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1 Introduction  

The term, ‘Time-Varying Coefficient (TVC) estimation’ as used in this paper refers to a 

specific estimation technique that has been developed to provide consistent parameter 

estimates in the simultaneous presence of measurement errors, omitted variables, and  

unknown functional form1 Previous studies using this technique implicitly allow for  non-

stationarity in the data, but do not explicitly discuss how each stage of the estimation 

strategy needs to be undertaken when the data exhibits the common property of non-

stationarity.2

Rarely, if ever, are econometric relationships free from specification errors arising from 

the following four problems: (i) an unknown true functional form, (ii) the correlation 

between the error terms of econometric models and their explanatory variables, (iii) data 

on economic variables contain measurement errors and (iv) omitted variables. 

Consequently, misspecification of models is difficult to avoid.  

 Non-stationarities other than unit-root non-stationarities of variables and the 

nonlineartities of the relationships among these variables are closely related, as will be 

clear from what follows. The objective of this paper is to discuss how each stage of the 

estimation strategy would be affected by non-stationary variables that form a nonlinear 

structural economic relationship and which therefore co-integrate. 

The following exposition of the TVC approach begins with a coefficient-

decomposition that illustrates how the various forms of misspecification interact; it then 

goes on to propose a specific form of time variation for the parameters that allows a 

decomposition of the parameters that match the coefficient decomposition. This allows us 

to recover consistent estimates of the parameters of interest. We argue that each of these 

stages is valid in the presence of non-stationary variables, but the non- statonarity has 

implications for how the coefficients will behave and the procedure for carrying-out the 

decomposition. 

                                                 
1 See Swamy and Tinsley (1980), Havenner and Swamy (1981), Chang, Hallahan and Swamy (1992), 
Yokum, Wildt and Swamy (1998), Chang, Swamy, Hallahan and Tavlas (2000), Swamy and Tavlas (2001), 
Swamy, Yagi, Mehta and Chang (2007), Hall, Hondroyiannis, Swamy and Tavlas (2008), Hall, 
Hondroyiannis, Swamy and Tavlas (2009). 
2 We are using here the term ‘non-stationarity’ to refer to the processes that are not either weakly or 
strongly stationarity defined in Anderson (1971, pp. 373-374).  
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The remainder of this paper is divided into three sections. Section 2 presents the 

interpretation of the coefficients of a misspecified econometric model and discusses the 

implications of non-statonarity. The next section discusses the formulation of a specific 

form of time variation of the coefficients that allows identification of the underlying 

coefficients. Section 3 presents the methods of consistently estimating the unknown 

quantities of the underlying coefficients. Section 4 concludes.   

 

2 The Interpretations of Model Coefficients and Appropriate 

Assumptions 

Conventional econometrics is to a large extent the study of individual causes of biased 

parameter estimates: ‘non-sufficient sets’ of omitted variables, measurement errors, an 

incorrect functional form, etc. These problems are usually dealt with one at a time in a 

textbook context, but of course practical work is plagued by all these problems at once. In 

this section, we outline (1) the basic problem of interpreting coefficients when these 

problems are present and (2) our proposed procedure for dealing with these problems 

simultaneously. In particular, we are concerned with the case in which the dependent 

variable of an economic relationship is non-stationary and at least two sets of its 

determinants are also non-stationary and where there is a (possibly) nonlinear  

relationship between these variables which produces a combination  of them with 

constant coefficients, thus a general nonlinear form of cointegration. We restrict 

ourselves here to the case of two sets of non-stationary variables simply because this 

allows for all the cases we believe are of interest. These two sets of variables could be 

equally thought of as two individual non-stationary variables. We also allow for 

measurement error  and the omitted variables may be either stationary or one or both of 

the two sets of non-stationary independent variables.   

