ditch 2 (Figs 4, 6, 14b–c). The southernmost gully feature was up to c. 0.52m wide, and 0.19m deep, and contained a mid-red brown sandy-silt fill. The northernmost gully was up to 0.65m wide and 0.24m deep, and again contained a single mid-orangey brown silty-sand fill. Neither feature contained pottery, although a single piece of iron tap slag and a flint shatterpiece were recovered from one section through the southernmost gully. The gullies ran parallel to each other, some 4.95m apart, and terminated 3.8m and 6.4m from Ring Ditch 1. It may be that this terminal was deliberate and related to the ring ditch, although alternatively it may be that their relationship with the northern Pit Alignment and/or north-south ditch series was significant. The gap between the gully terminals and these features to the east might be explained if a bank was upcast from either the northern Pit Alignment and/or north-south ditch series. The more northerly gully also terminated directly south of Ring Ditch 2, whilst the southern of the pair continued westwards beyond the site boundary. These gullies perhaps demarcated a trackway running up to the still extant features.

Phase 4. Post-pit alignment ditch system and associated features

Ditches [165–201], [6], [42], [83–175], [125], [156–195], [267], [168], [195], [265]

A series of ditches were recorded running both north and south from Ring Ditch 1, on the same alignment as, and cutting, the earlier pit alignments. The northern ditch series extended northwards and downslope with a 3m-wide interruption 46m north of the ring ditch, before continuing beyond the edge of the stripped area. The southern ditch series extended for c. 19m southwards from the ring ditch where the ditches petered out. It is likely that both ditch systems were originally longer than this, but have been truncated by ploughing. Narrow gully-like features [195] and [265] almost certainly represent a continuation of the ditch system within the western arc of the ring ditch (Figs 6, 13).

The northern ditch system consisted of at least two parallel and intercutting ditches, while the southern system was more complex with up to four parallel and intercutting ditches being observable (Figs 13, 14a). The ditch profiles were quite variable, although the deeper ditches tended to be the V-shaped features. The dimensions of the ditches also varied greatly along their length, and between features, with some being very insubstantial, probably in part due to later truncation. One of the southern ditches had a very stony upper fill, perhaps indicating a deliberate consolidation of metalling in this area. It also contained pottery, the majority of which was undiagnostic late Bronze Age–Iron Age in date, while nine sherds of Scored ware suggest a mid- to late-Iron Age date for this fill. Similarly stony at the top, the upper fill from an adjacent ditch produced a fragment of a Hunsbury type (rotary) quern, also suggesting a late (or possibly
middle) Iron Age date for these fills. Four sherds in a grog-tempered fabric, from upper fills in the northern ditch sequence, push the dating of the final fills into the first century AD, being of transitional forms. Close to these contexts a spread of material at subsoil level layer 140 produced further transitional pottery, and it is likely this represents a disturbed feature. No further dating evidence was recovered from the ditches. It was difficult to identify relationships stratigraphically,
although the absence of diagnostic pottery of an earlier or later date than the late-
Iron Age might suggest they were broadly contemporary features. It is likely that
multiple ditches were open at the same time, comparable examples for this being
known in the region, and additionally that multiple ditch systems are known to
‘replace’ pit alignments (Thomas 2008c). Long-term continuity of these boundary
lines is known, with examples sometimes being fossilised even in modern field
boundaries (Palmer 2002).

Other Features

Pits: [67], [99], [113], [117], [122], [132], [138]; Post-holes: [119], [124], [249],
[251], [258]; Ditches: [210], [243]

Several other pits and post-holes were identified to the north and south of the ring
ditches. Most of these were undated, although one possible post-hole [124] to the
north of Ring Ditch 1 contained a sherd of Iron Age pottery. Two parallel
insubstantial ditches were recorded in the western part of the site running north-
south (Fig. 7). They were most clear where cutting Ring Ditch 2, where they could
be seen to be 1.3m apart, each c. 0.8m wide and up to 0.3m deep. Their fills
were all brown-orange sands, with very occasional clays and gravels. A probable
continuation of this alignment had been visible in the southern area during the
evaluation (Jarvis 2008, [12] in trial trench 3). Both ditches appeared to be cutting
from slightly higher in the soil profile and the fill of [210] produced a complete
brick. These features are most likely recent field boundary features, although it is
worth noting their similar orientation to the southern prehistoric pit and ditch
alignments, perhaps still respecting the alignment in the modern period.
Four samples of charcoal were sent to the Tandem Accelerator Lab, Uppsala University for \(^{14}\text{C}\) dating. These were short-lived woody species, two samples each from Ring Ditch 1 fill 74 and North Pit Alignment fill 55. The results were as follows:

