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Abstract

We study a setting where imitative players are matched into pairs to play a Prisoners’

Dilemma game. A well know result in such setting is that under random matching

cooperation vanishes for any interior initial condition. The novelty of this paper is that

we add a certain correlation to the matching process: players that belong to a pair were

both parties cooperate repeat partner next period whilst all other players are randomly

matched into pairs. This intuitive correlation introduced in the matching process makes

cooperation the unique outcome in the long run under some conditions. Furthermore, we

show that no assortative equilibrium exits.
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1 Introduction

Individuals learn by imitation when their choices are based on the alternatives they observe

others choose. The inability of real life subjects to correctly understand and process all

the information they dispose of is a common justification for the use of imitation in some

economic models. For example, in a situation where many players interact with each other,

correctly anticipating other agents’ actions can be a massive computational burden.

A well known property of imitation is that, under some conditions, it rules out dominated

actions1. Thus, if every period imitative players are randomly matched to play a Prisoner’s

Dilemma game, cooperation vanishes. Given the importance of cooperation and its constant

presence in societies and the relevance of imitation for modeling bounded rational behavior

(see, for example, Axelrod (1984), Banerjee (1992), Eshel et al (1998) or Ellison and Fu-

denberg (1995)), the question we raise is: can cooperation survive when players learn by

imitation?

We answer this question by exploring the mechanism by which players are matched to

play a Prisoners’ Dilemma game. The novelty of this paper is that a certain correlation is

introduced in the matching process: players who cooperated with each other last period meet

again in the next period whilst the rest of players are randomly matched into pairs. This

matching mechanism is inspired by a simple rule of thumb: no player should have incentives

to keep a non-cooperative partner. Examples of situations where this matching mechanisms

seems plausible range from dealing with business suppliers to academic co-authorship or

dating.

In the results of this paper, three main conclusions are achieved: First, under some

conditions and for any interior initial condition, the survival of cooperation is guaranteed.

That is, the situation where no player cooperates is not stable if some conditions on the

payoff matrix and/or the specific imitative rule employed are satisfied. Second, no assortative

equilibrium exists. This means that, apart from the equilibria on the boundaries, a situation

where cooperative players do not face non-cooperative ones is not an equilibrium. Finally, we

find that cooperation is more likely to prevail if imitation happens infrequently. In the limit

this means that for all payoff matrices there exists a probability of imitating below which

some level of cooperation is always present in the long run.

The reason behind the survival of cooperation lies in the fact that the matching mechanism

considered in this paper adds a positive externality to playing cooperatively: in a situation

where two players cooperate, switching action has the disadvantage that next period a new

opponent, who might not be so keen on playing cooperatively, is faced. Thus, players that
1See, for instance, Schlag (1998) Remark 6.
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cooperate may enjoy more payoff over time than these not cooperating. In this situation,

non-cooperative players imitate cooperative ones, making the survival of cooperation possible.

To our knowledge, only Levine and Pesendorfer (2007), Bergstrom (2003) and Bergstrom

and Stark (1993) study similar settings to the one considered in this paper. Levine and

Pesendorfer (2007) show that cooperation can survive within a population who learns by

imitation if each player holds some information about the strategy of the player with whom

she is matched. Bergstrom (2003) and Bergstrom and Stark (1993) proves conditions under

which cooperation survives in an evolutionary model where players are either cooperators or

defectors, and are more likely to face a player of their same type.

The difference between this paper and Levine and Pesendorfer (2007) lies in that in our

model there is a set of matches that are anonymous whilst in Levine and Pesendorfer (2007)

all matches are non-anonymous to a certain degree. The present paper differs from Bergstrom

and Stark (1993) and Bergstrom (2003) in that players can change their actions from one

period to another. Thus, in our model, playing cooperatively in the present period is no

guarantee of exhibiting a cooperative behavior in the next period.

The issue of partner selection in cooperative games has recently attracted attention from

experimental economists. Duffy and Ochs (2009) conduct an experiment where a Prisoners

Dilemma game with two treatments is considered. In the first treatment, matching is com-

pletely random whereas in the second one each player always repeats partner. The authors

find that cooperation does not emerge in the random matching setting while it does in the

fixed pairs treatment. Yang et al (2007) present an experiment where a Prisoner Dilemma

game is played and individuals with similar histories are more likely to be matched together.

Their results show that cooperation has a higher chance of survival when a history-dependent

correlation is added to the matching process. Grimm and Mengel (2009) develop an exper-

iment where players choose between two Prisoner’s Dilemma games that differ in the gains

from defection. Choosing the game with lower gains signals the player’s willingness to coop-

erate. Grimm and Mengel find that this self selection significantly increases the amount of

cooperation.

