of change, regarding what did change at the transition and how this occurred comprised another main point highlighted by many participants. Another key problem researchers in both areas share, concerns how to deal with the many artificial dichotomies that we necessarily introduce to discuss the material but which at the same time polarise the record in unhelpful ways. Such dichotomies, like M.Eolithi/Epi-Paleolithic, versus N.Eolithi, or forager versus farmer, are of course at the centre of transition studies both in the Levant and in northwest Europe. It also became clear during the workshop that we were actually discussing several different transitions - from hunting and gathering to farming, from Mesolithic/Epi-Paleolithic to Neolithic material culture, or from one set of environmental conditions to another, to name but a few - and we must be careful not to conflate these.

Excavations were completed this summer. When the survey and excavation began at the rock art complex this important prehistoric landscape. To that end, a dense concentration of Neolithic and Early Bronze Age monuments including a henge, stone circle, standing stones, stone alignments, chambered cairns and an impressive linear cemetery of round cairns. It also has over 250 individual rock art panels. In fact, it has the greatest concentration of prehistoric rock art sites, and monuments of the Neolithic and Bronze Age; we are not sure of its date. Should it be regarded as Neolithic, Bronze Age, or perhaps both? If it originated in the Neolithic, was it the Early Neolithic or Late Neolithic? Despite typological comparison with other decorated media, and analysis of carved panels re-used in monuments, the precise date range for the rock art tradition remains elusive.

One of the objectives of the Kilmartin rock art research project (2001-2007) is to assess whether a clearer chronological resolution can be established for prehistoric activity at rock art sites, and to understand how they relate to landscape change in this important prehistoric landscape. To that end, survey and excavation began at the rock art complex at Torhällaren, Kilmichael Glen, in 2004. Excavations were completed this summer. When the project began in 2001, the received wisdom was that there was little point in excavating around rock art sites since little had been found previously in the small trenches opened around in situ panels. However, around the time excavations began, there was a renaissance in excavating around rock art.
sites, the exemplars being Blaise O’Connor’s excavations at Torbhlaren, 2003, in Ireland, and Clive Waddington and Aron Mæzel’s work at Huntertheg Crag, Northumberland, in 2004. Both projects demonstrated the value of excavating in close proximity to rock art sites, a fact that has also been borne out by the work at Torbhlaren.

Torbhlaren

The river valley complex at Torbhlaren consists of two decorated standing stones, one extant and one now fallen. In addition there are three known outcrop rock art panels situated in a linear formation (Torbhlaren 1, 2 and 2a). The outcrops consist of glacially smoothed epidiorite, with the largest, Torbhlaren 2, an impressive ‘whale-backed’ rock. Excavations were undertaken around the eastern edge of Torbhlaren 1 and southern face of Torbhlaren 2.

Excavations in 2004 at Torbhlaren 1 revealed a built platform consisting of laid clay with a cobbled stone pavemoment, which was around 0.5 m high, and extended 1.5 m out from the rock edge around the shallow end of the outcrop. A later excavation season confirmed that this platform enclosed the eastern face of the rock. The platform surface was covered in quartz, including unworked natural pebbles, hammerstones, and an extensive range of worked material. In total, approximately 50 kg of worked and worked quartz was recovered from this initial 2004 excavation trench. Specialist post-excavation analysis is expected to confirm the presence of a range of quartz tool types from the site. Situated on the platform surface was a small scoop feature filled with a charcoal-rich deposit which also produced worked quartz and a hammerstone. The presence of stone built platforms, although unusual for Britain, has frequently been documented at rock art sites in Scandinavia. Indeed, in the excavations Swedish examples, such platforms are often covered in quartz.

Excavation at Torbhlaren 1 in 2006 demonstrated that activity at the southern end of the platform included the construction of a small post-built structure, around 1.5 m in diameter, against the rock edge. This was distinguished by a spread of orange clay—possibly the remains of a floor surface or collapsed daub. Flakes of knapped quartz were excavated from this surface, as well as from the surrounding platform. The structure was ultimately destroyed by fire, leaving a number of small charcoal-rich postholes which we hope will provide radiocarbon dates. At some interval after this event, a low stone-walled revetment was constructed over the structure, forming a later component of the platform. The resemblance of the structure to a number of timber structures excavated elsewhere in Scotland raises the possibility that it may be Neolithic in date, and the burning of timber constructions is increasingly being recognised as typical of this period of Scottish prehistory.

Cracks and fissures as places of deposition

The 2001 season was concerned with characterising the actual outcrop surfaces that feature rock art throughout the Kilmarin region. Analysis by Jones indicated a systematic relationship between rocks with cracked and fissured surfaces and the presence of rock art: smooth uncracked surfaces were ignored in favour of cracked and fissured surfaces. Moreover, cracks and fissures were aligned or offset. It seems that rock art sites and their adjacent deposits are aligned or offset. It seems that rock art sites and their adjacent deposits are frequently ‘framed’ by these natural features, which frequently frame groups of motifs, to those who produced the carvings.

Drawing on evidence for the deposition of cultural material in fissures at Danish sites excavated by Flemming Knud, 13 major cracks and fissures on Torbhlaren 1 and a single fissure running laterally down Torbhlaren 2 were excavated during the 2006 season. This revealed that the majority of the fissures contained worked lithics, predominantly quartz, as well as possible hammerstones. In one fissure at Torbhlaren 1, there was evidence for two phases of deposition separated by a clay deposit. The major fissure running down Torbhlaren 2 also produced a flint pebble and quartz flake, both deposited inside an area of cup and ring motifs newly discovered during the excavation.