Denote the dependent variable by *
ty ; it is related to a hypothesized set of K – 1 

of its determinants, denoted by *
1tx , …, *

1,K tx − , where K-1 may be only a subset of the 

complete set of determinates of *
ty , in which case the relation of *

ty  to *
1tx , …, *

1,K tx −  may 

be subject to omitted-variable biases. Any specific functional form may be incorrect and 
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may lead to specification errors. In addition to these problems, the available data on *
ty , 

*
1tx , …, *

1,K tx −  may not be perfect measures of the underlying true variables, causing an 

errors-in-variables problem. 

Suppose that T measurements on *
ty , *

1tx , …, *
1,K tx −  are made and these 

measurements are actually the sums of “true” values and  measurement errors: ty  = *
ty  + 

0tv , jtx  = *
jtx  + jtv , j = 1, …, K-1, t = 1, …, T, where the variables ty , 1tx , …, Ktx  

without an asterisk are the observable variables, the variables with an asterisk are the 

unobservable “true” values, and the v’s are measurement errors. Given the possibility that 

the true functional form we are estimating may be unknown and that there may be some 

important variables missing from 1tx , …, 1,K tx − ; we need a model which will capture all 

these potential problems.  

It is useful at this point to clarify what we believe to be the main objective of 

econometric estimation. In our view the objective is to obtain consistent estimates of the 

bias-free effect on a correctly measured dependent variable of changing one of its 

correctly measured determinants holding  all of its other correctly measured determinants 

constant. That is to say, we aim to find an estimate of the partial derivative of *
ty  with 

respect to any *
jtx  if *

ty  is a continuous function of *
jtx  and the bias-free effect of any *

jtx  

on *
ty  otherwise. This of course is the interpretation, which is usually placed on the 

coefficients of a standard econometric model, but this interpretation depends crucially on 

the assumption that the conventional model has bias-free coefficients, which is, of course, 

not the case in the presence of model misspecification. Note that the term “bias-free” here 

means without both omitted-variable and measurement-error bias components.  

We begin by specifying a set of time-varying coefficients, which provide a 

complete explanation of the dependent variable y.  

 ty  = 0tγ  + 1 1t txγ  +   + 1, 1,K t K txγ − −      (t = 1, …, T)                                             (1)  

which we call “the time-varying coefficient (TVC) model”. The explanatory variables of 

this model are called the included variables. As this model provides a complete 
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explanation of y, all the misspecification in the model, as well as the true coefficients 

must be captured by the time-varying coefficients. Note that if the true functional form is 

non-linear the time-varying coefficients may be thought of as being the partial derivatives 

of the true non-linear structure and so they are able to capture any possible function. 

These coefficients will also capture the effects of measurement error and omitted 

variables.  

Because we are dealing with a potentially non-linear true model, which is 

assumed to be unknown, we need a slightly more general definition of non-stationarity 

and cointegration than is usually used. Normally, we focus on the order of integration of 

a variable; however in the presence of general non-linearity, variables may not be 

integrated at all. A variable is integrated of order d if it becomes stationary after being 

first differenced d times. When d = 0, such a variable is (weakly or strongly) stationary, 

and when d > 0, it is unit-root non-stationary. There are also non-stationary variables that 

are not unit-root non-stationary. Let tx  = (1, 1tx , …, 1, )K tx − ′  and tγ  = ( 0tγ , 1tγ , …, 

1, )K tγ − ′  is time dependent. Then equation (1) is nonlinear and shows that the first 

difference of ty , 

 ty∆  = ty  - 1ty −  = t tx γ′  - 1 1t tx γ− −′  + 1t tx γ−′  - 1t tx γ−′  = t tx γ′∆ + 1t tx γ−′ ∆ , 

is , in general, neither stationary nor unit-root non-stationary and hence ty  is non unit-

root non-stationary and is not integrated. Also, ty∆  does not possess a finite 

unconditional mean if tx  and/or tγ  follow a random walk processes. Thus, each time 

equation (1) is differenced additional terms enter into it giving a non-parsimonious form 

unless equation (1) is linear or its intercept and slopes (excluding its error term) are 

constant, which will not generally be true.     

