A NEOLITHIC MORTUARY ENCLOSURE AT LEICESTER ROAD, MELTON MOWBRAY, LEICESTERSHIRE

James Harvey

with contributions from:
Lynden Cooper, Nicholas J. Cooper, Angela Monckton, Göran Possnert and Ingela Sundström

An excavation and watching brief at Leicester Road, Melton Mowbray revealed two distinctly separate phases of archaeological activity dating from the Neolithic and Iron Age. This paper will present the results of the Neolithic evidence and suggest that it may represent a small mortuary enclosure. A group of three elongated pits and a post-hole aligned north-west to south-east contained Neolithic pottery and lithics, and provided radiocarbon dates between 3790 and 3460 cal BC. The arrangement can be paralleled with long barrow forms known from the south of England.

The archive will be deposited with Leicestershire County Council, under the accession number X.A.32.2006, and the full report (Harvey 2010) is available on the Online Access to the Index of Archaeological Investigations (OASIS) held by the Archaeological Data Service at the University of York under ID: universi1-85072, available at http://ads.ahds.ac.uk/catalogue/library/greylit/query.cfm or at the Leicestershire County Council, Historic Environment Record.

INTRODUCTION

The site is located to the west of the town centre of Melton Mowbray, in north-east Leicestershire, on land formerly occupied by the police station. It consists of an area of c. 4.39 ha that is bounded to the north by Leicester Road, to the east by Dalby Road, to the west by the former day care centre (now Halifax Drive residential development) and by the railway line to the south (centred on SK 7485 1880; Figs 1 and 2). Alluvium was widespread across the site and the underlying geology was generally a yellowish brown sandy-clay with pockets of gravel. The site lies at a height between c. 70m and 80m OD.

Prior to planning permission being granted for residential development, an archaeological desk-based assessment was undertaken (Marsden 2001), which highlighted the potential for archaeological remains within the area, noting in particular the proximity of ‘The Mount’, a Scheduled Monument (SM17023), which functioned as a windmill mound in the post-medieval period, but may have originally been constructed as a Norman castle motte.

Subsequent trial trenching revealed a variety of archaeological remains dating between the Neolithic to Saxo-Norman periods (Finn 2001; Harvey 2006)
although no evidence for the castle interpretation was located. In view of this, an archaeological condition of the planning permission required further archaeological work, comprising an excavation and watching brief.

University of Leicester Archaeological Services (ULAS) were commissioned by the developer, Jelson Ltd, to carry out the archaeological work, the excavation being divided into two phases undertaken in November to December 2006 and May 2009, while the watching brief involved intermittent visits between October 2006 and June 2009.

RESULTS

The two excavation phases produced two distinct phases of activity. The first phase of excavation in 2006 to the west located a series of intercutting pits north of a narrow enclosure ditch, orientated west-north-west to east-south-east. Evidence from the evaluation trenches suggests that the enclosure ditch then turned north. Pottery from these features was of late Iron Age to early Roman date. Details of these results are presented in Harvey (2010).

The second phase of excavation was undertaken in May 2009. The excavation area was located east of the first phase, slightly overlapping the edge of the western area (Fig. 2).
Fig. 2. Plan showing areas of investigation.
Three similarly shaped large pits were recorded in apparent spatial association, creating a semi-enclosed arrangement with a north-west facing opening (Figs. 3, 4, 6 and 8). Cut/feature numbers are recorded in square brackets (e.g. [100]), while fills are in round brackets (e.g. (93)).

Pit [92] (Figs. 4–5)

Pit [92] was the northernmost of the three large pits and is the same feature that was recorded during the evaluation (Trench 17; Finn 2001). It was sub-rectangular
in plan, and orientated north-west to south-east. It measured 8.5m in length and its width varied from 2.1m at the ends of the feature to 3.8m towards its centre. Three separate fills were identifiable within the feature. A small primary fill was located within the centre of the feature that consisted of a light yellowish brown silty-clay deposit (93) containing a single sherd of Neolithic pottery. This deposit was overlain by a dark grey brown clay-silt deposit (94) containing a small quantity of Neolithic pottery and 16 worked flints, including two tools and two core fragments that re-fitted. The upper fill consisted of a mid-grey brown silty sandy-clay deposit (95), again containing Neolithic pottery and a large quantity of flint (48 pieces), including four bladelets and a scraper. A fragment of hawthorn charcoal also recovered from this deposit was radiocarbon dated to 3620–3350 cal BC (Ua-50194: 14C age 4648±38BP).