Rock art sites as stone quarries

Rock art outcrops are known to act as quarries both in Britain, for example at Huntertheg Crag and Foxberry Plantation, Northumberland, and Greenland, Dumfarton, but as well in other regions, such as at the Sami rock art site at Badjelánnda, Laponia, Sweden. The possibility that the rock art outcrops at Torbhlaren were being quarried was mooted in the 2006 season when the large tabular sections of quartz at the southern end of Torbhlaren 2 were noted to be of remarkably similar geological form to the extant standing stone. Both standing stones at Torbhlaren 2 had originally been erected so that each was adjacent to, and roughly equidistant from, one of the two large outcrops. However, Torbhlaren 2 was also subject to modern quarry activity, and so it was important to establish whether any potentially prehistoric quarrying could be distinguished from this later evidence.

The substantial southern face of the outcrop features a stepped surface where upright tabular segments of the stone had once been attached, and where some extant segments are partially separated from the outcrop. During the 2007 fieldwork, the series of crevices and ledges above and below these extant segments was excavated. In the lower ledge, we uncovered a deposit containing worked quartz. This overlay an outcrop surface in the form of the base of a snapped tabular upright, exhibiting a freshly exposed and unwashed surface. Immediately above this surface, in the layer containing worked quartz, was a deposit consisting of a broken quartz pebble with its two halves neatly arranged either side of a rounded piece of quartz, and capped by a possible hammerstone. Just behind the snapped base was a fissure in which a quartz pebble with a flint flake and a worked material item were placed. The presence of the deliberately placed deposit directly on top of the fresh, unwashed outcrop surface raises the possibility that the tabular section of stone was deliberately extracted.

The idea that people were quarrying the outcrop during prehistory was further supported by finds on the upper ledge, high up on the ‘nose’ of the outcrop, some 2.5 m from the base. Again, flakes of worked quartz with fresh breakage surfaces were recovered from within a deposit associated with worked lithics and sealed by rock tumble. The deposit consisted of a layer of fine clean laid clay that also yielded a flint scraper. Worked flint and a flake of pitchstone were also recovered from the surface of the clay deposit and the surrounding outcrop crevices. Pitchstone is known to occur on the island of Arran and current understanding suggests it was predominantly exploited by prehistoric communities from the Mesolithic to the Neolithic.

A small scoop feature containing a charcoal-rich deposit had been dug into the clay layer, and the yielded lithic material that had been deliberately deposited at its base. In addition, we also have possible evidence for the quarrying of quartz veins from this face, with veins exhibiting signs of extraction, and fragments of quartz which retain pieces of native outcrop rock present in the cultural deposits. Overall, the finds from the southern end of Torbhlaren 2 provide compelling support for quarrying activity at the site, associated with the working and/or use of quartz, flint and pitchstone.

Conclusion

We await the radiocarbon dates for the activity uncovered by the excavations at Torbhlaren with considerable anticipation. It is likely that we will witness a spread of dates for phases of activity at the site. If evidence for Neolithic activity can be confirmed, we will be able to compare the results with the evidence from Burrndale, Northumberland, where earlier Neolithic pottery sherd were recovered adjacent to rock art panels. We can also then begin to assess how the phases of activity may have related to the actual carving events. The excavations have demonstrated that rock art sites are more much than isolated decorated rocks, and we research approaches need to breathe new life into these sites by considering how they relate to the other sites and monuments of the Neolithic and Bronze Age.

Acknowledgements

We would especially like to thank the farmer, Mr. Black who, year on year, has allowed access to the site on his land at Torbhlaren. We would also like to thank the field team which included Dr. Joakim Goldhahn, Dr. Lara Bacelar Alves, Dr. Aaron Watson, Davina and Paul Freedman, Hannah Sackett, Dr. Andrew Cochrane, Dr. Tertia Barnett, Peter Klemen, Kate Shapie, Marie Anne Bunton, Lucind Naylor, Sue Bradshaw and Gill Roberts.

The excavations were funded by the British Academy, the Society of Antiquaries of London, Society of Antiquaries of Scotland and the University of Southampton, with additional support from the University of Edinburgh, the University of St Andrews, the University of Aberdeen, the University of Glasgow, the University of York, the University of Kent, the University of Warwick, and the University of Exeter.

Andrew Jones (University of Southampton) and Blaise O’Connor (University College Dublin)

INQUA CONFERENCE, CAIRNS 2007

The Conference of the International Quaternary Association was held this year in Cairns, Australia, and through several grants, including one from the Prehistoric Society, I was able to raise sufficient funds to attend and to present several papers. As a Palaeolithic archaeologist with a strong interest in geoarchaeology and landscape evolution, I also signed up for one of the pre-conference fieldtrips to some of the more remote areas of Australia. This was led by Dr Narelle Nanson of the University of Queensland and focussed on the Quaternary environments of the eastern Cape York peninsula. The participants from a wide range of academic
Having travelled from the riverine plain to Lake Mungo in New South Wales, we continued through the famous mining town of Broken Hill and spent a very cold night at shearers' quarters at Erudina. Here we were hosted by the remarkable John McEntee, a very cold night at shearers' quarters in tents. We saw all the wildlife one would expect - kangaroos, emus, dingoes, an amazing variety of birds - and often at rather closer quarters than anticipated! The primary focus was on Quaternary landscape change, with particular emphasis on fluvial and aeolian processes. Of particular interest was the visit to "The Great Walls of China" at Lake Mungo, a location where some of the earliest remains of Homo sapiens known in Australia have been found, as well as numerous well-preserved footprints dated to around 20,000 BP. The exact locations of these sites are strictly protected for political reasons, but simply seeing the landscape put a completely different perspective on the interpretation and appreciation of these sites for several members of the group including myself.