  

There are a number of possible definitions of cointegration. A rather restricted 

one says that a set of integrated variables is said to be cointegrated if these variables 

follow a linear model in which (i) the error term is integrated of order zero with mean 

zero such that it is mean independent of the included explanatory variables and (ii) the 
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coefficients are free of specification biases (see Greene 2008, p. 756). This is a highly 

specialized definition of cointegration that rarely if ever applies to practical situations. A 

more general definition that allows for non-linearity and omitted variables is as follows: 

The variables ty  and tx   are cointegrated if the bias-free components of the coefficients 

of tx  in the relation of ty  to tx  are nonzero. This is very much in keeping with the 

original idea of cointegration. In general cointegration should only arise if there is a 

(possibly non-linear) structural relationship holding a set of variables together. If there is 

such a relationship then this implies that the bias free effect of x on y will be non zero.    

Equation (1) is called the observation equation and its coefficients are called the 

state variables if it is embedded in a state-space model. We now apply a formal 

decomposition of these time-varying coefficients which illustrates the various 

components they contain.  

Notation and Assumptions Let tm denote the total number of the determinants of *
ty . 

The exact value of tm  is usually unknown at any time. We assume that tm  is larger than 

K-1 (that is, the number of determinants is greater than the determinants for which we 

have observations) and possibly varies over time. This assumption means that there are 

determinants of *
ty  that are excluded from equation (1). Let *

gtx , g = K, …, tm , denote 

these excluded determinants. Let *
0tα  denote the intercept and let both *

jtα , j = 1, …, K-1, 

and *
gtα , g = K, …, tm , denote the other coefficients of the regression of *

ty  on all of its 

determinants. The true functional form of this regression determines the time profiles of 
*α ’s. These time profiles are unknown, since the true functional form is unknown. For g 

= K, …, tm , let *
gtx  = *

0gtλ  + * *
1 1gt txλ  +   + * *

1, 1,K gt K txλ − − .  The true functional forms of these 

regressions determine the time profiles of *λ ’s.     

 

Theorem 1 The intercept of (1) satisfies the equation,   
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 0tγ  = *
0tα  + * *

0

tm

gt gt
g K

α λ
=
∑  + 0tv ,                                                                               (2) 

and the coefficients of (1) other than the intercept satisfy the equations,   

 jtγ  = jt* * * * * *

jt

v
x

t tm m

jt gt jgt jt gt jgt
g K g K

α α λ α α λ
= =

  
+ − +      
∑ ∑    (j = 1, …, K-1).                      (3)  

where the *
0gtλ  are a ‘sufficient set’ of excluded variables in the sense that they in 

conjunction with the *
jtx  are at least sufficient to determine *

ty . 

Proof  see Swamy and Tavlas (2001, 2007).  

Thus, we interpret the TVC’s of (1) in terms of the underlying correct 

coefficients, a ‘sufficient set’ of excluded variables, the observed explanatory variables 

and their measurement errors. By assuming that the *α ’s and *λ ’s are possibly time 

varying, we do not a priori rule out the possibility that the relationship of *
ty  with all of 

its determinants and the regressions of the determinants of *
ty  excluded from (1) on the 

determinants of *
ty  included in (1) are non-linear.  

In terms of non-stationarity and nonconstancy we can consider 3 cases, assuming 

that *
jtx , j = 1, …, K – 1, and *

0gtλ , g = K, …, tm , are the two sets of the determinants of 

*
ty  . 

1. Both  the ‘sufficient set’ of excluded variables  * *
0

tm
gt gtg K

α λ
=∑  and the 

measurement error 0v t  are white noise with mean zero and the true intercept 

*
0tα  is constant for all t, both the components *

jtα  and * *tm
gt jgtg K

α λ
=∑  of the 

coefficient of *
jtx  are constant and the measurement error v jt  = 0 for all j and t 

. In which case the non-stationarity will be confined to the mean of ty , as in 

the standard regression models. .  