In order to get a better understanding on cooperation a preferential partner selection,

we carry robustness checks and extensions to our main model. In particular, alternative

matching processes are considered as extensions to the main model; apart from the matching

mechanism whereby only cooperative pairs are maintained, we discuss the cases of complete

assortative matching (cooperators only meet cooperators, defectors only meet defectors), all

pairs are kept with some fixed probability and, finally, a setting where correlation is not

perfect (only a fraction of cooperative pairs are maintained from one period to another). We

argue in which of these settings cooperation is more likely to be sustained in the long run
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and in which ones cooperation does not survive.

The rest of the paper is organized as follows. In Section 2, we develop the model. Section

3 presents the main analysis and the results. In Section 4, we present a further comparison

with the literature, a discussion on our assumptions, and some extensions. Finally, Section 5

concludes.

2 The Model

Consider a continuum of identical players uniformly distributed on the interval [0, 1] with

the standard Borel-Lebesgue measure2. At the beginning of each period t = 0, 1, 2, . . ., every

player is paired with another one and plays the following symmetric stage game against her

partner:

Table 1: The Stage Game

C D

C R,R S, T

D T, S P, P

where C stands for cooperate and D stands for defect. The stage game above has the

standard Prisoners’ Dilemma structure: T > R > P > S with T,R, P, S ∈ R.

After the stage game is played, all pairs where at least one player chose D are broken

while the rest of pairs are maintained. After that, unpaired players are randomly matched

into pairs. The distribution of pairs at the beginning of period t = 0 is given.

Given the description above, at the beginning of each period t ≥ 1 the population is

divided into three sets: players who played C last period and faced an opponent who also

played C, σCC , players who played C but faced an opponent who played D, σCD, and the

rest, denoted by σD. We use σCC , σCD and σD to denote exchangeably both the sets and

their respective measure. Thus, for instance, σCC is both the set of players who played C

and faced an opponent who also chose C, and the measure (fraction) of players who played

C and faced an opponent who also chose C.

Given the description above, we have that σCC ∈ [0, 1], σCD ∈ [0, 1) and σD = 1 −
σCC − σCD. Evidently, σCD + σCC ≤ 1 with equality only in the case when σCC = 1 (if

σCD + σCC = 1 then all players chose C and, thus, all players faced another one playing C).
2All the results that follow are still valid if instead we consider a discreet but big population.
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Notice that the fraction of players who maintain partner equals σCC . Furthermore, note that

all players in σCD are matched with a player in σD and, thus, σCD ≤ σD.

Define Ω as Ω = {(σCC , σCD) ∈ R2
+ : σCC + σCD < 1 ∪ (σCC , σCD) = (1, 0)}. Whenever

we refer to interior points we mean (σCC , σCD) ∈ Ω with σCC + σCD ∈ (0, 1) and σCD ≤ σD.

We denote the set of interior points by
◦
Ω.

Players follow very simple decision rules. In particular, they observe the action and payoff

of a random individual3 and base their choice of action for the stage game on this information

plus the information from own action and payoff. All players in the population are equally

likely to be observed.

Let A ∈ {C,D} be the action set and let P ({i, ai, πi}{j, aj , πj}) ∈ [0, 1] be the probability

with which player i ∈ [0, 1] changes action if she, who played action ai ∈ A and obtained

payoff πi ∈ R, observes player j ∈ [0, 1], who chose action aj ∈ A and achieved payoff πj ∈ R.

Some assumptions on P are needed for the analysis:

Assumptions.

1. If ai = aj then P ({i, ai, πi}{j, aj , πj}) = 0,

2. P ({i, ai, πi}{j, aj , πj}) > 0 if and only if πi < πj and,

3. for all i, j ∈ [0, 1] and all ai, aj ∈ A:

- if πj > π′j then P ({i, ai, πi}{j, aj , πj}) ≥ P ({i, ai, πi}{j, aj , π′j}),
- if πi < π′i then P ({i, ai, πi}{j, aj , πj}) ≥ P ({i, ai, π′i}{j, aj , πj}).

The first two assumptions are standard in imitation models (see, for instance, Schlag

(1998)). Assumption 1 implies that players change their action only if the player they observe

played a different action than the one they chose. Assumption 2 means that there is a

positive probability of changing action if and only if observed action yielded more payoff than

own action. The third assumption is a monotonicity condition that relates to reinforcement

learning models (see, for example, Börgers et al (2004) and Rustichini (1999)). It means

that the probability of changing action is weakly increasing in observed payoff and weakly

decreasing in own payoff.

We simplify notation when using the function P ({i, ai, πi}{j, aj , πj}) as follows: Denote

by PCC : A2 × R2 → [0, 1] the probability with which a player in σCC changes to D. Let

PCD : A2 ×R2 → [0, 1] be the probability with which a player who belongs to σCD changes
3Since we are dealing with a continuous population, results presented in this paper do not depend on how

many players are observed.
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to D. Finally, denote by PD : A2 × R2 → [0, 1] the probability with which a player in σD

changes to C.