Having travelled from the riverine plain to Lake Mungo in New South Wales, we continued through the famous mining town of Broken Hill and spent a very cold night at shearers' quarters at Erudina. Here we were hosted by the remarkable John McEntee, a very cold night at shearers' quarters in tents. We saw all the wildlife one would expect - kangaroos, emus, dingoes, an amazing variety of birds - and often at rather closer quarters than anticipated! The primary focus was on Quaternary landscape change, with particular emphasis on fluvial and aeolian processes. Of particular interest was the visit to "The Great Walls of China" at Lake Mungo, a location where some of the earliest remains of Homo sapiens known in Australia have been found, as well as numerous well-preserved footprints dated to around 20,000 BP. The exact locations of these sites are strictly protected for political reasons, but simply seeing the landscape put a completely different perspective on the interpretation and appreciation of these sites for several members of the group including myself.

Having travelled from the riverine plain to Lake Mungo in New South Wales, we continued through the famous mining town of Broken Hill and spent a very cold night at shearers' quarters at Erudina. Here we were hosted by the remarkable John McEntee, a very cold night at shearers' quarters in tents. We saw all the wildlife one would expect - kangaroos, emus, dingoes, an amazing variety of birds - and often at rather closer quarters than anticipated! The primary focus was on Quaternary landscape change, with particular emphasis on fluvial and aeolian processes. Of particular interest was the visit to "The Great Walls of China" at Lake Mungo, a location where some of the earliest remains of Homo sapiens known in Australia have been found, as well as numerous well-preserved footprints dated to around 20,000 BP. The exact locations of these sites are strictly protected for political reasons, but simply seeing the landscape put a completely different perspective on the interpretation and appreciation of these sites for several members of the group including myself.

Having travelled from the riverine plain to Lake Mungo in New South Wales, we continued through the famous mining town of Broken Hill and spent a very cold night at shearers' quarters at Erudina. Here we were hosted by the remarkable John McEntee, a very cold night at shearers' quarters in tents. We saw all the wildlife one would expect - kangaroos, emus, dingoes, an amazing variety of birds - and often at rather closer quarters than anticipated! The primary focus was on Quaternary landscape change, with particular emphasis on fluvial and aeolian processes. Of particular interest was the visit to "The Great Walls of China" at Lake Mungo, a location where some of the earliest remains of Homo sapiens known in Australia have been found, as well as numerous well-preserved footprints dated to around 20,000 BP. The exact locations of these sites are strictly protected for political reasons, but simply seeing the landscape put a completely different perspective on the interpretation and appreciation of these sites for several members of the group including myself.

Having travelled from the riverine plain to Lake Mungo in New South Wales, we continued through the famous mining town of Broken Hill and spent a very cold night at shearers' quarters at Erudina. Here we were hosted by the remarkable John McEntee, a very cold night at shearers' quarters in tents. We saw all the wildlife one would expect - kangaroos, emus, dingoes, an amazing variety of birds - and often at rather closer quarters than anticipated! The primary focus was on Quaternary landscape change, with particular emphasis on fluvial and aeolian processes. Of particular interest was the visit to "The Great Walls of China" at Lake Mungo, a location where some of the earliest remains of Homo sapiens known in Australia have been found, as well as numerous well-preserved footprints dated to around 20,000 BP. The exact locations of these sites are strictly protected for political reasons, but simply seeing the landscape put a completely different perspective on the interpretation and appreciation of these sites for several members of the group including myself.

Having travelled from the riverine plain to Lake Mungo in New South Wales, we continued through the famous mining town of Broken Hill and spent a very cold night at shearers' quarters at Erudina. Here we were hosted by the remarkable John McEntee, a very cold night at shearers' quarters in tents. We saw all the wildlife one would expect - kangaroos, emus, dingoes, an amazing variety of birds - and often at rather closer quarters than anticipated! The primary focus was on Quaternary landscape change, with particular emphasis on fluvial and aeolian processes. Of particular interest was the visit to "The Great Walls of China" at Lake Mungo, a location where some of the earliest remains of Homo sapiens known in Australia have been found, as well as numerous well-preserved footprints dated to around 20,000 BP. The exact locations of these sites are strictly protected for political reasons, but simply seeing the landscape put a completely different perspective on the interpretation and appreciation of these sites for several members of the group including myself.

Having travelled from the riverine plain to Lake Mungo in New South Wales, we continued through the famous mining town of Broken Hill and spent a very cold night at shearers' quarters at Erudina. Here we were hosted by the remarkable John McEntee, a very cold night at shearers' quarters in tents. We saw all the wildlife one would expect - kangaroos, emus, dingoes, an amazing variety of birds - and often at rather closer quarters than anticipated! The primary focus was on Quaternary landscape change, with particular emphasis on fluvial and aeolian processes. Of particular interest was the visit to "The Great Walls of China" at Lake Mungo, a location where some of the earliest remains of Homo sapiens known in Australia have been found, as well as numerous well-preserved footprints dated to around 20,000 BP. The exact locations of these sites are strictly protected for political reasons, but simply seeing the landscape put a completely different perspective on the interpretation and appreciation of these sites for several members of the group including myself.