Fig. 4. Post-excavation plan of Pit [92].
A stake-hole and possible post-holes were recorded in association with this feature, immediately north of the pit, while a second stake-hole and post-hole was located at its south-east end.

A small pit [96] that had been previously recorded during the evaluation was shown to cut into the top of Pit [92], indicating the feature had been subject to later disturbance.

Pit [100] (Figs 6 and 7)

Pit [100] was the most complex of the three recorded pits. The feature was sub-rectangular in plan with curved corners and it was orientated north-east to southwest. It measured 6.6m in length, varied in width between 2.3m and 3m and was a maximum of 650mm deep. Four separately identifiable fills were recorded.
within this feature. A primary mid-orange brown sandy-clay fill (99) was overlain by a mid-brown grey clay-silt deposit (98) that contained Neolithic pottery and a large quantity of worked flint (74 pieces), including blades, a scraper and a piercer. A fragment of elder charcoal from this deposit was radiocarbon dated to 3790–3640 cal BC (Ua-50193: 14C age 4930±38BP). Two additional mid-orange brown silty-clay deposits were recorded against the south-west side of the feature.

A number of possible post-holes/stake-holes that were arranged in a broadly north-east to south-west alignment were recorded in association with this feature. However, the majority of these features were extremely ephemeral and could reflect undulations within the cut of [100] rather than being treated as actual structural features. A large sub-circular post-hole [129] was recorded in the north-west corner of the large pit. It measured 750mm × 650mm and was 310mm deep (extending 120mm below the base of the pit). Two worked flints were recovered from this deposit including a bladelet. Directly adjacent, to the south, another similar sized post-hole [131] was recorded, filled by a mid-grey brown clay-sand-silt deposit (132). Immediately south, a group of possible smaller post-holes were recorded in the base of the pit. Post-hole [127] was sub-circular, with a mid-grey brown clay-sand-silt deposit (128) that contained a small quantity of Neolithic pottery. Immediately to the south was another similarly sized sub-circular post-hole [125] with an identical fill (126). Another post-hole [123] was recorded.

Fig. 6. Post-exavation plan of Pit [100].
Fig. 7. Recorded sections from Pit [100].
immediately west, while post-hole [121] was located 200mm to the south-west. Immediately east was a similarly shaped larger post-hole [133]. A stake-hole [137] was located close to the north-west side of the pit, while two small stake-holes, [148] and [150], were recorded in the base of the pit at the south-west end. A further stake-hole [150] was located 200mm to the south, while a group of possible post-holes/stake-holes were recorded along the south-east side of the pit— [110], [111], [113], [115], [117] and [119]. Post-hole [111] contained a single sherd of Neolithic pottery.

A larger pit [135] was located towards the centre of pit [100] that truncated its backfill, similarly indicating that the feature had been subject to later disturbance as pit [92] had been.

Pit [101] (Figs 8 and 9)

Pit [101] was located south-west and parallel to [92]. The feature was oval shaped and measured 8.5m in length, and its width varied from 1.2m at the ends of the feature to 3m towards the centre and it was a maximum of 300mm deep. It was

Fig. 8. Post-excavation plan of Pit [101].
orientated north-west to south-east, and was filled by a dark orange brown clayey sandy-silt deposit (102) that contained four sherds of Neolithic pottery and a relatively large quantity of worked flint (70 pieces), including a number of bladelets.

Two possible stake-holes were recorded within the base of the feature towards its centre – [105] and [107].

Pit/post-hole [90]

Pit [90] was located 7m north-west of the pit group and its position opposite [100] and central to the alignments of [92] and [101] may suggest a spatial relationship. Measuring 1.3m × 550mm and 130mm deep, it was oval and was filled by a mid-orangey brown clay-silt deposit (91), while a large cobble may suggest packing to hold a post.

Pit [88]

Pit [88] was located 12m south-west of the large pit group (to the west the area illustrated within Fig. 3). It was oval in plan, measuring 930mm × 520mm × 60mm deep, and was filled by a mid-orangish brown clay-silt deposit (89).
RADIOCARBON DATING

(taken from the results provided by Göran Possnert and Ingela Sundström)

Two fragments of carbonised wood, recovered from environmental samples taken within pits (95) [92] and (98) [100] (from hawthorn and elder respectively), were submitted to The Ångström Laboratory, Tandem Laboratory, Uppsala Universitet, Sweden, for accelerator mass spectrometry (AMS) radiocarbon dating.