Assumptions 1−3 impose some restrictions on the functional forms of PCC , PCD and PD.

The function PCC is only positive if the player in σCC observes a player in σD (assumption 1)

who faced a player in σCD (assumption 2). In this case, the payoff of observed player equals

T while own payoff equals R. Thus, we can write PCC for σCC < 1 as

PCC = σCDf(T,R) (1)

for some function f : R2 → [0, 1]. The two arguments in f are observed payoff and own payoff

respectively. The function f is weakly increasing in its first argument and weakly decreasing

in its second argument by assumption 3. Furthermore, by assumption 2, f(π′, π) = 0 for any

π′ > π.

The function PCD is only positive if the player in σCD observes a player in σD. In this

case, two different situations arise: If the player observed faced a player in σCD, then observed

payoff equals T and own payoff equals S. On the other hand, if the observed player faced an

opponent in σD, then observed payoff equals P and own payoff equals S. Therefore, we have

that

PCD = σCDf(T, S) + (σD − σCD) f(P, S). (2)

Finally, PD is only positive if the player in σD faced a player also in σD and observed a

player that belongs to σCC . In this case, observed payoff equals R while own payoff equals

P . Hence, we have that

PD =
σD − σCD

σD
σCCf(R,P ) (3)

if σD > 0, PD = 0 otherwise.

Let σtCC and σtCD denote the values of σCC and σCD respectively at each point in time

t = 0, 1, 2, . . . before the stage game is played with (σ0
CC , σ

0
CD) ∈ Ω given. At t = 0 and

prior to the starting of the game, all players not in σ0
CC are randomly and uniformly matched

into pairs. For notational convenience the argument t in the functions PCC , PCD and PD is

omitted.

The model just described can be expressed with the following system of difference equa-
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tions4:

σt+1
CD = σtCC (1− PCC) + σtCD (1− PCD) + σtDPD

−σtCC (1− PCC)2 −
(
σtCD (1− PCD) + σtDPD

)2
1− σtCC

, (4)

σt+1
CC = σtCC (1− PCC)2 +

(
σtCD (1− PCD) + σtDPD

)2
1− σtCC

(5)

if σtD > 0, σt+1
CD = σt+1

CC = 0 otherwise. Note that σtD > 0 implies σtCC < 1. Thus, σt+1
CD and

σt+1
CC are both well defined in all Ω.

Equation (4) tells us the measure of players who played C in period t and faced a player

who chose D in t. The value of σt+1
CD is computed as follows: The first three terms represent

all players who played C in t (note that players in σtCC and σtCD played C in t− 1 but may

have played D in t). The fourth term subtracts the pairs in σtCC where both players played

C again in t. Finally, the fifth term subtracts the players not in σtCC who chose C in t and

faced a player one who also chose C in t.

Equation (5) is the measure of players who chose C in period t and faced an opponent

playing C in t. The value of σt+1
CC is determined as follows: The first term adds the pairs in

σtCC where both players played C in t as well. The second term adds the players not in σtCC
who chose C in t and faced a player who also chose C in t.

Next, we define what an equilibrium of the model at hands is. Intuitively, an equilibrium

is a situation where the measure of players belonging to each of the sets σCC , σCD and σD

does not change. Formally:

Definition 1. An equilibrium is a point (σCC , σCD) ∈ Ω such that σt+1
CC = σtCC and σt+1

CD =

σtCD whenever σtCC = σCC and σtCD = σCD.

Definition 2. An interior equilibrium is an equilibrium where (σCC , σCD) ∈ ◦
Ω.

Among all interior equilibria it is useful to single out the assortative equilibria. An

assortative equilibrium is an interior equilibrium where a fraction of the population play C

against themselves while all other players choose D. That is, in an assortative equilibrium

σCD = 0 and the population is completely separated between cooperators and defectors.

Definition 3. An assortative equilibrium is an interior equilibrium where σCD = 0.

In order to illustrate the behavior of the model we present two simulations, both figures

1 and 2 show the evolution of σCC , σCD, and σD for certain parameter values where the
4Note that since we are dealing with a continuum population the system is deterministic.
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function f is given by what is known as the Proportional Imitation Rule (PIR henceforth)

with dominant switching rate (Schlag (1998))5:

f(π′, π) =
1

R− S
(
π′ − π) .

As it can be observed in figure 1, during the first periods the amount of cooperative

players matched with non-cooperative ones, σCD, decreases. This is due to the fact that,

during these first stages, most cooperative players enjoy less payoff than cooperative ones.

