ARCHAEOLOGICAL ASSESSMENT
OF THE TRENT-SOAR
CONFLUENCE ZONE

Lynden Cooper

An assessment of the archaeological resource at the confluence of the rivers Trent and Soar offered an opportunity to present a synthesis of an evolving archaeological landscape. The study area contains sites of both national and local significance including the late prehistoric ritual monument complex at Lockington, and major Iron Age and Roman sites at Red Hill and Lockington. Within the flood-plain are important prehistoric structures and artefacts from Aston on Trent and the water-logged medieval remains at Hemington quarry. The overarching theme of this multi-period study is the confluence zone as an important nodal point in the transport and communications systems from prehistory to the present.

And of the British floods, though but the third I be,
Yet Thames and Severne both in this come short of me,
For that I am the mere of England, that divides
The north part from the south, on my so either sides,
that reckoning how these
tracts in compasse be extent,
Men bound them on the north, or on the south of Trent1

SCOPE OF STUDY

The following archaeological assessment was undertaken as part of a wider study aimed at predictive modelling of geoarchaeological resources at the Soar-Trent confluence zone (Brown et al. 2004; Brown et al. forthcoming). The project was a collaboration between Exeter, Birmingham and Leicester Universities and was funded by the Aggregates Sustainability Levy Fund (jointly administered by English Heritage and English Nature). The study area for geomorphological modelling was a 8km² land block at the rivers’ confluence (Fig. 1). In order to put the core study area into context a wider study area has been considered i.e. a transect along the Trent floodplain from Swarkestone to the west and Attenborough to the east. This wider study allows consideration of the Trent’s confluence zone with the Derwent and Soar, an area where significant archaeological discoveries spanning the Lower Palaeolithic to the Post-Medieval period have been made. It is


suggested (see below) that the rich archaeological resource of this area is partly due to the confluence zone being an important communications node.

The information included in the report is derived from the Historic Environment Record (HER, formerly SMR) search covering the eight square kilometre study area (Leicestershire and Derbyshire), a review of both published and unpublished reports relating to the study area and a general search of published data for the environs. The regional and national significance of the sites and monuments in the study area is gauged against the recent regional research frameworks initiative (Cooper 2006).
ARCHAEOLOGICAL ASSESSMENT OF THE TRENT-SOAR CONFLUENCE ZONE

RESEARCH BACKGROUND

The recognition of the archaeological resource in the Trent-Soar-Derwent confluence zone was initially linked with aggregates extraction. Palaeolithic handaxes were recovered from quarries in the Beeston area in the 1920s while occasional finds of Bronze and Iron Age metalwork from the Trent produced the first glimpses of the later prehistoric period (Scurfield 1997; Watkin et al. 1996). Aerial photography from the 1940s first began to reveal the hidden past landscapes represented by cropmark evidence on the gravel terraces. The first of the Lockington barrows was located by St Joseph in 1947 and subject to survey and trial excavation in 1954 (Posnansky 1955). Aerial reconnaissance within the study area from the 1960s led to the discovery of further barrows (Pickering and Hartley 1985), thereafter termed the Lockington barrow cemetery, and the Lockington Iron Age and Romano-British settlement and villa (St Joseph 1961 and 1968, Frere and St Joseph 1983, Pickering and Hartley 1985), both now Scheduled Ancient Monuments.

Since the early 1990s the study area and immediate environs has seen much archaeological activity in relation to aggregates extraction, road schemes and other developments, all under the remit of the planning process following Planning Policy Guidance Note 16 (PPG16; Dept of the Environment 1990). An area of the barrow cemetery was subject to excavation in advance of the Derby Southern Bypass scheme and associated works (Hughes 2000). Noteworthy was the near-complete excavation of Barrow VI which revealed a multi-phased monument and a spectacular pit deposit of metalwork and ceramics. Two possible ring ditches, seen as very faint crop-marks, were confirmed by trial trenching in the same field (Meek 1995). More recently desk-based survey, geophysical survey, field survey and evaluation have increased the size of the Lockington barrow cemetery area and the Iron Age/Romano-British settlement and associated field systems (Clark 1995; Meek 2000; Ripper & Butler 1999).

Perhaps one of the most significant developments in recent years has been the discovery of waterlogged archaeological remains in the palaeochannels in the Derwent-Soar-Trent confluence zone. Hemington Quarry immediately west of the study area has revealed palaeochannels going back as far as the Late Glacial period. These have produced highly significant palaeoenvironmental data while the medieval channels of 9th-14th century date have preserved unique structural evidence for fisheries, bridges and river management.

LOWER-MIDDLE PALAEOLITHIC

Although no finds of this date have been reported from the study area several artefacts have been recovered from the environs, all from gravel pits at Beeston and Stapleford parish. Wymer (1999) records 20 handaxes from the Beeston Sand and Gravel (OIS 4), one from Hemington Terrace Deposits (OIS 1–2) and one from Alluvium. Some 16 handaxes and several flakes were recovered from the Tottle Brook pit (Posnansky 1963). It remains uncertain whether the finds from the Beeston terrace are Devensian or earlier in date (Wymer 1999, 115).
Posnansky (*ibid*) noted the fresh condition of some of the material from Tottle Brook pit which might suggest that some is of Devensian age, while other pieces were rolled and would seem to be derived. The mapped Soar-Trent terraces across the study area are of OIS 1–2 date and have some potential for derived Lower-Middle Palaeolithic artefacts.

River confluences were favoured places for Lower and Middle Palaeolithic hunter-gatherers (Wymer 1999) and, given the finds from the Beeston terrace, it is suggested that the study area has some potential for the preservation of artefactual and ecofactual evidence for this period. The finds from the environs are among some of the more northerly European Lower Palaeolithic finds and may help to address questions of colonisation and population dynamics (Graf 2002).