2. If *
jtx , j = 1, …, K-1, are non-stationary but the other non-stationary variables 

are *
0gtλ , g = K, …, tm , a sufficient set of  excluded variables, then even if the 
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*
jtα  are constant for all j and t, the jtγ  will be  nonconstant if their other 

components are nonconstant,   

3. Both the sets of variables *
jtx ’s and *

0gtλ ’s may be non-stationary, in which 

case again the jtγ  will be nonconstant if any or all of their components in (2) 

and (3) are nonconstant.   

 

Theorem 2 For j = 1, …, K-1, the component *
jtα  of jtγ  in (3) is the partial derivative of 

*
ty  with respect to *

jtx  if *
ty  is a continuous function of *

jtx   and is the direct or bias-free 

effect of *
jtx  on *

ty  with all the other determinants of *
ty  held constant otherwise and is 

unique.   

Proof It can be seen from equation (3) that the component *
jtα  of jtγ  is free of omitted-

variables bias (= * *tm
gt jgtg K

α λ
=∑ ), measurement-error bias (= ( )* * *tm

jt gt jgtg K
α α λ

=
− + ×∑  

( )jtv / jtx ), and of functional-form bias, since we allow the *α s and *λ s to have the 

correct time profiles. These biases are not unique being dependent on what determinants 

of *
ty  are excluded from (1) and the jtv . Only *

jtα  is unique being the coefficient of *
jtx  in 

the correctly specified relation of *
ty  to all of its determinants. The component *

jtα  

represents the direct, or bias-free, effect of *
jtx  on *

ty  with all the other determinants of 

*
ty  held constant. The nonzero direct effect is unique because it represents a property of 

the real world that remains invariant against mere changes in the language we use to 

describe it (see Basmann 1988, p. 73; Pratt and Schlaifer 1984, p. 13; Zellner 1979, 

1988). 

 

 This is true irrespective of the non-stationarity of the variables under 

consideration as the ‘sufficient set’ of omitted variables can fully reflect the omitted non-
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stationary variables. The real issue, however, is correctly identifying the omitted variable 

biases in the case of non-stationarity. We turn to this issue in the next section. 

 

3 Identification and Consistent Estimation of Time-Varying Coefficient 

Model   

3.1 Identification 

As noted above, we believe that empirical researchers are interested in the bias-free or 

direct effects (or the partial derivatives) *α ’s, not in the omitted-variable and 

measurement-error biases. That is, they are not interested in the jtγ , which are 

contaminated by omitted-variable and measurement-error biases. To obtain accurate 

estimates of the *
jtα  using the observations in (1), we need to first decompose each jtγ  

with j > 0 into its components in (3). Our method of identifying these components and 

performing the decomposition is based on the following assumptions.  

Assumption 1 (Auxiliary information) Each coefficient of (1) is linearly related to 

certain drivers plus a random error,  

 jtγ  = 0jπ  + 
1

1

p

jd dt
d

zπ
−

=
∑  + jtε      (j = 0, 1, …, K-1),                                                (4) 

where the π s are fixed parameters, the dtz  are what are called the coefficient drivers, 

and different coefficients of (1) can be functions of different sets of coefficient drivers.  

 

Here, the issue of identification  is quite important. If both jtγ  and *
jtα  are 

constant then clearly they are not identifiable. . Regardless of whether  *
jtα  is constant or 

not, if jtγ  is nonconstant (due to its nonconstant omitted-variables and measurement-

error bias components) we need to include a set of coefficient drivers to identify its 

components.   
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Assumption 2 For j = 1, …, K-1, the set of p-1 coefficient drivers and the constant term 

in (4) divides into two disjoint subsets 1S  and 2S  so that 
1

jd dtd S
zπ

∈∑  has the same 

pattern of time variation as *
jtα  and 

2
jd dtd S

zπ
∈∑  + jtε  has the same pattern of time 

variation as the sum of the last two terms on the right-hand side of equation (3) over the 

relevant estimation and forecasting periods. The definition that *
jtα  = 

1
jd dtd S

zπ
∈∑  is 

correct.   