However, as times evolves, more and more cooperative players meet each other. After this

grouping stage is over, the payoff from cooperating is on average greater than that from

not cooperating. This happens because most cooperative players face players that are also

cooperative. The level of cooperation increases from there until all players have adapted the

cooperative action.

Figure 1: Simulation: PIR with T = 0.5, R = 0.4, P = 0, S = −0.1 and (σ0
CC , σ

0
CD) = (0, 0.5)

In figure 2, the payoff players in a cooperative pairs get is lower than in the previous

simulation. This results in an environment where cooperation vanishes from the population.

In figure 2 one can se that the number of players in σCC initially increases. This is simply

due to the fact that some of the players that belong σCD are matched together and, if they do
5A deeper exposition of the relationship between this and other imitation rules and our model is presented

in sections 3.3.1, 3.3.2 and 3.3.3.
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not change their action immediately, they belong σCC next period. However, the aggregate

level of cooperation decreases until cooperation eventually vanishes from the population.

Figure 2: Simulation: PIR with T = 0.5, R = 0.1, P = 0, S = −0.1 and (σ0
CC , σ

0
CD) = (0, 0.5)

3 Results

3.1 Random Matching

In this subsection we consider the benchmark case of random matching. Under random

matching, all pairs are broken after the stage game is played. We show that, under random

matching, cooperation vanishes for any interior initial condition. The full analysis of the

random matching case is presented in the appendix; here we restrict our attention to the

main result from this analysis.

Proposition 1. Under random matching, for any (σ0
CC , σ

0
CD) ∈ ◦

Ω

lim
t→∞σ

t
CC + σtCD = 0.

Proof. See Lemma 1 in the appendix.

As proposition 1 shows, under random matching cooperation does not survive in the
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population. This is the known result that under some monotonicity conditions (assumption

3) imitation rules out dominated actions.

With random matching, playing cooperatively is always dominated by the non-cooperative

behavior. This is partly because under random matching cooperating has no effect in any

period beyond the current one. As we shall see, once we add a certain correlation to the

matching process, playing cooperatively may no longer be a dominated action.

3.2 Correlated Matching

We now revert back to the case explained in section 2 where there is correlated matching, i.e.

pairs were both players cooperated are maintained in the next period. A first result is that

there exist no assortative equilibrium.

Proposition 2. No assortative equilibrium exists.

Proof. First, note that assuming the necessary and sufficient equilibrium conditions σt+1
CC =

σtCC and σt+1
CD = σtCD and adding equation (4) to equation (5) we obtain

σDPD − σCCPCC − σCDPCD = 0. (6)

The next step is to show that in an equilibrium with σCD = 0 no pairs in σCC are ever

broken. Assume the contrary, this means that some players from σCC choose D. Hence,

if we are at time t then σt+1
CC < σtCC unless a set of players in σtD switch to C. If this

happens, however, we have that some players will be matched against players who chose D

in t. Therefore, if a pair is broken, either σt+1
CC < σtCC or σt+1

CD > 0, a contradiction to the

definition of assortative equilibrium.

Given that in an assortative equilibrium no pairs are ever broken and that σCC ∈ (0, 1),

it follows that all players always choose the same action in the stage game. This implies that

players in σtCC obtain a payoff of R while players in σtD obtain a payoff of P . Thus, from

assumption 2, it follows that PCC = 0 and PD > 0. However, when PCC = 0, equation (6)

implies that

σDPD = 0. (7)

Since σCC ∈ (0, 1), σCD = 0 and PD > 0, we have that σDPD > 0, a contradiction to

(7).

The intuition behind the result above is straightforward: In an assortative equilibrium,

cooperative players, σCC , obtain a payoff of R whilst all the other players, 1 − σCC , obtain
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a payoff of P < R. Hence, non-cooperative players imitate cooperative ones but cooper-

ative players do not imitate non-cooperative ones. Therefore, the situation with complete

separation between cooperators and defectors is not an equilibrium.

3.3 No Interior Equilibria

We continue the analysis focusing on situations where the payoff matrix and the function

f are such that no interior equilibria exists. Interior equilibria are considered later in the

paper. In the appendix we examine the conditions needed for the non-existence of interior

equilibria. These conditions are not presented here simply for the ease of the exposition6.

We are now ready to state one of the main results of this paper. Namely, if certain

conditions on the payoff matrix and/or the specific imitative rule employed are satisfied,

then in the long run all players in the population cooperate.

Proposition 3. Assume no interior equilibria exist. If f(R,P ) > 2f(T,R)f(P, S), then for

all (σ0
CC , σ

0
CD) ∈ ◦

Ω

lim
t→∞σ

t
CC = 1.

If f(R,P ) < 2f(T,R)f(P, S), then for all (σ0
CC , σ

0
CD) ∈ ◦

Ω

lim
t→∞σ

t
D = 1.