**UPPER PALAEOLITHIC**

Early Upper Palaeolithic evidence is absent from the Trent valley, but this is no surprise as such sites are rare at the national level. While this partly reflects low population densities there is also a problem in recognising sites of this period. Early Upper Palaeolithic sites are identified on the basis of limited lithic typology – the finding and recognition of leaf points, Font Robert points or Aurignacian type fossils (Jacobi 1980, 1990; Barton 1997). An Early Upper Palaeolithic presence in the region is well attested at Creswell Crags (Jacobi 1980) whilst the recently investigated site at Glaston, Leicestershire, demonstrates the considerable potential for open-air sites in the East Midlands (Thomas & Jacobi 2001; Cooper 2001). Whilst open sites are likely to have been detrimentally affected by periglacial conditions they can also present some chance for preservation. Ice wedges, which were frequently seen at Hemington Quarry and on aerial photographs of the local terraces, can be repositories for early sites as demonstrated locally on the Wing to Whatborough pipeline (Graf 2002; Cooper 2002b). While only a single flake was recovered from the latter site, remarkable lithics and faunal assemblages have been reported from similar contexts such as Wilczyce in Poland (Fiedoeczuk & Schild 2002).

The onset of the Dimlington Stadial led to humans abandoning Britain for some 10,000 years. After the climatic amelioration of the Lake Windermere Interstadial Britain was re-colonised although this was probably not a continuous process because of rapid fluctuations in climate and environment. Radiocarbon dating and distinct typological and technological differences in material culture (lithics and organic tools) suggests that the process was punctuated between 13,000 and 10,000 BP. Conventionally the material culture of this period is divided into the Late and Final Upper Palaeolithic (Barton 1997). The evidence for occupation of the Trent valley during this period is more compelling with a number of reported later Upper Palaeolithic findspots and sites. Indeed the cluster of findspots within the East Midlands is one of the densest in the country (Jacobi 2004; Barton *et al.* 2003) and supports the theory that the Trent acted as a corridor for movement.

The earliest re-colonisation of Britain is associated with the Creswellian culture, dating to c. 12,900–12,000 BP (Barton *et al.* 2003), named after the cave
sites at Creswell Crags on the Nottinghamshire/Derbyshire border; Mother Grundy’s Parlour cave being the type site (Garrod 1926). The type fossil for this period is now seen as the Cheddar point, a trapezoidal backed blade (Jacobi 1991; 1997). A Cheddar point and possibly contemporary blades were recovered by fieldwalking from a field immediately west of the study area at SK 4662 2832, Lockington-Hemington (Cooper and Jacobi 2001). The findspot adds to the growing number of Creswellian sites in the Trent valley located by field-walking (Jacobi et al. 2001) including the nationally significant open-air site at Farndon (Garton 1993).

The pollen record of Northern Europe shows a change to a more wooded environment around 12,000 BP, the beginning of the Allerod chronozone. The distinctive lithics associated with this phase are the federmesser (convex backed blades) including a variant, the penknife point (a shouldered, convex-backed blade). Federmesser technologies appear across much of northern Europe and are probably linked to Azilian industries from southern Europe (Schwabedissen 1954). A federmesser from Castle Donington, Leicestershire. (Cooper & Jacobi 2001) is the only certain Final Upper Palaeolithic finds from the study area environs, although other findspots are known within the Trent Basin (Jacobi et al. 2001).

The study area has great potential for Late Devensian palaeochannels. At Hemington Quarry eastern extension a truncated channel base produced radiocarbon dates of 11,735 ± 75, 10,960 ± 110, 11,725 ± 80 and 11,775 ± 80 BP (Cooper & Ripper 2001; Greenwood et al. 2003, 648). Another late-glacial channel at Hemington Quarry (western extension) has produced similar dates (Cooper and Ripper 2001, 141; M Greenwood, pers. comm.). The latter channel was of note in having a surface expression. The silted palaeochannels contained well-preserved organic remains including cold-climate caddis fly larvae; Greenwood et al. (2003) have demonstrated their usefulness as proxy climatic indicators in local and regional palaeo-environmental reconstructions.

While there is an absence of Upper Palaeolithic finds from the study area there is considerable potential for their survival on the terrace deposits. If any such sites have been preserved by alluvium they will be of national significance.

MESOLITHIC

Mesolithic material is reported from several flint scatters within the study area (LE 4714, 7095, 7096, 7097, 7120) although none of the scatters have been as large as those seen at local upland sites (Cooper 2004). However, it should be noted that the identifications are based upon technological criteria; there are no typological identifications. Furthermore, the Leicestershire SMR tends to record blade-like flakes as of a general Late Mesolithic/Early Neolithic date. (e.g. LE 7120).

Repeat field-walking of the area has further sampled the scatters and the author has reported on this material (Priest 2000). There were some Mesolithic debitage pieces in the collections, i.e. showing bladelet technology but the evidence was slight. However, the field-walking within the study area was undertaken at 20m intervals a method not conducive to the finding of small scatters.
A remarkable find of a Late Mesolithic antler harpoon from just north of the study area at Long Eaton, Derbys or Thrumpton, Notts (Knight & Howard 2004, 38) hints at the likely lost valley bottom sites. Systematic field-walking elsewhere in the Trent Valley has shown a widespread occurrence of sparse Late Mesolithic material, but Early Mesolithic material was apparently absent. However, an Early Mesolithic assemblage was reported from excavations at Swarkestone Lowes (Elliott & Knight 1999) and, when considered within the Trent Valley context, was described as a rare resource (Jacobi & Garton 1999).

