"All bacterial genes are expressed constitutively"

True or False?

2001-2002

Adapting to environmental change Know any examples of bacterial regulatory systems?

· lac operon

A: 2

2001-2002

A: 1

A: 3

- Main aims for lectures:
- Give an overview of how bacteria regulate gene expression
- provide detailed examples of important regulatory systems
- highlight how current genomic analysis techniques promote understanding of regulation in individual bacterial species.
- Main Objectives for students:
 - to understand the range of strategies used by bacteria to adapt to changing conditions
- have a detailed knowledge of a set of examples of regulatory systems.
- to be able to describe how genome analysis methods help elucidate regulatory mechanisms

Adaptive responses in bacteria	
 Why do bacteria control gene expression? economy –RNA and Protein synthesis selective disadvantage in certain environments clashes in physiological processes developmental pathways Define adaptive responses the act of adapting to an environment with a changed set of enzymatic activities. 	
 Includes generation of genetic diversity 	
Other definitions:	
 regulon: set of genes under the control of a particular regulatory system stimulon: set of genes regulated in response to the same stimulus. 	A: 4

Adaption through the generation of genetic diversity

A: 6

- Produce genetic diversity in population Selection of individuals where gene expression best fitted for environment
- Unpredictive environmental changes
- Clonal expansion
- Genome plasticity
- Indiscriminate spontaneous mutation disadvantageous
 - Genetic change that is:
 - Discriminate,
 - Reversible,
 - High frequency
 - Results in reversible change in gene expression
- Contingency loci

A bit of background....

- Pili (US) or fimbriae (UK) –surface appendages associated with attachment to host (eukaryotic) cells
- Type I confers mannose-sensitive adherence
- Produced by *E. coli* and other Enterobacteriaceae (eg *Salmonella typhimurium*)
- expression of pili shows phase variation (ie the phase varies between ON and OFF).

A: 9

2001-2002

The ON phase: fimbriated **Finb Fine FinA** • Promoter element in one orientation. • Promotes transcription of *fimA* gene • Synthesis of FimA leads to piliated cell • ON phase

- The recombinases FimB and FimE are very similar at the amino acid level
- FimB is a segment orientation-independent recombinase
- · FimE involved mainly in ON to OFF switch
- needs host accessory factors IHF (integration host factor) and H-NS (binds curved DNA)
 - involved in ensuring DNA around event in correct 3D arrangement

2001-2002

A: 13

A: 15

site-specific recombination systems

- FimB and FimE are similar to bacteriophage λ integration/excision system
- λ integration/excision system is best understood at molecular level <u>-read up</u> <u>about this</u>
 - look at bacterial cell physiology and growth phase and 'decision' for excision

A: 14

 involvement of host factors in bringing recombination sites together.

2001-2002

2001-2002

The proposed model: cross-over I Intrachromosomal B recombination One of copies of pilS and pilE Forms episomal circular nilF chromosomal derivative Recombination at one conserved region Single cross over at one of several conserved regions **RecA** independent Howell-Adams & Seifert 2000 2001-2002 A: 16

Phase Variation in lipopolysaccharide biosynthesis in *Haemophilus influenzae*what is *Haemophilus influenzae*?

Gram negative bacterium that causes meningitis and otitis media

what is LPS?

complex heterogeneous polysaccharide attached to lipid
essential in cell wall structure & integrity essential in cell wall structure & integrity

- endotoxic, inflammatory
- avoid/resist host responses

2001-2002

A: 19

- · genes involved in:
 - sugar synthesis,
 - addition to growing oligosaccharide chain
 - specific linkage positions.
- switching on/off expression of certain genes would affect:
 - which sugars added
 - where added
- different phenotype and different epitopes
 present
- · contingency genes

2001-2002

A: 21

LOS phase variation

- translation of *lic* genes switched on and off at high frequency
- mechanism involves bringing open reading frame in and out of frame with start codons.
- multiple tandem repeats of 5'-CAAT-3'
- switching by variation in number of CAAT repeats

A: 22

- probable mechanism of slipped strand mispairing
- transcript still made

Number o	of CAAT	repeats a	ffects protein	
	ex	pression		
Two CAAT r	epeats			
Promoter	ATG	CAAT x 2	TAA	
mRNA	AUG	CAAU x 2	UAA	
Protein				
1 TOTOIN				
Three CAAT	repeats			
Three CAAT Promoter	repeats ATG	CAAT x 3	TAA	
	•	CAAT x 3 CAAU x 3	TAA UAA	
Promoter	ATG			_

	Frame is	important		
start ATG TAT	repeat CAA TTC TTG	stop TAA ATA	G	
start ATG TAT	repeatx2 CAA TCA ATT	CTT GTA	AAT	AGnnnn
start ATG TAT	repeatx3 CAA TCA ATC	AAT TCT	TGT	stop AAA TAG
2001-2002				A: 24

Actually its more complicated...

- The *lic* genes have more than one ATG start codons
- lic1 locus has 29-31 CAAT repeats
- Iic2 locus has 15-17 repeats
- extra levels of regulation

	Nº. repeats	ATG used	expression	
	(CAAT) ₂₉	none	none	
	(CAAT) ₃₀	Nº 3	low	
	(CAAT) ₃₁	Nº 1 & 2	high	
2001-20	02			A: 2:

- Several examples of homopolymeric runs of G/C causing variation in expression
- number of G bp changes as a result of slipped strand mispairing
- Examples:
 - Campylobacter jejuni
 - Helicobacter jejuni
 - Neisseria meningitidis

	Changing gene expression	
	genomic re-arrangements	
	с с	
•	3 examples	
	 recombination of genomic segments 	
	 gene conversion 	
	 repeats 	
•	population based	
•	selection driven	
	Transcriptional: next topic	
•	Post-transcriptional	