The results are given in Table 1, and are quoted in accordance with the international standard known as the Trondheim convention (Stuiver and Kra 1986). They are conventional radiocarbon ages following Stuiver and Polach (1977). The calibrations of these results, which relate the radiocarbon measurements directly to the calendrical timescale, are given in Fig. 10. All have been calculated using the datasets published by Reimer et al. (2004) and the computer program OxCal (v3.10) (Bronk Ramsey 1995; 1998; 2001). They are quoted in the form recommended by Mook (1986), with the end points rounded outward to 10 years.

The taphonomic relationship between a sample and its context is the most hazardous link in this process, since the mechanisms by which a sample came to be in its context are a matter of interpretative decision rather than certain knowledge. The pottery fragments recovered during the excavation did not contain any clear residues suitable for radiocarbon dating. Only a very small quantity of charcoal was recovered from the sieved deposits and only two fragments of charcoal were deemed suitable for radiocarbon dating. These were recovered from upper fills of two of the large pits (95) and (98), which means any interpretations made from the calculated dates do have to be questioned on the basis of their potential residuality.

<table>
<thead>
<tr>
<th>Lab number</th>
<th>Sample</th>
<th>13C VPDB</th>
<th>14C age BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ua-40193</td>
<td>X.A32.2006 #8 (98)</td>
<td>−26,7</td>
<td>4930 ± 38</td>
</tr>
<tr>
<td>Ua-40194</td>
<td>X.A32.2006 #9 (95)</td>
<td>−26,0</td>
<td>4648 ± 38</td>
</tr>
</tbody>
</table>

Table 1. Radiocarbon results.

THE NEOLITHIC POTTERY

Nicholas J. Cooper

The Neolithic pottery derives predominantly from pit [100], context (98), which contained charcoal that has been radiocarbon dated to between 3790 BC and 3640 BC. That context group contains at least two vessels in a fabric normally associated with impressed wares (Peterborough wares). However, none of the sherds is decorated and the typical bowl forms are not apparent. The best preserved vessel (23 sherds, 120g) appears to be straight-sided with a diameter of 240mm and a body thickness of 7mm, and a sherd from the same vessel comes from stake-hole [111] (112). A second, thin-bodied vessel (11 sherds, 37g), has a
Fig. 10. Results of the radiocarbon calibration using OxCal (v3.10).
plain upright rim. The other well-preserved vessel (28 sherds, 192g) is in a ferruginous mudstone-tempered fabric, which appears to be a shouldered vessel with an upright, rolled over bead rim of 160mm diameter. The fabric and form are unparalleled, but are perhaps similar to the plain early Neolithic vessels from Willington (Marsden et al. 2009, 99, fig. 45.4–7). The group also contained a thin-bodied vessel in a shell-tempered fabric (S1).

THE LITHICS

Lynden Cooper

Some 254 worked lithics, all flint, were recovered from the excavation. The raw material was mostly local till-derived, yellowish brown semi-translucent flint. Two pieces were of an opaque grey flint. The majority of flint was recovered from four contexts from a group of structurally related features that have Neolithic pottery association, and contained charcoal radiocarbon dated to the boundary of the Early and Middle Neolithic. Flint from these four contexts are described here:

Context (94) Pit [92] contained both blade and flake debitage and three core fragments, two of which could be refitted. The core fragments were remarkably fresh and sharp. Neither of the tools, a knife fragment (Fig. 11.1) and a serrated flake (Fig. 11.4), was chronologically diagnostic, although both can be found in Middle Neolithic contexts.

Context (95) Pit [92] contained predominantly flake technology debitage. The cores and shatter fragments were remarkably fresh and sharp. The scraper was not diagnostic to the period (Fig. 11.2).

Context (98) Pit [100] contained predominantly flake technology debitage, but there was some blade and bladelet technology represented. Some of the flake debitage appeared fresh and sharp. The tools included a serrated blade, end-of-blade scraper (Fig. 11.3) and a piercer, while a microburin would attest to the production of a microlith. The material includes some Mesolithic material, bladelets, the end scraper and the microburin, but the majority would appear to be later prehistoric in date.

Context (102) Pit [101] was predominantly flake technology debitage, but there was some blade and bladelet technology represented which may indicate a small Mesolithic component. The remaining material, including a bifacial tool fragment (Fig. 11.5) and a utilized blade (Fig. 11.6) is probably of a later prehistoric date.