Palaeochannels of early Holocene date within the environs have been sampled at Shardlow (Brayshay, 1994, cited in Knight and Howard 2004), where pollen indicated a wooded landscape of Scots pine and birch. The potential for channels being archaeological repositories is highlighted by the recovery of a Late Mesolithic femur from Staythorpe, Nottinghamshire, a find that has allowed some real consideration of Mesolithic economy in the Midlands; stable isotope analysis showed that the female had subsisted on a diet rich in animal protein but lacking evidence for consumption of fish and marine food (note in British Archaeology 66, 2002).

**NEOLITHIC-MID BRONZE AGE**

The Middle Trent has a remarkable Neolithic ceremonial landscape within the confluence zone between the Dove and the Erewash. Early Neolithic monuments are generally sparse but possibly occur in the vicinity of the study area at Barton in Fabis where an interrupted ditch system, a likely causewayed enclosure, is juxtaposed with a possible henge site (Harding with Lee 1987, 221; Deegan 1999).

Middle Neolithic monuments closer to the study area include the cursus monument at Aston, Derbyshire, first identified by aerial photography in 1966 (St Joseph 1966). The monument incorporated an earlier ring ditch (round barrow) along its western side while other associated ring ditches might be later additions (Gibson & Loveday 1979). The excavations of Aston I confirmed this as an Early Bronze Age monument although earlier Neolithic features and artefacts were revealed beneath the mound (Reaney 1968). The NE-SW alignment of the monument is a common trait with cursus and similar monuments such as long mortuary enclosures. Such alignment has been claimed to represent positioning with respect to the solar calendar (Field 1999), although reference to other elements of the natural environment may have also occurred (Brophy 1999; McOmish 2003). Another potential Middle Neolithic site is the probable henge at Round Hill, Twyford and Stenson (Harding with Lee 1987, 116).

Some 70m west of the study area there is an enigmatic crop-mark at the Lockington barrow cemetery (Rookery Lane) that plausibly could be a cursus terminal, or part of a long mortuary enclosure. This was first reported by Pickering and Hartley (1985, 37, Fig. 2), although the feature was not assigned to a particular monument class. The faint crop-mark comprised two parallel ditches some 200m long by 35m wide, aligned NE-SW with a rounded terminus at its southern end. There is another possible crop-mark that deserves mention; just to
Fig. 2. The Lockington ritual monument complex and Neolithic-Bronze Age flint scatters.
the west of the study area, near to the barrow excavated by Posnansky (1953), is a possible concentric pit circle (though slightly oval in plan). Pit circles have been recorded at Rearsby and Oakham, the latter excavated by Clay (1998) revealing a multi-phased monument of Late Neolithic and Early Bronze Age date. Both of these features are potentially significant additions to the ceremonial landscape at Lockington/Hemington but both urgently require further work to clarify their character and date.

The Lockington barrow cemetery just extends into the western edge of the study area. Posnansky (1953) partially excavated the first known barrow showing that it had a remnant mound. A central cremation burial had grave goods that included a bronze knife, bronze awl, a barbed and tanged arrowhead and three plano-convex knives (ibid). It is of some interest that the flintwork was all heat damaged whereas the metalwork was not.

Subsequent aerial survey recorded further ring ditches; Pickering and Hartley (1985) recorded seven examples including one enclosing a pit circle, and a concentric monument. Barrow VI was subject to an evaluation ahead of works associated with the Derby Southern Bypass and eventually full excavation (Hughes 2000). This revealed a remarkably complex monument: initially the site was demarcated with a palisade. An adjacent pit contained a remarkable group of deposits including substantial parts of two beaker vessels, a large copper dagger and two gold bracelets (ibid). Organic residues on the dagger produced radiocarbon dates of 2580–2200 and 2190–1880 cal BC, the latter date best fitting the typology of the dagger. Pre-mound activity has been interpreted as a pyre site but there was no evidence for burials associated with the pit deposits or the mound. The site identified as Barrow V by Pickering and Hartley (1985) was also subject to full excavation, revealing a pit group rather than a ring ditch (Meek 2000a).

The extent of this Late Neolithic - Bronze Age ceremonial landscape has greatly increased in recent years following more intensive assessment of aerial photographs, geophysical survey and fieldwork. Meek (2000b) identified 27 possible Neolithic-Bronze Age monuments. However, ‘ring ditch’ sites 26 and 27 are now known to have been infilled ponds while the ‘henge’ site 25 appears to be a palaeochannel. The present study adds a further four ring ditches and the already noted possible concentric pit circle.

The 23 known or probable ring ditches are widely distributed, three km east-west by two kilometres north-south, and might be classified as an ‘area cemetery’. However, there is distinct clustering of Lockington sites 1–10, with a sub-group of seven aligned WSW-ENE (four ring ditches exactly aligned, the remaining three very closely). The more northerly barrows also appear to be a distinct cluster and might better be called the Hemington barrow cemetery. However, as much of the area between the two groups has been quarried this might be more apparent than real. A more systematic search of the older air photographs might be useful to assess the areas lost to gravel extraction and the construction of the M1.

Perhaps the most significant result of the recent research in this area has been to demonstrate the survival of some barrows and associated features beneath alluvial cover (Ripper and Butler 1999). In contrast to the examples revealed by
aerial survey, where long term ploughing has levelled and truncated monuments, the sub-alluvial barrows have excellent preservation potential. Deeper cut features such as graves, pits, shafts and enclosing ditches may well preserve organic remains. The location of the sub-alluvial monuments in and adjacent to the study area should be a priority for future research. The excavations at West Cotton, Raunds, highlight how nationally significant monument complexes can be masked by alluvium (Windell 1989).