Having travelled from the riverine plain to Lake Mungo in New South Wales, we continued through the famous mining town of Broken Hill and spent a very cold night at shearers' quarters at Erudina. Here we were hosted by the remarkable John McEntee, a very cold night at shearers' quarters in tents. We saw all the wildlife one would expect - kangaroos, emus, dingoes, an amazing variety of birds - and often at rather closer quarters than anticipated! The primary focus was on Quaternary landscape change, with particular emphasis on fluvial and aeolian processes. Of particular interest was the visit to "The Great Walls of China" at Lake Mungo, a location where some of the earliest remains of Homo sapiens known in Australia have been found, as well as numerous well-preserved footprints dated to around 20,000 BP. The exact locations of these sites are strictly protected for political reasons, but simply seeing the landscape put a completely different perspective on the interpretation and appreciation of these sites for several members of the group including myself.

Having travelled from the riverine plain to Lake Mungo in New South Wales, we continued through the famous mining town of Broken Hill and spent a very cold night at shearers' quarters at Erudina. Here we were hosted by the remarkable John McEntee, a very cold night at shearers' quarters in tents. We saw all the wildlife one would expect - kangaroos, emus, dingoes, an amazing variety of birds - and often at rather closer quarters than anticipated! The primary focus was on Quaternary landscape change, with particular emphasis on fluvial and aeolian processes. Of particular interest was the visit to "The Great Walls of China" at Lake Mungo, a location where some of the earliest remains of Homo sapiens known in Australia have been found, as well as numerous well-preserved footprints dated to around 20,000 BP. The exact locations of these sites are strictly protected for political reasons, but simply seeing the landscape put a completely different perspective on the interpretation and appreciation of these sites for several members of the group including myself.

Having travelled from the riverine plain to Lake Mungo in New South Wales, we continued through the famous mining town of Broken Hill and spent a very cold night at shearers' quarters at Erudina. Here we were hosted by the remarkable John McEntee, a very cold night at shearers' quarters in tents. We saw all the wildlife one would expect - kangaroos, emus, dingoes, an amazing variety of birds - and often at rather closer quarters than anticipated! The primary focus was on Quaternary landscape change, with particular emphasis on fluvial and aeolian processes. Of particular interest was the visit to "The Great Walls of China" at Lake Mungo, a location where some of the earliest remains of Homo sapiens known in Australia have been found, as well as numerous well-preserved footprints dated to around 20,000 BP. The exact locations of these sites are strictly protected for political reasons, but simply seeing the landscape put a completely different perspective on the interpretation and appreciation of these sites for several members of the group including myself.
the most common type of objects found but beads, blades, scrapers and knives have also been recovered. In the foundation trench of a house at Corbally, Co. Kildare, an axe was found positioned blade up parallel to a pottery sherd. At Ballyharry, Co. Antrim, one of the houses contained an axe and an arrowhead placed blade edge and point downwards respectively behind packing stones in the eastern and western walls. Objects or finished artefacts are not the only items to be deposited: at Cruicerath, Co Meath, deposits of burnt bone as well as pottery sherds were found at the bases of several postholes in the wall of the house, while at Tankardstown, Co. Limerick, burnt bone was found in the basal layers of the foundation trench fill of House 1.

It is tempting to view this kind of material as the remains of formal acts of deposition carried out at certain points in the life of a house. The axe recovered from the Corbally house was identified as a foundation deposit by the excavator, while at Ballyharry, the axe and the arrowhead were deposited when the western and eastern side walls of the house were rebuilt. The deposits of bone from the trench of House 1 at Tankardstown South and the bone and pottery from the bottom of postholes in the Cruicerath house have also been interpreted as foundation deposits. At this latter site, a possible axe was found in situ immediately over a posthole in the northeast side wall and according to the excavator was probably placed there following the destruction of the house.

Death and burning?

At over half of the Irish house sites, the substantial burning of structures has been recorded, another indication that houses were a focus of ceremony and ritualised practice in the Early Neolithic. Evidence for burning varies from site to site and from house to house. There is little doubt in some cases that timbers have been burnt in situ, where the substantial remains of charred post or plank ends can be seen along the trench base. In others, the evidence is less clear-cut. Quite frequently intense burning can be concentrated in one or several parts of a building or, at sites where there are multiple houses, one structure may be intensively burnt, with only slight or partial burning of the other buildings.

A common interpretation is that these timber houses burnt down in accidental fires, or that they were subject to violent attack. Experimental studies and observations in the field have suggested that it would have been a considerable amount of effort and, above all, time to achieve the extensive levels of burning seen on some sites and it seems likely that neither accidental nor violent conflagrations burnt long enough, and perhaps intensely enough, to char substantial timbers completely. Another common explanation is that timbers were charred before being erected in order to preserve the wood in the ground and to stop or inhibit decay. However, wooden elements placed in the ground will start to decay at ground level, where there is both air and moisture, while charring the bases of timbers all the way through – essentially burning them into brittle charcoal – makes them structurally useless and defeats the purpose of fire-hardening. The evidence we have from several sites for just such complete burning makes arguments for the control of rot or other infestations seem more than a little unlikely. What may instead be happening is that houses were being deliberately burnt down at the end of their ‘lives’ or the lives of certain occupants, the element of fire symbolising death, transformation or purification. At sites where timbers seem to have been charred before they were placed in the ground, we may be witnessing the remains of past rites of transformation, where wood was ‘treated’ by fire before it became part of a house. In some parts of southeast Asia, trees and the spirits that dwell in them have to be tamed before they can become house timbers. Where we have evidence for only partial burning of structures, we might perhaps be seeing a token use of fire, a pars pro toto burning connected with specific rites of passage or of daily life.