Proof. Given that no interior equilibrium exists and that the equations for the dynamics of

both σCD and σCC , equations (4) and (5), are continuous we have that no cycles can exist.

Once this fact has been established the result of the proposition follows from proposition 4

in the next subsection.

The idea behind the survival of cooperation is the following: Imagine a situation where

only a small fraction of players cooperate. Some of these players will be matched together,

thus, they repeat partner next period. This set of players playing cooperatively and that are

matched together obtain the second-highest payoff, R. Since only very few players cooper-

ate, there is almost no player obtaining the maximum payoff, T . Therefore, under certain

conditions, more non-cooperative players imitate cooperative ones than cooperative players

imitate non-cooperative ones.
6As one can see in the appendix, close form expressions of the conditions for the non-existence of interior

equilibria are straightforward to compute for numerical examples. However, this is not the case when a general

payoff matrix and function f are considered.
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In what follows we seek a better understanding of the conditions in proposition 3 by

exploring how the population behaves when different imitative rules are assumed. We focus

our attention on three well known such rules: Proportional Imitation Rule, Imitate if Better

and Proportional Reviewing Rule.

3.3.1 Proportional Imitation Rule

The general form of the PIR is given by

f(π′, π) = s
(
π′ − π)

where s ∈ (0, 1/(T − S)] is called the switching rate. The simulation in figures 1 and 2

assumed s = 1/(T −S). This value of the switching rate is known as the dominant switching

rate as it leads to the imitation rule that yields a weakly higher expected increase than any

other switching rate in the decision maker’s payoff in a multi-armed bandit decision problem

(Schlag (1998)).

From proposition 3, it is straightforward to show the following characterization for the

PIR with dominant switching rate

Corollary 1. Assume no interior equilibria exist. If the stage game is the one given in table

1 and players employ the PIR with switching rate s = 1/(T−S) then for any (σ0
CC , σ

0
CD) ∈ ◦

Ω,

if (R− P )(T − S) > 2(T −R)(P − S), then limt→∞ σ∞CC = 1.

Proof. When players employ the PIR with s = 1/(T − S) we can rewrite the condition for

all player to cooperate in proposition 3 as

(R− P )(T − S) > 2(T −R)(P − S).

The result follows.

To get a better understanding of the result above, we consider a particular case of the

payoff matrix of the stage game.

Table 2: The Stage Game - Example

C D

C πb − πc, πb − πc −πc, πb
D πb,−πc 0, 0
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with 1 > πb > πc > 0. We can interpret πb as the benefit a player receives when her

partner cooperates and πc as the cost of cooperating. In this case, we have the following

result.

Corollary 2. Assume no interior equilibria exist. If the stage game is the one given in table 2

and players employ the PIR with switching rate s = 1/(πb+πc) then for any (σ0
CC , σ

0
CD) ∈ ◦

Ω,

if πb > πc
√

3, then limt→∞ σ∞CC = 1.

Proof. Comparing the stage games in tables 1 and 2 we have that T = πb, R = πb−πc, P = 0

and S = −πc. Using these values in corollary 1 gives the desired result.

Although s = 1/(T −S) is the dominant switching rate for multi-armed bandit problems,

it is the switching rate that is less likely to make cooperation possible in the long run. This

can be seen in the condition in proposition 3, the greater the value of f for any given payoff

matrix, the less likely the condition for all players to cooperate holds. As a matter of fact,

for any payoff matrix, if the switching rate is small enough then all players in the population

cooperate in the long run for any interior initial condition.

Corollary 3. Assume no interior equilibria exist. If the stage game is the one given in Table

1 and players employ the PIR then there exists a switching rate s̄ such that for all s < s̄ and

any (σ0
CC , σ

0
CD) ∈ ◦

Ω, we have limt→∞ σ∞CC = 1.

Proof. When player employ the PIR we can rewrite the condition for all player to cooperate

in proposition 3 as

s(R− P ) > 2s2(T −R)(P − S).

Thus, for any T > R > P > S with T,R, P, S ∈ R we can choose s small enough so that

the inequality above holds true.

A conclusion that can be drawn from corollary 3 is that when players are more cautious

in changing actions then cooperation is more likely to survive in the long run. As we shall

see in the next subsection, this fact also holds in the limit.

3.3.2 Imitate if Better

Imitate if Better (IB) consists of simply imitating with probability one whenever the action

observed yields more payoff than own action. That is, f(π′, π) = 1 for all π′ > π, f(π′, π) = 0

otherwise. We have the following result.
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Corollary 4. Assume the stage game is the one given in table 1 and that players employ IB.

For any (σ0
CC , σ

0
CD) ∈ ◦

Ω, we have limt→∞ σ∞CC = 0.

Proof. When player employ IB we can rewrite the condition for all player to cooperate in

proposition 3 as 1 > 2, which is evidently empty.