Whilst the conspicuous Neolithic and Early Bronze Age monuments have gradually been revealed in recent years there has been little evidence of Mid-Late Bronze Age cemeteries. It would be surprising if these did not exist although many secondary cremation burials in barrows may have perished with the plough; some flat cemeteries can be anticipated. At Eye Kettleby, on the river Wreake, almost 100 cremations were recovered in a flat cemetery (N. Finn pers. comm.). There are numerous small cropmark features in the field containing the barrow excavated by Posansky (1953) and it is quite plausible that these might be later cremation burials. The 1756 Gentleman’s Magazine reported the discovery in Kegworth of ten earthen pots containing bones which fell to pieces when touched (Meek 1999).

As well as the fine metalwork deposited in and around barrows there is an increase in deposition in watery places in the study area environs (Scurfield 1997), mirroring a national picture of depositional translocation during the Bronze Age. The Middle Trent has provided several loci for Bronze Age metalwork clusters recovered from old channels or dredging of the modern Trent (Scurfield 1997). The study area lies between two such clusters at Attenborough (ibid) and Aston on Trent (Salisbury 2004). The Attenborough finds include Early and Late Bronze Age bronze artefacts, but the majority are Mid Bronze Age in date. A sword of this date was recovered from the Trent at Ratcliffe-on-Soar immediately east of the study area (Scurfield 1997, 54).

The Aston-on-Trent site has been very prolific producing 12 bronze artefacts from probable lake deposits including rapiers and axes dating from the Mid to Late Bronze Age (Salisbury 2004). A stone and timber structure, possibly a causeway, has also been dated to the Middle Bronze Age. The structure was at least 12m x 50m and comprised irregular rows of oak piles (250–300 in total) stabilised by brushwood and quarried Mercia mudstone blocks, probably from outcrops at Weston Cliff or Kings Mill, some 2km upstream. The structure might be compared with similar structures at Flag Fen, Peterborough and in the Witham Valley (Salisbury 2004). Two Middle Bronze Age log-boats have also been recovered from the Aston Lakes, one of which contained a cargo of quarried stone blocks. Another metalwork cluster recovered from the Trent at Clifton in the 1930s included 22 bronze artefacts. The site also produced many wooden piles, boats, and human skulls, all undated but quite feasibly associated. (Scurfield 1997).

While the monumental archaeology is rich in the study area and environs any evidence for contemporary settlement is sparse, mirroring the national picture. Several flint scatters from the study area and environs have produced diagnostic Late Neolithic/Early Bronze Age artefacts (LE 4657, 4714, 4724, 7625, 8053 & 9715). Of these the larger scatters with wider ranges of tool forms might be the
best indicators for settlement. A large pit containing Peterborough Ware was located during an evaluation at Warren Farm (Ripper & Butler 1999) while other Late Neolithic features have been recorded in the environs at Castle Donington (Coward & Ripper 1999).

Late Neolithic palaeochannels at Hemington Quarry (eastern extension) provided palaeoenvironmental indicators of a cleared floodplain with evidence for use as pasture (Beamish et al. 2002). Nearby woodland was mixed oak and hazel, while lime and elm probably occurred on the higher ground. Rising up the profile were indications of further clearance and increasing cereal cultivation. A slightly later palaeochannel produced further evidence for an open environment of grassland.

Many Neolithic channels in the Middle Trent have produced so-called ‘bog oaks’, often providing the dating and locational evidence for the channels (Salisbury et al. 1984). These have been seen as indicative of clearance of the wildwood from the valley, that is the result of soil erosion (Knight & Howard 2004, 51). (Examples observed at Warren Farm have been dated by dendrochronology to the late 3rd millennium B.C. (R. & H. Howard, pers. comm.)

LATE BRONZE AGE–IRON AGE

The later prehistoric period sees a rise in the archaeology of settlement across the Middle Trent area, with a trajectory away from the previous ceremonial landscape and ‘towards an enclosed landscape’ (Knight and Howard 2004). The large corpus of archaeological data from this period in the study area environs allows some generalisation for this landscape development (ibid; Clay 2002; Willis forthcoming). At the start of this period open settlements, often just single buildings, occur in a landscape that has started to be ‘marked out’ by pit alignments. The earlier ceremonial monuments are often referenced by the pit alignments showing that they still played an important role defining the physical landscape. From the Middle Iron Age settlements start to be bounded by small enclosures while by the beginning of the first millennium AD the landscape has been fully enclosed (Willis forthcoming).

Late Bronze Age/Early Iron Age structures have been recorded from the environs at Swarkestone Lowes (Guilbert and Elliott 1999), Willows Farm, Castle Donington (Coward and Ripper 1999) and Hemington Quarry, Castle Donington (Cooper & Ripper forthcoming). Each site has produced only a single building, each of distinctive post-ring construction. Post holes and gullies of probable Early Iron Age date were recorded at Red Hill, Ratcliffe-on-Soar immediately east of the study area (Elsdon 1983). Later prehistoric lithic scatters have been found at Willow Farm (pers. obs.), comprising small scatters demonstrating squat flake technology and a high tool index dominated by piercers and scrapers, often with linear retouch.

Pit alignments occur across much of the environs and within the study area itself. These are dated conventionally to the later prehistoric period although there may be a longer currency into the Roman period (Deegan 1999). Knight and
Fig. 3. Iron Age and Roman sites revealed from crop-mark and geophysical surveys.
Howard (2004, 104–5) suggest that the dating evidence for such monuments in the Trent Valley indicates a relatively late development, concomitant with the development of an enclosed landscape. An alignment at Willows Farm, Castle Donington was undated but Late Bronze Age and Iron Age pottery was recovered from features adjacent to a gap in the alignment. None of the monuments within the study area has produced dating evidence.