While a small Mesolithic component is present, the majority of the lithics in both the pit group and other features would appear to be later, exhibiting a flake technology using a hard hammer. The knapping quality is fairly proficient such that they are consistent with a Neolithic date.

THE CHARRED PLANT REMAINS

Angela Monckton

Bulk samples were taken from the pit features, and processed to recover plant and animal remains. Unfortunately, the acidity of the soil meant that there was no
Fig. 11. Selected flint illustrations: 1 Knife piece (94). 2 Scraper (95). 3 End scraper (98). 4 Serrated flake (94). 5 Tool fragment (102). 6 Utilised blade (102).
bone survival on the site. The Neolithic pits produced no charred plant remains other than some charcoal fragments. Some of the larger fragments were identified in order to assess their potential for radiocarbon dating. Elder, hawthorn and ash fragments were recorded from [92], and a fragment of elder was recorded from [100].

DISCUSSION

The interpretation of the pit group recorded during the excavation is problematic for a number of reasons. Firstly, it is not known whether the features recorded represent the complete group of activity on the site or whether they are part of a larger complex of features extending outside the study area. Also, it appears likely that the remains have suffered some degree of horizontal truncation, as well as later intrusions that could either relate to later phases associated with the feature or represent totally separate activities. However, given the reasonably close radiocarbon-dating between two independently sampled features, both broadly dating to the middle of the third millennium BC, the presence of Neolithic pottery with affinities to Peterborough ware and the relatively large quantity of unabraded flint, including the presence of two core fragments that fitted back together, would suggest that the features are likely to date to the latter part of the Early Neolithic (c. 4000–3500 BC) or beginning of the Middle Neolithic (c. 3500–2500 BC).

Excavation of different sites has shown that pit digging becomes increasingly commonplace in the Neolithic, reaching a climax in the Later Neolithic (Thomas 1999). Pits can be either located near monuments or in areas apparently devoid of any other Neolithic activity. Interpretations vary, but often stress the ritual aspects of pit excavation and artefact deposition. It is obviously important to try and ascertain on the basis of the evidence whether the excavated remains relate to ceremonial or settlement activities.

Evidence of Earlier Neolithic settlement activity is uncommon throughout the East Midlands and Britain as a whole (Clay 2006). In Leicestershire very little settlement evidence in the form of archaeological features attributable to the Earlier Neolithic have been recorded and appears to be restricted to discrete, apparently isolated pits. An example was recorded during excavations along the Rearsby Bypass (Clarke 2007), located approximately 9km to the south-west where Neolithic pottery was also found in pit, which produced two radio-carbon dates, calibrated to c. 3530 BC–3350 BC and c. 3410 BC–3310 BC (ibid, 45). The pit was recorded in the vicinity of further pits, but these were undated. Later Neolithic and Bronze Age features were also recorded on the site containing Earlier Neolithic Peterborough ware pottery.

This scant nature of settlement evidence continues into the Later Neolithic in Leicestershire, but examples are more widespread, usually consisting of pits containing Grooved Ware that are known from Syston (Meek 1997), Eye Kettleby (Finn 2004 and forthcoming) and Castle Donington in Leicestershire (Coward 2003). At Rothley a large assemblage of Grooved Ware has been located at a
possible Late Neolithic settlement site incorporating pits and a possible sunken featured building. The possible building feature was a large amorphous, flat-based pit, c. 5m in diameter. The fill of this pit produced several thousand finds including decorated pottery sherds, a large lithic assemblage including an ‘undressed’ axe head, and a remarkable engraved stone plaque displaying figurative art (Hunt 2006). A recently examined site (2010), also in Rothley, has located evidence of a circular structure radio-carbon dated to the Later Neolithic and again associated with Grooved Ware pottery (G. Speed pers. comm.).

The arrangement of Earlier Neolithic pits recorded at Leicester Road, Melton Mowbray shows no clear correlation with any of the broadly contemporaneous settlement sites mentioned above. While they do exhibit similarities with some of the features recorded from these sites, clear differences remain. The single large, shallow and relatively flat-based pits recorded at Eye Kettleby (Finn forthcoming) and Rothley (Hunt 2006) do bear some resemblance to the ones excavated. They are both large and elongated, with indications of structural elements and with fills containing large quantities of worked lithic material and pottery. Pit [100] (the feature at the opposing end to pit/post-hole [90]) contained evidence of a line of post-holes that ran diagonally across the feature, although the majority of these features were ephemeral apart from the deeper feature located on the northern edge of the feature. Pit [92] had evidence of a stake-hole on its north-west side with, furthermore, ephemeral stake-hole/post-hole features around its north-east and south-east edges. Pit [100] also revealed evidence of two stake-holes within its base.