As it was already hinted in the previous subsection when the PIR was considered, if

the likelihood of imitation is higher, the chances of cooperation to arise are lower. In the

limit, when the probability of imitating is one if observed payoff is higher than own payoff,

cooperation vanishes for any interior initial condition.

The intuition for the fact that more cautious imitation makes cooperation more likely is

that as the benefits from cooperating appear after cooperators repeat partner, if players are

more likely to change their actions, then is much less likely that the benefits from repeating

partner ever occur. Since these benefits are what makes cooperation possible in our setting,

the fact that players change partner more often because of changing action more often makes

cooperation harder to sustain. We extend this finding to a situation where interior equilibria

are present and to any imitation rule in proposition 6 in the next subsection.

3.3.3 Proportional Reviewing Rule

The Proportional Reviewing Rule (PRR) is similar to the PIR except that own payoff is

ignored. That is, the general form of the PRR is given by

f(π′, π) = sπ′

with s ∈ (0, 1/(T − S)]. Again, the parameter s is called the switching rate.

Corollary 5. Assume the stage game is the one given in table 1 and that players employ the

PRR with switching rate s = 1/(T − S). For any (σ0
CC , σ

0
CD) ∈ ◦

Ω, if R(T − S) > 2TP , then

limt→∞ σ∞CC = 1.

Proof. When player employ the PRR we can rewrite the condition for all players to cooperate

in proposition 4 as

R(T − S) > 2TP.

An immediate consequence from the corollary above is that if players employ the PRR

and that the stage game is the one in table 2, then in the long run all players cooperate for
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any interior initial condition. This is the case since in table 2, P = 0 and, thus, under the

PRR players that belong to σCD only imitate those in σD that were matched with a player in

σCD. Therefore, since players in σCD are less likely to change to the non cooperative action,

their share in the population increases and eventually they are matched together and, hence,

repeat partner next period, i.e. they belong σCC . This process continues until all players

cooperate.

3.4 Interior Equilibria

We now consider situations where interior equilibria are present. The difficulty of dealing

with these lie in the order of the system at hands. As the system in (4) and (5) is of order six,

checking for the existence and/or stability of interior equilibria for a general payoff matrix

and an arbitrary function f becomes a highly complex computational task. Ultimately, this

means that we no longer present results about global converge. We proceed by restricting

our attention first to local results and then we present a simulation where interior equilibria

exist.

We need to define certain properties of the different equilibria when dealing with local

results. The definitions below are based on Khalil (1995).

Definition 4. Let Br(σCC , σCD) be the ball of radius r > 0 around the point (σCC , σCD) ∈ Ω.

The equilibrium (σCC , σCD) ∈ Ω is

• stable if for any ε > 0 there exists δ > 0 such that if (σ0
CC , σ

0
CD) ∈ Ω ∩ Bδ(σCC , σCD)

then (σtCC , σ
t
CD) ∈ Ω ∩Bε(σCC , σCD) for all t ≥ 0,

• unstable if it is not stable,

• asymptotically stable if it is stable and δ > 0 can be chosen such that for any κ < ε if

(σ0
CC , σ

0
CD) ∈ Ω ∩Bδ(σCC , σCD) then

|| lim
t→∞(σtCC , σ

t
CD)− (σCC , σCD)|| < κ,

• a repeller if there exists a δ > 0 such that if (σ0
CC , σ

0
CD) ∈ Ω ∩ Bε(σCC , σCD) for all

ε ∈ (0, δ) then (σtCC , σ
t
CD) /∈ Ω ∩Bδ(σCC , σCD) for some t ≥ 0,

Cooperation in the long run

Even if interior equilibria exist and independently on whether they are stable or not,

cooperation can survive in the population under the same conditions as those in proposition

3. Our second main result states this very fact. The reason for the survival of cooperation in
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the presence of interior equilibria is the same as the one behind the intuition of proposition

3.

Proposition 4. If f(R,P ) > 2f(T,R)f(P, S), then the equilibrium (0, 0) ∈ Ω is a repeller.

On the other hand, if f(R,P ) < 2f(T,R)f(P, S), then the equilibrium (0, 0) ∈ Ω is asymp-

totically stable.

Proof. See the appendix.

Note that most of the analysis carried out on the PIR, IB and PRR still applies in the

presence of interior equilibria. The only difference is that if no interior equilibria are present

then cooperation being sustainable implies that all players cooperate in the long run.

All cooperate asymptotically stable

Even if the condition in proposition 4 is not satisfied, cooperation may still survive if the

initial amount of cooperators is high enough. This is proven in our next result.

Proposition 5. If f(T,R)
(

2 + f(T,R)
(

2
f(R,P ) − 1

))
< 1, then the equilibrium (1, 0) ∈ Ω

is asymptotically stable. On the other hand, if f(T,R)
(

2 + f(T,R)
(

2
f(R,P ) − 1

))
> 1, then

the equilibrium (1, 0) ∈ Ω is a repeller7.