There is a large settlement complex within the study area that is conventionally interpreted as an Iron Age nucleated settlement (Clay 1985; Clay 2002; Liddle 1982) although essentially the complex remains undated and, arguably, much of its more regular layout may be of Romano-British date (see below). Certain earlier elements are apparent such as some of the pit alignments and the smaller enclosures that lie unconformably with the later settlement. The current study has allowed a re-interpretation of the latest ‘phase’, that is an extensive co-axial settlement flanking a major Roman road (see below).

To the north of the large settlement there are indications of Iron Age and early Romano-British settlement from a small field scatter (LE 4721). The scatter straddles the postulated Roman road but may also be related to a faint crop-mark in the field immediately to the east which appears to represent a D-shaped enclosure with a roundhouse towards the centre. The sites provide proxy dating evidence for the underlying channel(s).

There is some continuation of the practice of metalwork being placed in watery places into the Late Bronze Age, a sword for example was recovered from gravel working at Church Wilne, just north-west of the study area (Hughes 1999, Fig. 18). These depositional practices appear to pause in the Early Iron Age but there is some resumption of ritual deposition in watery contexts in the later Iron Age. The Ratcliffe-on-Soar shield, found about 500m east of the study area, is thought to date to c. 300 BC (Watkin et al. 1996). The quality of the metalwork led to it being described as standing ‘at the head of a series of British masterpieces unsurpassed in Europe’ (ibid. 27). The deposition of metalwork in this area might be related to the proximity of the suspected Iron Age religious site at Red Hill, immediately east of the study area (Elsdon 1983). It may of course also indicate the former presence of a ford at this location (Palfreyman and Evans 2003). The Red Hill cliffs at Ratcliffe-on-Soar with their colourful striped appearance (red clay and gypsum) are a dramatic sight rising from the wide Trent floodplain and it is not difficult to imagine how it may have been deemed a special place. There is good evidence for a Romano-British temple site at Red Hill and it has been suggested that this developed from a late Iron Age shrine site (Elsdon 1983; Palfreyman & Ebbins 2003).

**ROMANO-BRITISH**

There are significant Romano-British sites both within the study area and its immediate environs, that is respectively, the villa complex at Lockington and the ‘small town’ at Redhill, Ratcliffe-on-Soar, both having clear origins as significant Iron Age sites (Liddle 1982; Elsdon 1982). The current study has presented fresh
evidence for a Roman road passing through the study area and it would appear that the co-axial elements of the so-called Iron Age settlement are actually Romano-British.

A Roman road (Margary 182) from Little Chester (Derventio) to Sawley passes into the study area north of the modern Trent (Margary 1955, Dool 1985). The line of the road in Sawley is that of Draycott Road with a continuation beyond the modern junction with the B6540, Tamworth Road. The line would appear to turn slightly following the property boundary to Grounds Farm and the river (a slight earthwork is shown on the OS map for part of this stretch). This takes one to the Billystones ford, a known crossing point until the 18th century. While Margary (1955) believed the Derby-Sawley road terminated at the river, implying a port in the area, a crossing point and a southern continuation has been postulated (Liddle 1982; Lycett 1999; Palfreyman and Ebbins 2003).

Liddle (1982) speculated that a route existed between Redhill and Leicester and Lycett (1999) has presented a convincing case for its course, from Leicester passing through the Charnwood uplands via Anstey, Shepshed and Long Whatton into the Soar/Trent floodplain through Kegworth into the study area, i.e. Long Lane, Lockington. The Leicestershire SMR suggests that the route continues beyond the modern T-junction, progressing to the Soar. Immediately north of this speculative crossing point there is a report of a layer of cobbles halfway up the river bank, feasibly the remains of a road. However, the straight route of Long Lane is that of the turnpike road; Hartley (1984) plotted the lane overlying and cutting across the grain of ridge and furrow along its course. However, it is tempting to suggest a crossing to Red Hill in this vicinity; the historical crossing of the Soar is located in this area.

A more speculative proposal for a southern route has been made by Simon Marchini (http://www.brinternet.com/~simonmarchini/History/History_Measham.htm) suggesting that the Roman road linking Tamworth and Measham might extend to Sawley. He points to the straight parish boundaries, nearly 5km long, between the villages of Diseworth, Castle Donington and Lockington-Hemington and a land parcel in Lockington called King Street plantation; such names often indicating Roman roads (Margary 1955). The parish boundary of Castle Donington and Lockington-Hemington eventually kinks to the north-east and then follows the line of the Tipnall Bank. One might speculate that this could this have been the remains of a Roman road extending to the aforementioned crossing point in the study area.

The present study has presented strong evidence for a major Roman road heading north to the crossing point of the Derventio road. The King Street Plantation (above) actually lies on the parish boundary of Lockington/Hemington and Kegworth, *between* the two postulated routes mentioned above. Meek (1999) noted that 19th century documents refer to four adjacent closes called First King Street, Far King Street, King Street and King Street. The parish boundary here has a relative straightness in fact the straight line can be traced southwards, with one slight link, to the northern parish boundary of Belton. Projected northwards the line continues into the study area and is fossilised as Warren Lane. This continues
to the north as a trackway to Cliff Farm. The most convincing evidence for the route is the co-axial arrangement of the large crop-mark site flanking the postulated route. The terminus is remarkably close to the Billystones ford site, the likely crossing point of the Derventio road, and passes through the Iron Age and Romano-British scatter of LE 4721.