Whatever the reasons for, or sequences of, events at these sites, we cannot ignore the strong evidence for deliberate deposition and burning. It suggests that the function of these buildings extended far beyond the mere provision of shelter, and that they most likely had an important symbolic role, acting as a material expression of, and medium for, certain social beliefs and practices.

Acknowledgements

The research summarised in this article was undertaken while in receipt of a Government of Ireland Scholarship, administered by the Irish Research Council for Humanities and Social Sciences.

BITTING DAMAGE: INVESTIGATING PREHISTORIC HORSE USE

The domestication of the wild horse brought into human control an animal that revolutionised transport, warfare and trade. However, relatively little is known about the uses that horses were put to from archaeological remains. One avenue of research is to look for ‘damage’ to the skeletal tissues of the mouth that might show that a horse was ridden or driven with a bit.
SOCIETY NEWS

The Seventh Sara Champion M emorial Lecture was held at the Society of Antiquaries of London on the 24th October 2007, when Dr. Jodie Lewis (Archaeology and Landscape Studies, University of Worcester) presented a paper on ‘A crystal world from world debris: considering the relations between Neolithic cave use and monument construction on the Mendip Hills, Somerset.’ Jodie sought to relate three entities - caves with their Early Neolithic and Late Neolithic human remains and artefacts, megalithic monuments with possibly conical oratories, and swallets - liminal places replete with wind and water activities, attracting frost and mist, with upward air flows and abrupt downward-sinking movements into the ground. Swallets received structured deposits of human bones and fancy artifacts only in the Late Neolithic. In an interesting interplay between culture and nature, Jodie proposed that the use of caves and swallets in the Late Neolithic marked a status-related exposure to particular locations; belonging to a different kind of Neolithic person - the ‘dlimber/cave’.

John Chapman (Vice President & Durham University)

IMPORTANT: ARE YOU A STAR?

Please look closely at the top right hand corner of your copy of PAST. Do you have a coloured star? If so, then you are NOT up-to-date with your subscription for the current year. If you have not paid the full amount at one of the following rates, then your subscription will be invalid and you will not be eligible to receive it when it is published. Rates for 2007 are as follows: £35 Ordinary Members, £25 Retired with PPS, £17.50 Student, £12.50 Retired without PPS and £50 for Institutional Members. Joint membership for any of the above (not including Institutional membership) is £5. Should you wish to, 2008 subs can be paid at the same time (a yellow subscription form has been included with this mailing).

If you are in any doubt about the status of your subscription, please contact our administrator, Celeste M. at the address below, or by email at prehistoric@ucl.ac.uk. Cheques should be made payable to ‘The Prehistoric Society’ and sent to: prehistoric@ucl.ac.uk. Cheques should be made payable to ‘The Prehistoric Society’ and sent to:

CONFERENCES, MEETINGS AND OTHER NEWS

Childe fifty years after

One-day conference to be held in the Department of Archaeology, Durham University, 1 December 2007, 10am-6pm.

Papers by Prof. Jack Lech, ‘V. Gordon Childe: an archaeologist looks at History’; Prof. Timothy Champion, ‘Childe and Oxford’; Dr Ian Ralston, ‘Gordon Childe - the Edinburgh years’; Prof. Harris, ‘Childe at the London Institute of Archaeology’; Dr. M. Aragia-Diaz-andreu, ‘The international context of Childe’s reception’; Dr. John Chapman, ‘The De-eruise in (settlement) prehistory 80 years on’; Prof. Elzbieta jarebska, ‘Gordon Childe and Late Classical Antiquity’; Prof. Robin Coningham and Mr. M. Mark, ‘Willing subordination’; Prof. Rowley-Conwy, ‘Culture, System, Context; What goes around, comes around’; Mr. Peter Gathercole, ‘Childe and the Sociology of Knowledge’. No registration needed; no fee to pay. Funded by the Prehistoric Society in conjunction with Durham University and the Area project. For further information, contact M. Diaz-andreu@durham.ac.uk

Round barrows, cemeteries and exceptional grave goods: the early 2nd millennium BC


If you are in any doubt about the status of your subscription, please contact our administrator, Celeste M. at the address below, or by email at prehistoric@ucl.ac.uk. Cheques should be made payable to ‘The Prehistoric Society’ and sent to: prehistoric@ucl.ac.uk. Cheques should be made payable to ‘The Prehistoric Society’ and sent to:

ERRATUM

Please note that the date published in the last issue of PAST for the joint Prehistoric Society/Archaeology of Scotland lecture by Prof. John Cole (‘Forgotten sites and elusive images: prehistoric rock carvings of southern Scandinavia’) was quoted incorrectly as 10 October. The correct date is 10 December, and the lecture will take place at 6pm in the lecture theatre, National Museum, Edinburgh.

RUN OF PPS FOR SALE

Available for purchase in the Colchester area: Proceedings of the Prehistoric Society 1944-1953. For information, please contact Helen Capon at capon@sumt45.freeserve.co.uk or telephone 01206 796440.