Ring Ditch 1
- Ua-37275 2140BC-1680BC (1605 cal BC 95.4 per cent probability)
- Ua-37276 1690 BC-1490BC (1365 cal BC 95.4 per cent probability)

North Pit Alignment
- Ua-37277 410BC-200BC (340 cal BC 95.4 per cent probability)
- Ua-37278 750BC-390BC (465 cal BC 95.4 per cent probability)
A single sherd (4g) of Neolithic pottery, probably Peterborough Ware, in a fabric containing large rock inclusions, came from the latest fill, 72, of Ring Ditch 1 [64]. This fill also contained two sherds of late Bronze Age or Iron Age ceramics.

Two sherds of early to middle Bronze Age pottery weighing 7g were also recovered from the upper fill of Ring Ditch 1, 38. The fabric of these is characteristic of this period, containing large grog and quartz inclusions. This upper fill also contained late Bronze Age–Iron Age pottery.

The pit alignments produced 108 sherds weighing 904g. The pottery was nearly all from pit [54], fill 55, and was of an Iron Age, or perhaps late Bronze Age, date. A sherd displaying an unusual tooled zig-zag pattern (Fig. 15.1) is difficult to find parallels for and date, although its fabric would seem to be consistent with the later Bronze Age or Iron Age. Two other vessels (Fig. 15.2–3) were also present, one of which has an unusually pronounced flattened rim (Fig. 15.3). Another vessel with a rounded inturned rim in fabric R1 was also recovered from the fill. The thin-walled nature of some of the sherds is more typical of the late Bronze Age and early Iron Age, although a single scored sherd is of a mid- or late-Iron Age date. Intrusive medieval pottery was also present in the fill.
The small group of pottery from the upper fill 85 includes an everted rounded rim and four scored sherds from the same vessel. Such pottery is typical of East Midlands Scored ware assemblages of the mid- to late-Iron Age, corresponding to Knight’s earlier La Tène ceramic phase for the East Midlands (2002, 133–5). The scored pottery from the two pit fills could suggest a date of the disuse of the feature in the middle Iron Age and the 14C dates for charcoal from 55 are consistent with this date. However, caution should be exercised in interpreting the pottery for dating purposes as, due to difficulties distinguishing the two fills on site, some of the pottery from this pit fill may in fact come from the ditch fill above. A date around the transition from the early to middle Iron Age seems most likely for the pottery from this pit. Pit [160] also contained eight sherds of pottery weighing 36g, undiagnostic beyond a late Bronze Age or Iron Age date.

The post-pit alignment ditch system produced a total of 32 sherds weighing 724g. The upper fill of the north-south ditch [156], 87, contained 22 sherds weighing 556g (Fig. 15.4) and 236 one sherd weighing 31g. Most of the pottery from upper ditch fill 87 is scored, and therefore likely to belong to the mid- to late-Iron Age period. It [142] fills 141, 187 and 207 contained 24 sherds weighing 186g of Scored ware pottery, while Pit [10] context 9 contained 14 sherds weighing 188g (Figs 15.5–6) from several vessels, all in sandy fabrics. Two vessels are in a Belgic style, dating to the late Iron Age or possibly into the early Roman period, around the middle of the first century AD. They consist of an everted rim jar in a coarse sandy fabric (Fig. 15.5) and a possible small bowl in a finer sandy fabric (Fig. 15.6). A thick base sherd also present may be from a Scored ware vessel.