The crop-mark (Pickering & Hartley; Clay 1985) and geophysical surveys (Ripper & Butler 1999, 102) show an extensive site flanking the postulated road, comprising co-axial trackways and field boundaries. To the east there is a parallel track some 100m from the roadline, partly defined by double pit alignments and/or ditches. There are about 20 roundhouses in this area although it is uncertain if they are contemporary or represent earlier settlement. The western side of the road-side settlement, recently revealed by geophysical survey, has many small enclosures that may represent paddocks. The dating evidence for the scheduled site is limited to Iron Age and Romano-British pottery recovered from the surface. However, to the west and south, evaluation trenches have provided Roman dates for associated features. The site would appear to extend further south beyond Ratcliffe Lane but the cropmark evidence is poor, possibly due to alluvial cover. Further geophysical survey of this area could prove fruitful.

Lockington villa (SAM 140), just east of the settlement (above) comprises the well-defined crop-mark site of a corridor villa within a trapezoidal enclosure with associated buildings and structures including two large barns (Frere & St. Joseph 1983; Clay 1985; Pickering & Hartley 1985). Fieldwalking survey across the villa complex produced pottery of 2nd/4th century date, while limited excavations by Reaney produced pottery of a similar date (Clay 1985). The cropmark indicates that the walls of the complex had been robbed of masonry.

A rectangular earthwork at Sawley (SAM 228) just to the east of the Derby-Sawley road ‘terminus’ has been claimed as a small fort (Todd 1967). The earthwork was investigated by the Derbyshire Archaeological Society revealing a near square enclosure of 0.61 ha with a possible western entrance, but secure dating evidence was not found (Deegan 1999). The SMR records that medieval pottery was recovered from a section, but there are no details. Two other earthworks are also found in the study area, the Bull Ring (LE 4719) is a small rectangular raised platform with a surrounding ditch, and the raised platform of Cliff Farm. Although these are thought to be later features they need to be noted.

ANGLO-SAXON

On place name evidence it is assumed that both Hemington and Lockington were established by the late Anglo-Saxon period. Early Anglo-Saxon settlement evidence is recorded from the environs at Willows Farm and Hemington Quarry, both in Castle Donington parish. Two post-built halls and a sunken featured building were excavated at Willows Farm (Coward and Ripper 1999) whilst at Hemington quarry two small, post-built structures of sub-square plan were excavated (pers. obs.). An Early Anglo Saxon pottery vessel from an associated pit provided the only dating evidence for the latter site. Small buildings of similar form were
recorded at the large Anglo-Saxon site of Eye Kettleby, Leicestershire, where the excavator interpreted them as bothies; they occurred away from the settlement areas, as defined by numerous post-built halls, within a craft-working area. It might be speculated that the Hemington quarry structures may have been used for temporary occupations such as task-specific seasonal waterside activities such as fishing or withy harvesting.

Within the study area the evidence for Early Anglo-Saxon settlement is limited to a small number of sherds recovered by field-walking (LE4713). A small number of Early Anglo-Saxon sherds were reported from Red Hill (Palfreyman & Ebbins 2003) and a larger assemblage was also recovered by Christine Lewis. (N. Cooper, pers. comm.)

Anglo-Saxon exploitation of the river is well documented in the Middle Trent with fishweirs recorded at Colwick, Nottinghamshire and Hemington quarry. At the latter some 46 fishweirs have been reported although many of the observations were limited to fragments showing in the quarry faces. However, four recent examples were subject to more controlled excavation and have provided unique evidence for fishing methods and technologies in inland Britain (Cooper 2003). Radiocarbon dating of the fishweirs shows a chronological range from the 8th-12th century (Brown & Salisbury forthcoming; Cooper 2003).

It is quite likely that there would have been a crossing point of the Trent in the vicinity of the study area. Domesday records a ferry at the Weston estate, one of only two along the Trent. Several Saxon cross fragments have been located in the northern part of the original Hemington Quarry so it could be speculated that these were once way-place markers for a crossing point.

MEDIEVAL

The study area lies within the prime champion landscape of the Trent Valley. Much of the area to the south of the Trent comprises part of the open field system of Lockington, the settlement focus being off the floodplain to the south of the study area. Hartley (1984, map 2) has partly mapped the field system from cropmarks and earthworks of the ridge and furrow. To the north of the Trent is the parish of Sawley and the medieval core of the settlement lies within the study area but this is mainly covered by modern development.

The SMR has few records for the study area but there is great potential for archaeological remains in medieval palaeochannels of the Trent and Soar. The Lockington estate map of 1849 (LRO Ti/202/1) shows that the north-eastern extent of the modern parish was originally part of Sawley, reflected in the name of Sawley Cliff Farm. The palaeochannel here would appear to be an oxbow of the old Soar. The calendar of Patent Rolls for 1402 mentions an avulsion episode for the Trent between Sawley and Lockington (Clay & Salisbury 1990), but this probably relates to the Sawley loop.

Archaeological work at Hemington quarry has demonstrated the outstanding potential for preserved riverine structures from this period and some discussion of this evidence aptly demonstrates such potential (Fig. 4). An important bridge
crossing along this stretch of the Trent was located at Hemington 1km to the west of the study area (Cooper et al. 1994; Cooper 2003). The crossing linked Derby and the north with Leicester and the south, effectively the major route now known as the A6. Three successive bridges were excavated at Hemington Quarry between 1993–8. The earliest was a timber bridge constructed in 1097 and partly rebuilt c.1111, evidently due to severe flood damage (Figs. 4 & 5). The bridge was superseded by another timber structure in the later 12th century which in turn was replaced by a large masonry bridge in 1240/1. Each was built slightly upstream of its predecessor, demonstrating the importance of the crossing location. Documentary and proxy archaeological evidence suggest that the bridge crossing was redundant by c.1311/12 when the Wilne Ferry was established near the site of the modern crossing at Cavendish Bridge (Courtney forthcoming; Cooper 2003). The Sawley Ferry which was established in 1321, also possibly reflects the loss of the Hemington bridge crossing. (Cooper & Ripper forthcoming). This was probably located at the site of the modern crossing of Harrison Bridge in the north-western corner of the study area.
Another class of monument recorded at the quarry was the ‘shoot’. Salisbury (1985) described surviving 18th century ‘shoots’. These were bank-side works of stone and timber designed to protect the banks from erosion (their name derived from the local waterman vernacular). Up to six examples of ‘shoot’ structures have been recorded from the right (Leicestershire) bank of the medieval channel (Cooper & Ripper 2000; 2001) and several dated to the 1320s (R. Howard, pers. comm.). It is suggested that the shoots were near-contemporary measures designed to protect the eroding right bank of the medieval river. The associated channel was traced for almost 500m, showing evidence for dynamic bank erosion (clasts of anaerobic clay from silted palaeochannels) and deep scouring, cutting through Devensian gravels, occasionally into the Mercian mudstone below. The evident dynamism of the channel would seem to reflect the national picture of climatic downturn seen in the period 1310–30 when severe winters caused damage to bridges almost every year (Brown et al. 2001) and, as suggested above, probably destroyed Hemington Bridge III and led to channel avulsion.