Unlike the pits at Eye Kettleby and Rothley, the evidence from the pits recorded at Melton Mowbray suggests they have a clear spatial arrangement with one other rather than being stand-alone features. Pits [92] and [101] were similar in length and ran broadly parallel with a c. 9m separation between them, which is partially closed at the south-east by the notably shorter pit [100]. Similar radiocarbon dates were obtained for the upper fills of pits [92] and [100] (dating between 3790 and 3350 cal BC), although the two dates do not actually overlap. The latest the charcoal from [100] (98) could date to is 3640 cal BC, and the earliest the charcoal from [92] (95) could date to is 3620 cal BC (95 per cent confidence), but it is possible the dates between the samples may vary by over 400 years. Given the context from which the charcoal was obtained, it is only possible to use the information to suggest broadly when the features are likely to date to, rather than use them to suggest separate phases of activity or feature revisiting/remodelling. Further evidence that the features actually formed a coherent group was indicated by location of a pit/post-hole [90] recorded equidistantly between pits [92] and [101], approximately 6m from their north-western terminals (Fig. 3). A large cobbles was located within the feature that may suggest packing for a post. No dating evidence was recovered from this feature, but the absence of any other discrete pits recorded elsewhere beyond the immediate vicinity of the large pits (apart from one small pit recorded to the south-west of the group) may suggest that the feature is contemporary. The spatial arrangement of the recorded post-holes within the individual pits does not give a clear indication of functionality,
however, some significance should be drawn from the greater structural evidence suggested within pit [100], which forms the closed end of the feature arrangement.

Earlier Neolithic ceremonial and burial practices are more widely recorded in the East Midlands than the settlement evidence, although only one definite monument has so far been recorded within Leicestershire, consisting of a causewayed enclosure located at Husbands Bosworth (Butler and Thomas 1999; Thomas 1999; Beamish forthcoming). This monument is one of nine known causewayed enclosures in the East Midlands. Other types of Early Neolithic non-megalithic ditched monuments recorded within the East Midlands include long barrows, long enclosures and curses (Clay 2006, 75–6). Long enclosures have usually been recorded through aerial photography, some of which may be evidence of ploughed-out long barrows (Jones 1998, 102). Long barrows vary in form considerably, but Kinnes’s (1992) study into these features has identified three basic types based on ground plan. The most abundant ditch plans are a flanking pair, parallel or splayed, straight or slightly curved (Type A; Kinnes 1992, 65). The other types are the ‘U’ format (Type B) and Full Enclosure (Type C). The length of these monuments also varies considerably; Kinnes’s study showed extreme lengths of mound in the monument class between 14 and 125m. No extant long barrows have been recorded in Leicestershire and Rutland, although cropmarks showing elongated enclosures from Misterton, Ketton and Harston may represent their ploughed-out remains (Loveday 1990, 86; Clay 2006, 75).

There does appear to be a clear resemblance between the pit group plan and styles of long barrows recorded further afield within the British Neolithic. It is possible to interpret the parallel pits as flanking ditches and that the perpendicular pit could represent evidence of a post-lined façade, indicating a south-east entrance into the monument, although the gaps between the features is narrow. This would fit well with the most abundant ‘Type A’ barrow classification. The length of the monument (from the front of the façade to the north-west end of the pits/ditches) would equate to c. 15m and a width of c. 9m between the flanking ditches. It is possible the monument could be up to 20m in length if the pit/post-hole feature was also a part of the monument. Its width accords with the strikingly tight norm for long-mound edging structures/timber-long mortuary enclosures of c. 10m. That seems to have been a constant whether the mortuary structure was developed into a long barrow or incorporated into a round mound (R. Loveday pers. comm.).