The pottery from the pit alignment and subsequent ditch would seem to represent activity at the site from around the end of the early Iron Age to the late Iron Age. There is a lack of diagnostically late Bronze Age pottery, such as post-Deverel-Rimbury plainwares, or late Bronze Age to early Iron Age forms and decoration, from the post-barrow features. The pottery from the pit alignment is perhaps most likely to date to the early-middle Iron Age transition. Further ceramic evidence could suggest a later Iron Age date for the ditches cutting the pit alignment, although if the ceramics are part of the disuse, the ditch may have been originally constructed prior to this, perhaps in the middle of the Iron Age. Activity during the middle to late Iron Age ‘Scored ware period’ is more securely represented by pottery from the fill of pit [142]. The presence of later Iron Age or ‘transitional’ Conquest period pottery in a large pit east of the south-east of the southern Pit Alignment [10] shows continued activity until at least the end of the Iron Age.

A total of 38 sherds of ‘transitional’ early Roman pottery weighing 545g were recovered from the excavations. Three grog-tempered sherds came from upper fill 47 of the post-pit alignment ditch system, suggesting that the feature was probably going out of use around the middle of the first century AD. A single sherd in a grog-tempered fabric came from fill 176, also in the ditch system, and is also likely to be mid-first century AD in date. In addition, 31 sherds weighing 412g were recovered from spread layer 140 to the east of ditch [165]. These are mostly from a Belgic style narrow-necked jar in a grog-tempered fabric (Fig. 15.7).
Similar vessels in grog-tempered fabrics have been found in ‘transitional’ period levels in Leicester; for example, in the West Bridge area (Pollard 1994, fig. 50.7).

THE LITHICS

Lynden Cooper

Some 53 flints were recovered, including four cores, 33 flakes, 11 shatter fragments and five formal tools. The material employed local semi-translucent flint derived from till. This was of variable quality, with some poor material evident from the shatter. The majority of the assemblage displays a simple core technology with no platform preparation. The successful debitage comprised broad squat flakes with large butts, prominent bulbs and little core front preparation.
The technology and the typology (thumbnail scraper, straight-edged scraper and scraper on a pot lid blank) are typical of the mid- to late-Bronze Age.

There was a minimal Mesolithic component including two blade-like flakes, a flake with bladelet scars and a truncated bladelet, possibly an obliquely truncated point.

THE QUERNs AND WORKED STONE

John Thomas

Three quern fragments comprising a saddle quern from Pit [10], 9, a rotary quern from Pit [168], 170 and a possible rubber (unstratified) were recovered from the excavations. The saddle quern fragment probably represented near to half of the original item’s size, made on a roughly rectangular block of fine-medium grained sandstone, with an irregular four-sided shape. The grinding surface is very smooth and is slightly concave, and appears to have originally been prepared by pecking. The underside and lower sides are roughly pitted. A broken fragment from the upper stone of a Hunsbury type ‘Beehive’ rotary quern from [168] is of Millstone Grit and therefore most likely an imported item. It has a very smooth and slightly concave grinding surface. A roughly rounded Charnwood Granodiorite cobble with flat upper and lower surfaces, one of which is noticeably smoother, may represent a working surface of a rubber.

Three different stone types are represented, two of which (the saddle quern and rubber) would have been locally available in the natural clay subsoils. The toughness and resilience of the locally available sandstone cobbles appears to have been very suitable for their use as grinding stones, as similar examples have been found on other sites in the county, including: Wanlip (Marsden 1998); Beaumont Leys (Thomas 2008b); Humberstone Elms Farm (Roe 2000); Humberstone Manor Farm (Thomas 2011b); and Birstall, Hallam Fields (Thomas 2009). The example of Millstone Grit is likely to have been imported from the Pennines.

Both saddle and rotary types of quern are represented here. The saddle quern, SF1, has similarities with other such objects found on Iron Age sites in the county (see above), both in shape and choice of raw material. The rotary quern is of the ‘Beehive’ type and has similarities to Hunsbury type querns as found in abundance at Hunsbury hillfort Northamptonshire (Ingle 1993/4). Locally, the Earl Shilton quern also has similarities to another example from Enderby I, also a Hunsbury type (Clay 1992, 54 and fig. 30.5).