Proof. See the appendix.

The relationship between the conditions in proposition 4 and proposition 5 are ambigu-

ous as parameter values and imitation functions can be found such that all four possible

combinations are possible.

To understand the result in proposition 5, imagine a situation where almost all play-

ers cooperate. In this case, if most defectors face other defectors, then cooperative players

achieve higher payoff than non-cooperative ones. Thus, under certain conditions, the amount

of cooperators increases until all players cooperate. Assume, on the other hand, that most

defectors face cooperators. In this situation, defectors achieve higher payoff than cooperators

and, thus, the total amount of cooperation decreases. However, the correlation in the match-

ing process favors matches between cooperators and tends to leave defectors matched with

other defectors. If the condition in proposition 5 is satisfied, the payoff from cooperating

eventually surpasses that of non-cooperating and the amount of cooperation increases in the

population until all players cooperate.
7If f(R,P ) = 0 then σtD ≥ σ0

D for all t.
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Cautious imitation

As already hinted when the different imitation rules where explored, we can deduce from

proposition 4 that more cautions imitation makes cooperation more likely. Hence, in a setting

where players are less likely to change actions cooperation is more likely to be present in the

long run. If we consider the limit where players change actions very infrequently we have the

following result:

Proposition 6. Assume the stage game is the one given in table 1. There exists a function

f̄ such that for all f(x, y) < f̄(x, y) with x, y ∈ R and any (σ0
CC , σ

0
CD) ∈ ◦

Ω, we have

limt→∞ σ∞CC > 0.

Proof. Take any function f that can be written as f(π′, π) = sg(π′, π) for some s > 0 and

some function g weakly increasing in its first argument and weakly decreasing in its second

argument. Examples of such functions include the PIR, the PRR and f(π′, π) = s.

The condition in proposition 4 means that cooperation does not vanish from the popula-

tion if and only if f(R,P ) > 2f(T,R)f(P, S). This condition can be rewritten as sg(R,P ) >

2s2g(T,R)g(P, S). Thus, for any T > R > P > S and any g we can find an s > 0 small

enough so that cooperation survives in the long run. This gives the desired result.

Note that proposition 6 above also means that if no interior equilibria are present then

for all payoff matrixes we can find a function f̄ such that for all f < f̄ the unique stable

equilibrium has all players cooperating.

Simulation

The behavior of the model when interior solutions are present is illustrated in figure 3.

In the simulation performed on the left hand size the initial level of cooperation in relatively

low, (σCC , σCD) = (0, 0.1). On the contrary, in the simulation on the right hand side the

initial level of cooperation in relatively high, (σCC , σCD) = (0.8, 0.1). The parameters of the

payoff matrix are set to the same values as those in figures 1 and 2 except that the value of

R, the payoff a cooperative couple obtain, lies in between the one used in figure 1 and the

one used figure 2. The imitation rule employed is again given by the PIR with dominant

switching rate. One can check that the parameter values and imitation function used are

such that both (σCC , σCD) = (0, 0) and (σCC , σCD) = (1, 0) are repellers.

As we can see on the left hand side of figure 3, the system converges to an interior

equilibrium where slightly over 18% of the population cooperates. On the right hand side of

figure 3, the initial level of cooperation is relatively high as 90% of the population initially

cooperates yet this results in the same level of cooperation in the long run as before.
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Figure 3: Simulation: PIR with T = 0.5, R = 0.26, P = 0, S = −0.1. Left hand side:

(σ0
CC , σ

0
CD) = (0, 0.1), right hand side: (σ0

CC , σ
0
CD) = (0.8, 0.1).

4 Literature, Discussion and Other Matching Protocols

4.1 Literature: Bergstrom and Stark (1993) and Bergstrom (2003)

Bergstrom and Stark (1993) consider an evolutionary model where every player’s behavior

is hard wired to be either cooperate or defect. Each couples’s offspring imitates either the

behavior of their parents or the behavior of a random individual from the population and

then plays a prisoner’s dilemma game with each of her two siblings. The chances to survive to

reproductive age depend on the payoff obtained and players that survive until reproductive

age are then matched and reproduce. In Bergstrom and Stark (1993) cooperation does not

survive if the offspring always imitate a random player from the population. This is the case

as in their model the prisoner’s dilemma game is played with one’s siblings, whose behavior

may not represent the average behavior in the population. That is, the prisoner’s dilemma

game is played locally with one’s siblings yet the imitation takes place at a population level.

In our model, imitation also takes place at a population level, all players in the population

are equally likely to be observed. However, players who are not in a cooperative couple are

randomly matched with another player from the entire population of non-cooperative couples.