Hemington Quarry has also revealed rare structural and artefactual evidence for inland fishing in the form of 46 fishweir structures, numerous anchor stones and several fish traps (Salisbury 1991; Cooper 2003). A large weir structure (HL12), possibly a ‘fixed engine’ fishery was associated with fish baskets up to 2m long (Cooper 2003). However, the structure bears some resemblance to the 12th
century mill dam excavated in 1985 (Clay & Salisbury 1990). The apparent demise of fishweirs from the 12th century may reflect the changing use of the river with water mills exacting greater control over the river.

**POST-MEDIEVAL**

The Lockington estate has been described as old enclosure by Nichols and the open field system was likely to have been enclosed between 1601 and 1607 (Beresford 1948, 109). Warren Farm probably dates to this period (Smith and Ripper 2000) but its early status is uncertain. The early 18th century saw major investment in the road networks and much of the medieval landscape of the study area was lost to the new turnpike routes and enclosure. The study area was traversed by several major routes at this time, the Derby-Leicester road (modern A6) and the Tamworth-Sawley road (B6540). By the 18th century the respective crossings for these routes were bridges, Cavendish Bridge (1758) and Harrington Bridge (1788) across the Trent, each being the site of earlier ford and ferry crossings. The river crossing at Ratcliffe on Soar remained a ford until the construction of the Kegworth to Nottingham road.

The 18th century also saw the rapid development of water transport with works to make the Trent navigable in the early 18th century, followed by the Soar Navigation and the Erewash Canal later in the century. There was a customs house at Cavendish Bridge and, in the study area, associated wharf development at Sawley.

By the 19th century the area had several farms including Lockington Grounds Farm, Warren Farm and Long Lane Farm and, in Sawley, Grounds Farm. Warren Farm was a fine example of a model farm and was fully recorded prior to demolition (Smith and Ripper 2000). This agricultural landscape remains but has been further impinged upon by modern transport (M1 motorway, A453, A50), development (Sawley Marina) and mineral extraction.

**CONCLUSION**

The Trent-Derwent-Soar confluence zone, is an area with demonstrable, abundant archaeological remains from the Palaeolithic to the present while the study area encompasses significant known archaeological remains from the Mesolithic to present and great potential for remains as yet undiscovered. The cropmark evidence from the study area and vicinity is very prolific on the terraces and new and old aerial photographs are a great resource. Indeed the present study has highlighted a number of new monuments in the study area and immediate environs including a possible pit circle, five ring ditches, a D-shaped enclosure, two pit alignments and other pre-medieval field boundaries. Further desk-based assessment has also proved fruitful in highlighting evidence for suspected Roman crossings of the Soar and Trent.

Previous geoarchaeological work in the environs has demonstrated the great mobility of the rivers in this confluence zone. This dynamism has undoubtedly
truncated much archaeological evidence but has also been an agent of preservation, sealing sites under or within alluvium, such as the barrows mentioned above, and burying riverine sites within sand and gravel bars, most notably demonstrated by the discoveries at Hemington Quarry. The proximity of the latter site would suggest considerable potential for the study area.

One of the dominant themes to emerge from recent studies of the Trent Valley is the river as a physical and cultural boundary. While the river does, in a broad sense, delimit north and south, upland and lowland, possibly even different ethnic groups (Vince, 2006), it also acts as a natural communications node along the waterways and through the valleys. The present study has presented some evidence for the importance of the study area as a central node in the regional communications network.

For the hunter-gatherers the zone would have been a crossing point for migrating animals and it is likely that the social and economic territories of the humans extended between upland and lowland. It is quite feasible that later prehistoric groups continued such movements in a transhumant economy. An appreciation of past communications and transport can be gained by examining the distribution of products and raw materials in the region. Loveday (2004) draws attention to the cluster of Charnwood Group XX axes around the Arbor Low henge environs. He has pointed to the ‘exceptional potential’ of the Middle Trent in understanding wider cultural and material connections in the Neolithic and Bronze Age. The ceremonial landscape of the study area and environs, in particular the cursus monuments, are seen to mediate these relations. Charnwood grano-diorite tempered pottery of Iron Age date has been widely recognised north of the Trent (Knight et al., 2003). In the Roman period Palfreyman and Ebbins (2003) have examined the role of the Red Hill site in the distribution of commodities and raw materials including iron, lead, coal, pottery, gypsum and salt. Similar distribution networks can be envisaged for the medieval period where there is a proliferation of markets around the Middle Trent. Courtney (forthcoming) has shown that the Trent was a very permeable barrier and that in the medieval and post-medieval period one would rarely have to travel more than 2km to a crossing point. The major crossings such as Hemington, just outside the study area, formed part of the national infrastructure of roads while the Sawley crossing would have served these local markets and link to the larger network.