The saddle quern is likely to be the earlier of the two objects, as the use of this type generally precedes that of rotary querns. The early Middle Iron Age site at Beaumont Leys was associated with a large assemblage of saddle querns (Thomas 2008b), and the mid- to late-Iron Age sites at Elms Farm and Manor Farm, Humberstone also had significantly larger assemblages of saddle querns, with only a few rotary querns finding their way onto the site towards the end of the Iron Age (Roe 2000; Thomas 2011a). This sequence fits the general model for the development of quern technology, although it is clear that saddle querns had a fairly long currency. In some cases there is also evidence for early introduction
of rotary querns; for example, the earliest rotary querns from Leicestershire were found at the Middle Iron Age site at Wanlip (Marsden 1998). Generally, however, these are thought to be a later innovation. At Humberstone, Elms Farm the rotary querns appear in the later phases of occupation, towards the end of the first century BC (Roe 2000), and this is a pattern also seen at Manor Farm, Humberstone (Thomas 2011a). The Enderby example was also associated with later phases of the site’s occupation, thought to date to the Late Iron Age.

CHARRED PLANT REMAINS
Angela Monckton and Graham Morgan

Samples were taken from features with the potential to contain charred plant remains and 15 samples from seven contexts were processed. Samples were wet-sieved in a York tank using a 0.5mm mesh with flotation into a 0.3mm mesh sieve. The residues were air dried and the fraction over 4mm sorted for all finds, which are included in the relevant sections of this report. The fractions of the residues below 4mm were scanned for remains, but little was present. The flotation fractions (flots) were air dried and packed carefully in self-seal polythene bags. This work was carried out at ULAS by Anita Radini. The flots were examined with a ×10–30 stereo microscope, and the plant remains were removed to glass specimen tubes. Material for radiocarbon dating was extracted and identified by Graham Morgan. The plant remains were identified by comparison with modern reference material and the plant names follow Stace (1991). Material for radiocarbon dating was extracted and identified by Graham Morgan.

Bronze Age samples were from Ring Ditch 1 [64–37] 74, which contained only charcoal which was extracted for radiocarbon dating. Pit [217], 223 contained single grains of barley and glume wheat with a seed of brome grass.

Iron Age samples from a pit [54], 55 of the northern Pit Alignment contained a grain of barley, a grain of wheat and 10 seeds mainly of grass, including brome grass with a seed of vetch. Charcoal was relatively abundant and was extracted for radiocarbon dating. A small pit/post-hole [124], 123 contained a tuber of onion couch grass which is often found in contexts associated with cremations (Robinson 1988). Pit [142], 207 contained a chaff fragment of emmer and a few seeds of cleavers, persicaria and grass in one sample part.

Conclusions

Charred plant remains were very few in number and at a very low density. Evidence for crops included single numbers of cereal grains of barley (*Hordeum vulgare*) and glume wheat, either emmer or spelt (*Triticum dicoccum/spelta*). Only one sample contained any chaff, a fragment of a spikelet of glume wheat, probably emmer. There were also a few straw fragments. A few weed seeds were also found including cleavers (*Galium aparine*), vetches (*Vicia* type), persicaria (*Persicaria* sp.) and brome grass (*Bromus* sp.). A tuber of onion couch grass (*Arrenatherum elatius*) was also present; a plant thought to have been a perennial weed of fields
cultivated using the ard plough. All the plants found here could grow as weeds of
the crops and are likely to have been brought to the site with the cereals, although
fragments of straw may represent kindling. The plants found are typical of later
prehistoric sites, Bronze Age to Iron Age, and have been found on other sites in
the region (Monckton 2004). Charcoal fragments were present in most of the
samples. Cereals are found on most Iron Age occupation sites, but not often in
features more remote from dwellings. Barley and spelt are the common cereals,
and brome grass is a typical crop weed and is a very common find.

There is similar slight evidence of some domestic activity in the main phases of
the site represented by a few charred cereal grains and weed seeds, and a fragment
of chaff, probably from cereals cleaned of seeds and chaff before consumption,
and the waste burnt in hearths then dumped or accumulated in the features.
Although of low concentration, the remains show the crops grown and consumed
were glume wheat and barley. The remains could be from temporary occupation
during use of the monuments. However, the number of remains is very small and
could be redeposited in the later phases.