 

Here we are assuming that the drivers in the set 1S  separate the direct effect *
jtα  

from the specification biases in the model.  Here again we can draw out some important 

implications for the division between S1 2S and . If the component *
jtα  is constant while 

jtγ  is non-stationary (or nonconstant) then in general the variables in S1 should also be 

constant (although there is the possibility of a case where the variables in S1 are non-

stationary (or nonconstant) but cointegrate over the sample so that in combination all the 

variables in S1 are constant. In this case we know that all non-stationary (or nonconstant) 

drivers should be in the set S2
*
jtα. Of course it is possible that  itself is non-stationary (or 

nonconstant), due to the unknown non-linear functional form, in which case we have a 

difficult problem of splitting out just the correct amount of non-stationarity (or 

nonconstancy) between the sets S1 2.S and  
*
jtα However the assumption that  is constant 

is not a very strong one if *
ty  is linearly related to all of its determinants.   

Assumption 3 The K-vector tε  = 0 1 1,( , ,..., )t t K tε ε ε − ′  of errors in (4) follows the stochastic 

equation, 

 tε  = 1tε −Φ  + tu ,                                                                                                    (5) 

where Φ  is a K K×  (not necessarily diagonal) matrix whose eigenvalues are less than 1 

in absolute value, the K-vector tu  = 0 1 1,( , ,..., )t t K tu u u − ′  is distributed with E( tu | 1tz , …, 

1,p tz − ) = 0 and  
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 E( t tu u ′′ | 1tz , …, 1,p tz − ) = { 2       if    
0             if    

u u t t
t t

σ ′∆ =
′≠ ,                                                                   (6) 

where u∆  may not be diagonal.  

This assumption considerably generalizes (4). If we assumed that the errors in (4) were 

independent, this would imply a very simple dynamic structure. By making the 

assumption that the errors in fact have a serial correlation structure we are allowing a 

much richer dynamic structure although we are imposing some common factors in this 

structure to keep the model tractable.  

In terms of non-stationarity by assuming that all the eigenvalues are less than 1 in 

absolute terms we are ruling out the possibility that non-stationarity in jtγ  is generated by 

the error process tε . This then isolates the non-stationarity as coming from the coefficient 

drivers. 

Assumption 4 The regressor jtx  of (1) is conditionally independent of its coefficient jtγ  

given the coefficient drivers in (4) for all j and t. 

A vector formulation of model (1) is  

 t t ty x γ′= ,                                                                                                               (7) 

where tx  and tγ   are as defined below equation (1). A matrix formulation of (4) is  

 t t tzγ ε= Π + ,                                                                                                         (8) 

where Π  = 
0 1,0 1jd j K d p

π
≤ ≤ − ≤ ≤ −

    is a K p×  matrix having jdπ  as its ( 1, 1)j d+ + -th 

element and tz  = 1 1,(1, ,..., )t p tz z − ′ . Substituting (8) into (7) gives  

 ( ) Long
t t t t ty z x xπ ε′ ′ ′= ⊗ + ,                                                                                      (9) 

where ⊗  denotes a Kronecker product, and Longπ  is a Kp-vector, denoting a column 

stack of Π . The observations in (1) can be displayed in a matrix form as  

 Long
z xy X Dπ ε= + ,                                                                                             (10) 

where y  = 1( ,..., )Ty y ′  is a T-vector, zX  = 1 1( ,..., )T Tz x z x ′⊗ ⊗  is T Kp× , xD  = 

1 ( )t T tdiag x≤ ≤ ′  is T KT× , and ε  = 1( ,..., )Tε ε′ ′ ′  is a TK-vector.  
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Theorem 3 Under Assumptions 1-4, E ( | )zy X  = Long
zX π  and Var ( | )zy X  = 2

x u xD Dεσ ′Σ  

where 2
u εσ Σ  is the covariance matrix of ε .                                                  

Proof See Swamy, Yaghi, Mehta and Chang (2007, p. 3386).                                            

Under Assumptions 1 and 3, the variance of jtγ  is finite for all j and t. The 

Chebychev inequality shows that if jtγ  has a small variance, then its distribution is tightly 

concentrated about its mean implied by Assumptions 1 and 3 (see Lehmann 1999, p. 52). 