A MIDDLE BRONZE AGE METALWORKING BUILDING AND ENCLOSURE AT SIGWELLS, SOMERSET, ENGLAND

South Cadbury Environs Project

The South Cadbury Environs Project is a long-term landscape survey project centred on the Iron Age hillfort of Cadbury Castle at the neck of Britain’s south-west peninsula. The project combines geophysical survey, regular and targeted test-pitting and excavation in different areas of landscape division and use from the Neolithic onwards. It is funded by the Arts and Humanities Research Council.

The study area comprises an eight by eight kilometre square centred on the hillfort. Six localities varying in area from one to four square kilometres and ‘detailed site’ areas covering even square kilometres were selected for stratified sampling to investigate the area’s geology, topography and drainage. The principal techniques used were geophysical survey, excavation of one 1m square test pit to the natural per hectare and trial trenching.

Material of all periods was collected and plotted but the particular methodology was designed in response to the failure of two very different landscape surveys around the southern British hillforts of Danbury, Hampshire, and M. Aidan Castle, Dorset, to find evidence for nearby settlement in contemporary with their Middle Iron Age pendants. The former relied on site-based excavation linked to the existing archive and air photographic interpretation while the latter depended largely on surface survey. Our contention is that there needs to be an effective means for widespread data collection, but because the characteristic datable artefact from the Middle Bronze Age to the Late Iron Age is friable pottery, its absence is not reliable negative evidence. Surface
entrance, north, east and west ditches and north interior, the latter targeting a roughly circular area of enhanced magnetism.

Sequence

Sections across the east ditch showed three phases. In the first, it had silted up slowly before being recut. In its second phase, the ditch had not been open long enough for any silt to accumulate on its bottom before a rubble fill was thrown in from the inside. Had the ditch been open for a winter, or even during a single heavy rain storm, some basal silt would have been present. After backfilling, shallow cylindrical pits were dug at approximately 2m intervals in a line along at least 20m of the inside edge of the ditch. This side of the enclosure displays the sequence most clearly, although some sections on the west side show traces of a slow-filling phase before the rapid rubble fill cut. The rubble fill was recut on the west side over a 12m length, revealing weathered natural rock where it had filled slowly. The terminus at the south entrance showed only one phase, a rapid rubble fill. The siting of the enclosure’s north ditch was determined by and incorporated the passage between the north and south sides of the Early Bronze Age linear. In its first form, the enclosure appears to have used the existing linear but later a ditch specific to it was dug and part rapidly backfilled with rubble, with its upper portion left open, effectively assuming the function of the old boundary, and possibly associated with the cylindrical pits.

Sigsells metalworking enclosure

A gradiometer survey using a Geoscan FM36 completed in 1996 over an 18ha field at Sigsells, Charlton Horethorne, revealed complex patterns of enclosure systems including a 30m x 60m rectilinear. Its north boundary respected one of four west-north-west to east-south-east linear ditches proven by excavations and targeted test-pits to be Early Bronze Age. It was cut by the ditches of an Iron Age track and a Romano-British linear. The data suggests that it had a south entrance with complex external features and a less elaborate entrance towards the north end of the east boundary. Between 2000 and 2005, four trenches explored the enclosure’s south entrance, north, east and west ditches and north interior, the latter targeting a roughly circular area of enhanced magnetism.

The inherent disadvantages of test pits are the labour required and the wide intervals between them compared with surface survey. These have been entirely offset by the frequency of diagnostic later prehistoric pottery, much of it associated with geophysical anomalies. It has been possible to create a phased sequence of land division and use extending from the Early Bronze Age to the Medieval period over parts of the study area. In addition to this general picture, there have been important specific discoveries including part of an Early Neolithic pit alignment and occupation area, a linear boundary system predating an Early Bronze Age barrow, an extensive group of Middle Bronze Age burnt mounds, a Late Bronze ringwork, Middle to Late Iron Age settlement, events specifically associated with the early Roman occupation, and two important Middle Bronze Age enclosures. A shield probably made in the twelfth century BC was found in the Late Bronze Age upper fills of one of the latter enclosures, while the earliest known British metalworking building was found in the other, as summarised below.

Sigwells metalworking enclosure

A gradiometer survey using a Geoscan FM36 completed in 1996 over an 18ha field at Sigwells, Charlton Horethorne, revealed complex patterns of enclosure systems including a 30m x 60m rectilinear. Its north boundary respected one of four west-north-west to east-south-east linear ditches proven by excavations and targeted test-pits to be Early Bronze Age. It was cut by the ditches of an Iron Age track and a Romano-British linear. The data suggests that it had a south entrance with complex external features and a less elaborate entrance towards the north end of the east boundary. Between 2000 and 2005, four trenches explored the enclosure’s south entrance, north, east and west ditches and north interior, the latter targeting a roughly circular area of enhanced magnetism.

Sequence

Sections across the east ditch showed three phases. In the first, it had silted up slowly before being recut. In its second phase, the ditch had not been open long enough for any silt to accumulate on its bottom before a rubble fill was thrown in from the inside. Had the ditch been open for a winter, or even during a single heavy rain storm, some basal silt would have been present. After backfilling, shallow cylindrical pits were dug at approximately 2m intervals in a line along at least 20m of the inside edge of the ditch. This side of the enclosure displays the sequence most clearly, although some sections on the west side show traces of a slow-filling phase before the rapid rubble fill cut. The rubble fill was recut on the west side over a 12m length, revealing weathered natural rock where it had filled slowly. The terminus at the south entrance showed only one phase, a rapid rubble fill. The siting of the enclosure’s north ditch was determined by and incorporated the passage between the north and south sides of the Early Bronze Age linear. In its first form, the enclosure appears to have used the existing linear but later a ditch specific to it was dug and part rapidly backfilled with rubble, with its upper portion left open, effectively assuming the function of the old boundary, and possibly associated with the cylindrical pits.