LYNDEN COOPER is a Project Officer with the University of Leicester Archaeological Services.
REFERENCES

Barton, R.N.E., 1997
Stone Age Britain, English Heritage.

Barton, R.N.E. Jacobi, R.M. Stapert, D. and Street M.J, 2003

Beamish, M., Monckton, A., Brown, A.G., Greenwood, M.T. and Smith, D.N., 2002
Late Glacial, Neolithic, Bronze Age and medieval environments from Hemington Quarry (Eastern Extension), Castle Donington, Leicestershire. ULAS report 2002/166. Unpublished, deposited with Leics. SMR.

Brophy, K., 1999
Seeing the cursus as a symbolic river, British Archaeology 44.

Late Holocene channel changes of the Middle Trent: channel response to a thousand-year flood record. Geomorphology 39: 69–82.

Brown A.G. and Salisbury, C.R., forthcoming
The archaeological background. In L. Cooper & S. Ripper (eds), The Hemington bridges.

Brown, A.G., Challis, K. and Howard, A.J., 2004
Predictive Modelling of Multi-period Geoarchaeological Resources at a River Confluence. Unpublished project report for the Aggregate Fund Sustainability Levy.

Geoarchaeological resources at a river confluence: archaeological potential, geomorphology and chronostratigraphy. Paper submitted to Antiquity.

Challis, K., 1995

Clark, R., 1995

Clay, P., 1985

Clay, P., 1998
Neolithic/Early Bronze Age Pit Circles and their Environ at Burley Road, Oakham, Rutland. Proceedings of the Prehistoric Society 64, 293–330.

Clay, P., 2002
The Prehistory of the East Midlands Claylands, Leicester Archaeology Monographs No. 9. School of Archaeology and Ancient History, University of Leicester.

A Norman mill dam and other sites at Hemington fields, Castle Donington, Leicestershire’ The Archaeological Journal 147, 276–307.

Cooper, L., 2001
The Glaston glutton and other strange beasts Rescue News 83, 1–3

Cooper, L., 2002a

Cooper, L., 2002b
The lithics in M. Beamish, Archaeology of the Wing to Whatborough Hill Trunk Main, ULAS report 2002/099.


Cooper, L. and Ripper, S., forthcoming a. *The Hemington Bridges*.

Cooper, L. and Ripper, S., forthcoming b. *Excavations at Hemington Quarry Western Extension*.


<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field, D.</td>
<td>1999</td>
<td>Bury the dead in a sacred landscape</td>
<td>British Archaeology 43.</td>
</tr>
<tr>
<td>Hughes, R.G.</td>
<td>1999</td>
<td>Some unrecorded prehistoric tools from Derbyshire</td>
<td>Derbyshire Archaeological Journal 119, 5–11.</td>
</tr>
<tr>
<td>Jacobi, R.M.</td>
<td>2004</td>
<td>The Late Upper Palaeolithic Lithic Collection from Gough’s Cave, Cheddar, Somerset and Human Use of the Cave</td>
<td>PPS 70, 1–92.</td>
</tr>
</tbody>
</table>


Loveday, R., 2004 Contextualising monuments: the exceptional potential of the Middle Trent Valley, Derbyshire Archaeological Journal 124, 1–12.

Lycett, S.J., 1999 New light on a suspected Roman road between Ratcliffe on Soar and Leicester, TLAS 73, 72–9.


McOmish, D., 2003 Cursus: solving a 6,000-year-old puzzle, British Archaeology 69.


Salisbury, C.R., 2004 Bronze Age Lakes at Aston on Trent, Derbyshire, page on Trent Valley GeoArchaeology website http://www.nottingham.ac.uk/~aczkdc/TVG/aston_crs.html


Windell, D., 1989 A Later Neolithic ‘Ritual Focus’ at West Cotton, Northamptonshire, in A. Gibson (ed), Midlands Prehistory, BAR (British Series) 204, 85–94.

APPENDIX: NEW CROP-MARK SITES IN THE STUDY AREA OR IN CLOSE PROXIMITY

A An outlier of the Lockington group can be seen within the area of the Lockington Iron Age and Romano-British settlement site comprising a concentric double ring ditch respected by later linear boundaries c SK 479 292. Pickering and Hartley (1985) plotted this as a sub-square enclosure. RCHME survey plotted this as a circular feature within a square enclosure (Deegan 1999, Fig. 9.3). See also Todd 1991, Fig. 34 where the circular feature is quite clear. Frere and St Joseph (1983, Fig. 120) shows the concentric ring ditches.

B Pit alignment (NNE-SSW) to south of Posnansky barrow c SK 464 287.

C Concentric pit circle (?) on line of latter feature c SK 464 287.

D Droveway (?), a double ditch cropmark (N-S) skirting west of Posnansky barrow c 465 288.

E Pit alignment (E-W) co-axial to latter feature c SK 464 289.

F Hemington ring ditches at SK 466 300 (immediately south of feature 22 Meek 2000), and two adjacent at SK 473 302 (one very faint).

G Possible D-shaped enclosure and roundhouse c SK 486 301

H Short length of double ditch ?track at c 484 292, continuing into Lockington villa field, but not plotted by Pickering and Hartley (1985, 37, Fig. 1).

ACKNOWLEDGEMENTS

I want to thank Vicki Score for producing figure nos. 1–3, and Susan Ripper for figure 4. Thanks also to Sam Bocock for conducting the HER searches and to HER officers Gill Stroud (Derbs. C.C.) and Helen Wells (Leics. C.C.) for providing information. The wider geological study, of which this assessment is part, was generously funded by the Aggregates Levy Sustainability Fund, administered by English Heritage.