DISCUSSION

Excavations at Mill Lane, Earl Shilton have identified a series of substantial features
dating from c. 1500 BC through to the first century AD and beyond. The earliest
evidence is for part of a barrow cemetery (MLE9771) dating from the later part
of the Early Bronze Age, although earlier activity in the area is indicated by the
presence of Mesolithic flint and Neolithic Peterborough Ware pottery. The two
ring ditches are interpreted as round barrows now ploughed flat, and it had been
thought that they formed part of a hilltop cemetery together with a cropmark,
identified as a ‘henge’ type circular enclosure, immediately to the west (MLE9772).
However, an evaluation undertaken in 2010 recovered pottery from this ring ditch
and it is now interpreted as a medieval mill mound (Morris 2010). Whether the
mill mound had been sited on an earlier burial mound is uncertain.

Ring Ditches 1 and 2 compare closely in size to other excavated barrows in
Leicestershire – the Cossington 3 barrow was almost exactly the same diameter as
Ring Ditch 2 (at 25m; Thomas 2008a) and also Lockington barrow VI (Hughes
2000). Both excavated ring-ditch features are very close to true circles, and there
is no evidence for any of their sides being flattened. The ring ditches were situated
on the eastern end of a spur of land, with the ground falling off to the east, south
and north. Ring Ditch 1 was located on the northern edge of this ridge of ground
which continues to the west, having a very slight slope down to the north. Ring
Ditch 2 was situated slightly off this ridge, some 35m to the north-west, and on
a more pronounced north-facing slope. This siting of monuments on a ‘false crest’
is commonplace, with the monuments acting as territorial markers from below,
and also perhaps allowing audience observation of rites from upslope to the west.

Excavated sections through Ring Ditch 2 produced no pottery dating evidence,
or material suitable for C14 dating. The upper fills of Ring Ditch 1 (38) and (72)
(Figs 9 a–b) produced a small and mixed assemblage of pottery, including one
sherd (4g) of Neolithic pottery (probably Peterborough Ware), two sherds (7g) of early to middle Bronze Age date (quartz and grog-tempered, see Marsden above), and 13 sherds (74g) of late Bronze Age–Iron Age wares. The likely date for these upper fills is the late Bronze Age–Iron Age, with the earlier pottery being residual in later contexts, but suggesting some activity in the area in the middle Neolithic, and at around c. 1500 BC (transition between Early to Middle Bronze Age). Additionally, two 14C samples for part of the silting up of Ring Ditch 1 also produced similar dates of 2140 BC–1680 BC, 1690 BC–1490 BC (95.4 per cent probability). These dates towards the end of the early Bronze Age are relatively late for round barrows (cf. Sproxton, Clay 1981), but within the period in which these monuments were in use. This relatively late date may explain the paucity of typical early Bronze Age material on site. However, these dates all come from relatively late in the stratigraphic sequence for the barrow, and it may be that the actual construction of the monument was somewhat earlier with continued use or re-use at this later date. Continuity or re-use of early Bronze Age barrows in the middle Bronze Age has also been identified at other sites in the area (e.g. Castle Donington, Cossington, Melton Mowbray and Tixover; Clay 1999, 3). The charcoal used for 14C dating came from a concentration within the partially infilled ring ditch, which is also paralleled at several other sites (e.g. Cossington and Eaton; Clay 1981; Thomas 2008a, 43). At these sites also, charcoal concentrations appear at the base of secondary slumping in the ditches, perhaps indicating a redefinition of the feature and its continued significance.

Of the 250 ring ditches known from cropmarks in the county, only 27 show evidence of surviving mounds (Clay 1999). This absence of mound survival is almost certainly due to plough truncation, although the mounds might have been rather insubstantial features in any case considering the proportion of the ditch volume to the internal diameter of these features. The absence of surviving mound material may also explain the absence of burials, as these might have been placed into the mounds, although soil acidity would additionally hinder the preservation of bone. There are, however, ‘cenotaph’ barrows known without any burial evidence; for example, at Grendon, Northants (Gibson and McCormick 1985). Within the county, both the aforementioned barrows at Cossington 3 and Lockington VI also lacked central burials (Hughes 2000; Thomas 2008a), and it is clear that burial in deep pits was not occurring on these sites.