Similar arrangements of ditches/pits have been recorded as long barrows such as at North Marden, Sussex and Kingston Deverill, Wiltshire, for example (Kinnes 1992, 182). At North Marden, flanking ditches and curvilinear pits containing Peterborough ware pottery and human cranial fragments enclosed a central area, although no internal structural evidence survived. At Kingston Deverill, ditches excavated as ovate pits were recorded that partially enclosed a hexagonal group of post-holes. The interpreted south-east orientation of the feature group provides further evidence that could support a barrow theory. Kinnes’s study suggests that an overwhelming proportion of long barrows are orientated between the north-east and south-east (77 per cent), and it has been argued that the emphasis on alignment relates to solar and lunar cycles (1992, 68–9).
Although the evidence does support a ‘short’ long-barrow theory for the arrangement of the features, the interpretation does have to remain tentative. The group of features do fall within the size dimensions for this type of monument, but it is small and certainly positioned at the extreme end of the scale. Also there was no evidence of a mound or any other type of structure recorded within the internal area of the features, and nothing from the scant remains recovered from the feature in-fills gave any indication the features relate to a ritual monument. The sides of the flanking features are very shallow for this type of monument where a steep-sided flat profile might be expected. However, it is reasonable to suggest that the features do not necessarily need to be very deep if turf had been used to construct a mound and the flanking features were only excavated in order to demarcate the monument entrance. Also, it is likely the features have suffered from some horizontal truncation. The thick layer of alluvium recorded above the features had preserved them from recent truncation, but it has been suggested that the alluviation represents a medieval phenomenon. The alluviation is thought to have been caused by increased flooding as a result of a climatic downturn around the fourteenth century, with flood waters containing a high silt load, derived from intensive ploughing (Brown et al. 2001; Finn 2001, 15). It is certainly clear from the recorded archaeology that the alluviation must post-date the early Roman period, which does suggest the features have been subject to unknown levels of erosion over a long period of time. The lack of any evidence of a mound structure recorded below the alluvium, however, does remain problematic. One possible explanation may be the proximity of Iron Age–early Roman activity identified immediately to the west. Levelling or agricultural activity at this time may have truncated any mound material that still may have been present prior to it being sealed by alluvium in the medieval period.

While it has only been possible to suggest possible interpretations for the group of Early Neolithic features excavated at Leicester Road, Melton Mowbray, the features do indicate a small grouped enclosure rather than representing individual pits or structures. The spatial arrangement of the feature is more indicative of a mortuary feature from comparative sites and may possibly suggest the presence of a small long barrow.

BIBLIOGRAPHY

Butler, A. and Thomas, J., 1999 ‘Husbands Bosworth, Wheeler Lodge Farm (SK 635 825)’, Transactions of the Archaeological and Historical Society 73, 100.
Clarke, S., 2007

Clay, P., 2006

Coward, J., 2003

Finn, N., 2001
Trial Trenching and earthwork survey of land between Leicester Road and Dalby Road, Melton Mowbray, Leicestershire. ULAS Report No. 2001-172 (unpublished).

Finn, N., 2004

Finn, N., forthcoming
Bronze Age Enclosures and Cremation Cemetery at Eye Kettleby, Leicestershire. The development of a prehistoric landscape. Leicester Archaeology Monograph 20.

Harvey, J., 2006
An Archaeological Evaluation at land between Leicester Road and Dalby Road, Melton Mowbray, Leicestershire (SK 7485 1880), ULAS Report No. 2006-094 (unpublished).

Harvey, J., 2010
Archaeological Excavations on land between Leicester Road and Dalby Road, Melton Mowbray, Leicestershire (SK 7485 1880), ULAS Report No. 2010-215 (unpublished).

Hunt, L., 2006

Jones, D., 1988

Marsden, P., 2001
An Archaeological Desk-based Assessment for land at, and east of, Melton Police Station, Dalby Road, Melton Mowbray, Leicestershire (SK 7485 1880). ULAS Report No. 2001-015 (unpublished).

Meek, J., 1997

Mook, W. G., 1986

Kinnes, I., 1992

Speed, G., 2009
ACKNOWLEDGEMENTS

This report was compiled from information gained from the excavation on the site by the author, James Harvey, along with Keith Johnson, Steve Baker and Jamie Patrick. The pottery and miscellaneous finds were analysed by Nicholas Cooper; the lithic material was analysed by Lynden Cooper and selectively drawn by Harriet Jacklin. The environmental analysis was undertaken by Angela Monckton. The project was managed and the paper edited by Dr Patrick Clay, all colleagues of ULAS. The charcoal was identified by Dr Graham Morgan of the University of Leicester. The accelerator mass spectrometry radiocarbon dating was undertaken by The Angström Laboratory, Tandem Laboratory, Uppsala Universitet, Sweden. The project was funded by Jelson Ltd. We would particularly like to thank Roy Loveday for help with the interpretation of this structure.