Three trenches dug in 2000 and 2002 were designed to investigate the enclosure’s relationship with features of the wider landscape. The discovery of casting mould fragments suggested that the magnet anomaly-rich north end had been the site of
metalworking so the final large trench was targeted there. A 2.5m long area of natural rock intermittingly scorched red was found next to the Romano-British linear and within the west arc of a circle of postholes and shallow, rubble-filled ditches. The area of scorching is all that remains of a hearth or furnace where copper alloy was heated for casting on the west side of a circular building associated with the middle phase. Although the Romano-British ditch has removed a nearly 2m wide swathe from the west of the building, we can determine something of its layout. Centred on a 40cm diameter packed post, access was gained to the east side of the slightly oval structure via a 4m long, 1m wide corridor from the south, the entrance to which was partly obscured by an outlying post to its south. The interior was divided by a screen or partition wall supported by much less substantial posts extending from south to north in a continuation of the time of the corridor’s west side. Shallow scops in the lee of the building were filled with burnt stone (mainly of a bluish grey colour implying that the fire had been enclosed) mixed with 92 casting mould fragments in an assemblage of 529 from the four trenches.

Deliberate deposits including large quern fragments, mould fragments, whetstones (two in the central post hole), a perforated furnace spacer, bone tools, globular urn-type decorated sherds, a human mandible with burnt cranium pieces and individual red burnt stones show that most if not all of the posts associated with the structure were removed from their sockets. Analysis of the excavated animal bone identified a conservative minimum of four cattle, four sheep/goats, two pigs and a single red deer with remains from at least three sheep and one cow in a cooking trough. Its rapid rubble fill, many of the stones burnt, included large sherds from a minimum of eight globular urn-type vessels and a serving bowl or dish. Other significant bone included discrete deposits of mandibles in the north and south ditches. Five different saddle querns testify to the production of cereal-based foods. They are from at least four different sources. A red igneous and a greensand quern placed side by side in the west enclosure ditch were from approximately 40km west and 15km east of Sigwells, while another in a posthole is of Mendip Old Red Sandstone from at least 22km north. The most remote example is likely to be from Wales. If this enclosure phase had been used over decades or more it would be acceptable to argue that the querns had been imported from time to time by a local population. This is an unlikely explanation when the period in question appears to have been no longer than a few weeks.

This very temporary enclosure was sited away from the more intensely settled areas of the period. We suggest that peripatetic metalworkers, perhaps from north Wales, were the focus for a gathering of members from several different communities from the region in an enclosure chosen for its highly visible but neutral location.

Future work
The project is intending to carry out intensive work over the areas of Neolithic and Bronze Age activity mentioned above and all areas threatened by agriculture. The new dataset would appear with the important evidence from the same timespan discovered at Cadbury Castle which remains unpublished.

Richard Tabor

READERS’ COMMENTS

When theory tail wag data dog

Having published a number of radiocarbon dates from samples in direct association with Bronze Age metalworking a few years since, I was naturally drawn to David Barrowclough’s piece in PAST 56 about a new date for a pegged socketed spearhead from the Penard stage of metalworking (c. 1300 – 1150 BC), a time at which it was only beginning to be accepted by insular cultures. There is thus no need to seek elaborate interpretations in terms of artefact ‘curation’, however attractive and at times cogent, such interpretations may be.

Stuart N ednham

THE PAIRING OF ENCLOSURES: EXCAVATIONS AT WINNALL DOWN II, HAMPSHIRE

Less than two kilometres northeast of Winchester, a pair of enclosure complexes 300m apart, Winnall Down I and II, were discovered and photographed from the air by Colin Bowen in 1974. The subsequent excavation of Winnall Down I by Peter Fasham was a rare exercise, insofar as only a few Iron Age sites in Britain have been excavated to such an extent that their entire insides could be recorded. However, there was no attempt to examine the immediate adjacent enclosure, Winnall Down II. Its date and relationship to Winnall Down I was not known, although the plan and its proximity to Winnall Down I suggested that the two sites were similar, small enclosed settlements of the Early to Middle Iron Age (c. 600-200 BC).

Paired enclosure sites such as these, although not entirely uncommon in the Iron Age of southern Britain (e.g. Little Woodbury and Great Woodbury), have never been studied in any great detail. Consequently, several important questions have gone unanswered, most notably: were paired enclosure sites occupied contemporaneously? Further issues to be addressed include establishing the nature and density of any occupation within both enclosures, and whether this reflects a difference in function or the social status of individuals or family groups. Winnall Down II provided a perfect opportunity to conduct such an inter-site comparison.

The enclosure complex of Winnall Down II lies entirely within an area of fallow arable land owned by M & Richard Cowen, who generously agreed for the project to go ahead in late August 2006. All of the fields in this area have undergone previous deep ploughing. This had disturbed the upper parts of the most recent archaeology at Winnall Down I. Preliminary small-scale fieldwalking over the site of Winnall Down II revealed small assemblages of Middle Iron Age pottery, as well as several chance finds of Roman, medieval and more recent historical artefacts, which suggests that ploughing has been consistently threatening the archaeological deposits. The recent planting of trees on set-aside land covering the southern part of the enclosure complex provided a further threat to the archaeology.