With the end of the cemetery’s use there is a change from a funerary landscape to one of agricultural use in the first millennium BC. The barrow monuments were clearly still visible when the pit alignment boundary systems (MLE17758) were constructed in the Iron Age, as they are respected by these boundaries. This is a phenomenon observed elsewhere, with standing monuments often incorporated into boundary systems (Willis 2006, 123). The boundary systems would have been the beginnings of managing the landscape for agricultural purposes, perhaps dividing the area along the lines of ‘ownership or demarcating certain rights’. In addition to the broad date range (late Bronze Age–Iron Age) suggested from the pottery evidence, the lack of diagnostic late Bronze Age pottery suggests an early–middle Iron Age date for the pit alignments (see Marsden above). To clarify the dating
evidence, charred material (short-lived woody species) was extracted from fill 55 in the northern Pit Alignment and calibrated dates of 410 BC–200 BC and 750 BC–390 BC (95 per cent probability) were obtained. The pit alignments therefore probably post-date Ring Ditch 1 (and most probably Ring Ditch 2) by over c. 1,000 years. The dating conforms to the pattern that pit alignments are broadly first millennium BC in date, although earlier and later dates are also known (Hingley 1989). Few other pit alignments have produced direct dating evidence in the region. Two relatively short pit alignments at Husbands Bosworth are thought likely to be of late Bronze Age–early Iron Age date (Beamish and Coward 2002). At Willow Farm, Castle Donington a pit alignment was associated with a late Bronze Age settlement (Coward and Ripper 1999), but the lack of material of this date in the pit fills might suggest a later date. The aforementioned Eye Kettleby pit alignments are slightly earlier, most probably being pre-Late Bronze Age in date (Finn forthcoming).

Excavation of other pit alignments has only occasionally shown evidence for how the pits ‘functioned’, and it is unclear whether alignment pits were maintained as open features or ever held posts. Banks do occasionally survive, however, and at Eye Kettleby the possibility was explored that large fieldstones in the pit fills indicated a collapsed bank, rather than post-packing (Finn forthcoming).

Although there are slight variations in the form of the pits, it is perhaps more significant how little difference there is. The spacing of the pits in both alignments is very regular, to within 5cm (centre to centre). Also, the average spacing between the pits for the northern Pit Alignment is 2.75m, and for the southern Pit Alignment the measurement is virtually the same at 2.76m. From the similar dimensions of the pits and their spacing, they were clearly laid out in a formal manner, and it seems more than likely that the alignments were contemporary. It is unclear though whether the two pit alignments formed one single linear feature, as the junction was truncated by the later ditch system in the western extent of Ring Ditch 1. Where the ditches cut the northern Pit Alignment (in the east windrow) they widen considerably, destroying any convincing trace of the pit alignment. However, a possible pit located 5m to the north-west of ‘marker’ pit [142] would correspond with the spacing for the alignment. This would suggest a further three pits have not survived the truncation of the pit alignment by the ditch system. Similarly, just to the south of Ring Ditch 1, the southern Pit Alignment appears to terminate c. 12m from the ring ditch, where it is ‘replaced’ by the ditch system. A single pit [180] in the south-west arc of the ring ditch may indicate that the southern Pit Alignment did continue up to the ring ditch. If this was the case, five further pits may also have been destroyed by the ditch system between this pit and the southern Pit Alignment.

The pit alignments divide Ring Ditches 1 and 2 from each other. This is very closely paralleled at a cropmark site just to the east (SP 490 983), where two ring ditches are also bisected by a pit alignment (Pickering and Hartley 1985, HER refs: MLE346, MLE347). Additionally, both pit alignments bisect their respective hillslopes, and by doing this redefine the earlier boundary line suggested by the ring ditches where the line would have followed the east-west ridge. It is also likely that both of the pit alignments continued further downslope, possibly continuing north
and south, and as far as the east-west streams in both valleys which run perpendicular to the alignments. Pit alignments commonly reference both natural and man-made features, and the pits are frequently aligned at right angles to streams and river courses (Fig. 16; Hingley 1989, Finn forthcoming). The pit alignments may originally have been associated with banks which would both have been significant boundaries when looked at from each of the lower slopes; that is, either side of the east-west crest that they run up to and on which the ring ditches were earlier located.