Assumptions 2 and 4 provide a prime consideration guiding the selection of coefficient 

drivers, especially in the presence of non-stationarity. The magnitude of jtε  gets reduced 

as the number of correct coefficient drivers in (4) increases. The larger the number of 

correct coefficient drivers in (4), the smaller the magnitude of jtε  and the smaller the 

variance of jtγ . Including many correct coefficient drivers in (4) may imply that the 

errors of equation (4) are white-noise variables or the matrix Φ  in equation (5) is null. If 

Assumption 3 is replaced by the assumption that tε  follows a random walk for all t,  then 

the unconditional variance of jtγ  is not finite.       

The fixed coefficient vector Longπ  in (10) is identified if zX  has full column rank. 

A necessary condition for zX  to have full column rank is that T > Kp.  The error vector 

ε  is not identified because the necessary condition T > TK for xD  to have full column 

rank is false. This result implies that ε  is not consistently estimable (see Lehmann and 

Casella 1998, p. 57). Swamy and Tinsley (1980, p. 117) call this phenomenon “a form of 

Uncertainty Principle”. Correct coefficient drivers should be used in (4) to reduce the 

unidentifiable portions (the jtε ) of the coefficients of (1). However, xD ε  being equal to y 

- Long
zX π  with identifiable Longπ  is identifiable, provided xD  has full row rank. The best 

linear unbiased predictor (BLUP) of xD ε  can be used to obtain consistent estimators of 

Φ , u∆ , and 2
uσ  in (5) and (6), as shown in Chang, Hallahan and Swamy (1992) and 

Chang, Swamy, Hallahan and Tavlas (2000). Under Assumptions 1-4, the BLUP of xD ε  

exists (see Swamy, Yaghi, Mehta and Chang 2007, p. 3387). So we make  
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Assumption 5 (i) zX  has full column rank, (ii) xD  has full row rank, and (iii) 

(assumption 5(iii) is here) T ≥  Kp + the number of unknown distinct elements of Φ , u∆ , 

and 2
uσ  + 4 so that the degrees of freedom left unutilized after estimating all the unknown 

parameters of model (10) is at least 4.       

Assumptions 5(i) and 5(ii) make all the coefficients and xD ε  of (10) statistically 

meaningful. Equation (4), which establishes a link between the coefficients of (1) and the 

coefficients and errors of (10), shows that if the coefficients and xD ε  of (10) are 

statistically meaningful, then so are the coefficients of (1). In certain situations specified 

in Judge, Griffiths, Hill, Lütkepohl and Lee (1985, p. 612), the finite moments of the 

estimators of the coefficients of (10) exist up to the degrees of freedom that remain 

unutilized after the estimation of these coefficients. Assumption 5(iii) is made to 

guarantee the existence of at least finite fourth moments for the estimators of the 

coefficients of (10) in these situations. Swamy, Mehta and Singamsetti (1996) explain 

how model (10) might be estimated when zX  has less than full column rank and x xD Dε ′Σ  

is singular.  

3.2      Consistent estimation 

Under certain conditions, an iteratively rescaled generalized least squares estimators of 

Longπ  and xD ε  in (10) are consistent and asymptotically normal (see Swamy, Tavlas, 

Hall and Hondroyiannis 2009).   

 

4 Conclusions  

We argue here that non-stationarity does not pose any particular problem for TVC 

estimation. However, as in other cases, the explicit recognition of non-stationarity does 

offer advantages, in particular, in the identification of the correct set of coefficient drivers 

to correctly identify bias free component of the time varying coefficient.          
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