As a preliminary to the work, a magnetic gradiometer survey was undertaken by Dr Tim Young of Geoarch and Oliver Davis of Cardiff University, which showed that Winnall Down II is characterised by a large oval enclosure ditch measuring around 100m across at its widest axis (southwest to northeast). This gives it an interior area of approximately 0.78ha, which is significantly larger than the 0.4ha enclosed by the ‘D’ shaped ditch at Winnall Down I. The enclosure is broadly similar in size and shape to the main enclosure identified by Collis at Owslebury, which lies around 7km to the south of Winnall. The gradiometer survey suggests an entrance 7.8m wide in the southwest curving side, although this was not...
confirmed by excavation. A second entrance possibly exists in the northeast angle of the enclosure, although the data quality of the survey is poor in this area and the ditch may well be continuous here. Other features outside of the enclosure may also be ditches. These positive linear anomalies, however, are much less distinct than the ditch enclosure, and little separates them from lesser features, which include anomalies almost certainly due to ploughing.

The research aims for the excavation were modest, but primarily sought to date the layout of the enclosure so that its temporal relationship to Winnall Down I could be established. The preservation of structural remains within the enclosure was also to be assessed, as well as the threat presented to them by modern agricultural practices. To achieve this, it was decided to lay out two small trenches across the main enclosure ditch, one of which was sited within the area of recently planted trees to examine their threat to the archaeology. A further two trenches were laid out within the interior of the enclosure where the geophysical survey tentatively suggested internal features.

The enclosure ditch was 'U' shaped with a flat bottom, 1.3m wide and 0.9m deep below the surface. The ditch fill was composed of natural chalk and flint nodules, and its association with specific activities may have been important. By infilling the ditch with this material, the symbolic significance of the enclosure may have been enhanced as the physical significance decreased.

The function and status of the enclosure is difficult to assign from the limited excavation of the interior. No direct evidence for settlement in the form of structures was recovered, but the identification of two post-holes in Trench 3 suggests that such evidence is obtainable if a large enough area of the interior of the enclosure is excavated. Indeed, a pit complex identified in Trench 4 may be a quarry area similar to that found on many other enclosure sites throughout Hampshire such as Winnall Down I, Owslebury, Meon Hill, Flint Farm, and Rowbury Farm, but this is by no means certain. However, the pottery recovered from the pit fills indicates that some activity within the enclosure was contemporary with the use of the ditch.

The the burnt flint within the upper fills of the enclosure ditch is unusual, but not extraordinary (large quantities of burnt flint were recognised in the upper fills of the enclosure ditch at Little Somborne). Burnt flint is conventionally interpreted as evidence for cooking/feasting activity or for roasting grain and its selection for the fill of the enclosure ditch is probably meaningful. Its distinctive blue colour and rough texture is significantly different to the natural chalk and flint nodules, and its association with specific activities may have been important. By infilling the ditch with this material, the symbolic significance of the enclosure may have been enhanced as the physical significance decreased.

The transition of European and southwest Asian communities towards agriculture has long occupied a central place in archaeological research and has frequently provided an arena for heated exchanges and debates. While recent renewed interest in these significant developments has emerged - for instance with the nature and timing of the Neolithic - Neolithic complexity and the effects of intensive research and debate - it has apparently never occurred to researchers from these two research traditions to come together to share and critically evaluate their approaches and to learn from each other's mistakes.

That is, until Bill Finlayson of the Council for British Research in the Levant (CBRL) and Graeme Warren of UCD School of Archaeology had the idea to facilitate such a meeting. Consequently, the CBRL’s Jordan office hosted the Landscapes in Transition workshop from 25 to 30 March, 2007, representing a meeting of minds and sharing of ideas under the title of ‘Understanding Hunter-gatherer and Farming Landscapes in the Early Holocene of Europe and the Levant’.

The beautiful interdisciplinary setting of this meeting was in the Dana Nature Reserve, a national reserve located by the edge of the Dana Nature Reserve, and the local Bedouins’ hospitality also helped to provide an extremely relaxed and comfortable atmosphere for the event.

Thanks to the daily field trips (see below), there was ample time for the material presented to be processed before moving on to fresh topics. Moreover, the spectacular setting of the venue for most of the workshop, in the Feynan Eco Lodge situated within the and mountains of Wadi Feynan at the edge of the Dana Nature Reserve, and the local Bedouins’ hospitality also helped to provide an extremely relaxed and comfortable atmosphere for the event.

Very soon, a number of themes emerged that transcended the different research traditions and turned into some of the most hotly debated issues at the meeting. These included matters of scale, as we appear to experience similar difficulties in reconciling the minute explored in excavations and artefact studies with the bigger picture of landscape, as well as more broad scale and long term social and economic developments. Questions of analysis, similarities and differences between methodological approaches and whether landscape represents a useful medium to discuss past people's worldviews.

Acknowledgements

I am grateful to the Prehistoric Society and Cardiff University for providing the funds for me to carry out this research. Thanks are extended to the landowner, Mr Richard Cowen, for allowing these excavations to take place, and to Mr Andy Elsworth and Miss Vanessa Fox of Vitacress for all of their logistical support and valuable time. In particular, I am grateful to Mr Niall Sharphes for encouraging me, and for his support throughout. None of this work would have been possible without the help of Meryn Evans, Nick Wells, Kate Waddington, Tim Young, Jess Mills, Katherine Adams, Penny Bickie, and all of the students of Cardiff University whose time and effort was invaluable.

The conference participants