While there was secondary evidence of settlement activity in the vicinity during the Iron Age, no clear settlement features were located. However, subsequent geophysical survey and trial trenching immediately to the west has located evidence of a sub-rectangular Iron Age enclosure, 180m west of the southern Pit Alignment (Fig. 16; Morris 2010). From the small quantities of pottery recovered the enclosure appears to be of late Iron Age date, probably post-dating the construction of the pit alignment, but broadly contemporary with the later ditch system. This ‘replacement’ of pit alignments by ditches is also very common (Thomas 2008c),
representing a more formal approach to landscape division (e.g. Eye Kettleby, Finn forthcoming), that is, a ‘functional’ ditch replacing a pit alignment. It is likely that further pit alignments may be masked by their replacement ditches.

As separate features – barrow ring ditches, pit alignments and ditch systems – these features find regional parallels with close similarities. However, the excavated evidence from Earl Shilton has provided additional information for the form of these monuments, their function, and dating from pottery and other finds. Additionally, the radiocarbon analysis has provided dates for the disuse of one of the two ring ditches and the infilling of the northern Pit Alignment. However, it is in how these features related to each other and to the landscape that they are more significant. They show the interaction between the built environment and the landscape, and a continuity of respect for these monuments over a long period of time. They also demonstrate how these features were referenced, ‘reclaimed’ and reworked, and additionally how the landscape was subdivided in a more formal manner, in the course of time. The increased occurrence of finds associated with domestic activity in the later periods (Iron Age Scored ware and transitional Roman pottery, querns), and the gradual change from a ritual landscape to formal ditched boundaries, reveals a gradual but very significant change in land use and territoriality over time.

Prior to the excavations there was relatively little evidence for the survival of these significant features. The presence of the barrows, pit alignments and ditch systems was not known from aerial photography, nor did the geophysical survey or surface scatter suggest their survival. The substantial cover of subsoil may have hindered results from aerial photography, geophysical prospection and fieldwalking, and the comparatively small assemblage of finds from the excavation stage partly explains the lack of material in the surface scatter. It does indicate though that many more monuments survive than are known, and also that what may appear as apparently isolated monuments of a single period may in fact have a long history of use and re-use. Other monuments of comparable form and date are known in the environs of the excavation (Fig. 16). The double ring ditch and pit alignment features, identified through aerial photography immediately to the east (at SP 490 983; HER references MLE346, MLE347), are so similar in form and location as to warrant particular note. However, the presence of 22 other ring ditches, ditch systems and pit alignments within 5km of the site is also significant, a prehistoric landscape with several episodes of use and re-use.

BIBLIOGRAPHY

Finn, N. Forthcoming Bronze Age Enclosures and Cremation Cemetery at Eye Kettleby, Leicestershire. The development of a prehistoric landscape. Leicester Archaeology Monograph 20.

Jarvis, W., 2008 Archaeological Fieldwork in advance of the Earl Shilton Bypass, Leicestershire Site D, north of Mill Lane, Earl Shilton (SP479 979) and Breach Lane, Earl Shilton (SP474 970), ULAS Report No. 2008–110.

Acknowledgements

Thanks go to Matt Beamish, Jennifer Browning, Lynden Cooper, Nicholas Cooper, Andy Hyam, Neil Finn, Michael Hawkes, Harriet Anne Jacklin, Patrick Marsden, Graham Morgan, Angela Monckton and John Thomas, and to the site staff Luke Benfey, Siobhan Brocklehurst, Adam Clapton, Leon Hunt, Steve Jones, Roy Poulter and Dan Prior. I am also grateful to the clients Leicestershire County Council (LCC), and Alfred McAlpine plc, and to Patrick Clay of ULAS for project management. Keith Challis, then of Trent and Peak Archaeological Unit, designed the scheme of initial survey and evaluation work in 2001–02 for the bypass in consultation with Anne Graf and Stephanie Chettle of LCC. Richard Clark of LCC monitored the 2007 work on behalf of the planning authority. The paper was edited by Patrick Clay. The work was carried out for Leicestershire County Council who hold the archive under the Accession number X.A183 2007, and the full report (Jarvis 2008) can be consulted through the OASIS database and can be accessed on the Index of Archaeological Investigations (OASIS; http://ads.ahds.ac.uk/catalogue/library/greylit/query.cfmhttp://www.oasis.ac.uk, or at the Leicestershire County Council, Historic Environment Record.