That is, as opposite to our model, in Bergstrom and Stark (1993) matching is local.

Bergstrom (2003) presents an evolutionary model where, as in Bergstrom and Stark

(1993), players are hard wired to be either cooperators or defectors. In Bergstrom (2003)

the shares of each of the two types of players in the population change according to their

18



expected payoff. Thus, for instance, if cooperators get higher payoff than defectors then their

share in the population increases whilst the share of defectors in the population decreases. In

Bergstrom (2003) matching is assortative as the probability of meeting a player of the same

type is different than the probability of meeting a player of a different type. The author shows

conditions in the probability that matchings are assortative under which cooperation prevails

in the long run. As we discuss below, if matching is completely assortative: cooperators only

meet cooperators and defectors only meet defectors, then cooperation is more likely to arise

than in the model presented in this paper, where assortative matching only occurs when the

two players in a pair cooperate.

4.2 Discussion

The long run behavior of the population can be determined to a certain extend by the initial

condition. For example, if no player cooperates initially, then no player ever cooperates. This

fact disappears if, for example, mutations or mistakes are introduced in the model. Given

that we are dealing with a continuum of population, introducing mistakes is straightforward.

Assume that at any given period with a small probability ε > 0 each player makes a

mistake and chooses the action she intended not to. In this case and given that a continuum of

population exists, each period exactly a fraction ε of players make mistakes. More specifically,

a fraction ε(σCC + σCD) of players that intended to choose C play D, and a fraction εσD of

players that intended to choose D play C.

Results presented are still valid if, in the model with mistakes, an equilibrium is defined

as the situation where for any ε the change in σCC and σCD is always smaller or equal than

εσCC and εσCD respectively. The convenience of adding mistakes is that unstable equilibria

are eliminated. That is, in the model with mistakes, if f(R,P ) > 2f(T,R)f(P, S), then

cooperation emerges independently of the initial conditions.

In the model presented, when it comes to imitating another player all agents in the

population are equally likely to be observed. A sensible alternative is then to have correlation

in sampling. For instance, one can consider a situation where cooperators are more likely

to observe other cooperators and defectors are more likely to observe other non-cooperative

players. In this case, if cooperation can be present in the model considered in this paper then

cooperation is more likely in a setting where there is correlation in sampling. This is the case

as if players are more prone to observe those who choose their same action, then chances of

imitating are lower as a requirement for imitation is that a player choosing a different action

should be observed. However, as it can be inferred from proposition 6, if the probability of

imitating is lower, then cooperation is more likely to be present in the long run.
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4.3 Other Matching Protocols

In this paper, we consider a matching mechanism whereby only the pairs where both play-

ers cooperate are maintained. This matching mechanism captures the simple idea that a

player should have no incentives to repeat partner unless the partner played cooperatively

last period. There are, however, other matching settings that could be considered. In this

subsection we explore different matching protocols as well as justify why players may have

incentives to keep cooperative partners only.

Assortative matching

An alternative matching protocol is such that matching is correlated for all the players

who choose the same strategy as their partners, i.e. not only the couples where both players

cooperate are maintained, pairs where both players do not cooperate are also maintained. In

this case cooperation is possible for a bigger set of parameter values than in our main model.

This is the case since the payoff of non-cooperative players is lower than in our original model

as this players are less likely to be matched with a player being cooperative. In the model

presented, this is as if players in σD who where matched with a player also in σD repeat

partner and, thus, cannot be matched with a player in σCD, which is the matching that gives

the highest payoff to defectors.

All pairs are kept

Another sensible option is to assume that players always keep their partners. In this case,

cooperation is more likely to be present in the long run when compared to our main model as

defectors are less likely to find a cooperator to take advantage of. That is, if all players repeat

partner, then assortative matching tends to occur faster. This is the case as the cooperative

players that are matched with a non-cooperative one are more likely to change to the non-

cooperative action as they repeat couple and their partner does not change action (as she gets

the highest possible payoff). However, a population that is separated between cooperators

and defectors is not stable as the former always get more payoff than the latter. Thus, the

share of cooperative pairs increases as gradually every two players in a non-cooperative pair

switch simultaneously to the cooperative action.

Pairs are kept with some fixed probability

A further matching protocol is such that players keep their partner with some exogenous

probability. This setting is a mixture between the case where players never keep their partner

(random matching, section 3.1) and the case just described above. Therefore, one should

expect the chances that cooperation survives to depend on the exogenous probability by

which pairs are kept.
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Correlation is not perfect

A fourth alternative has cooperative pairs maintained with a probability that is less than

one. This imperfect correlation setting makes cooperation harder to be sustained as what

makes cooperation possible in the main model are the benefits from repeating partner when

both parties cooperate.

Why keeping only cooperative partners?

We argued in the introduction that it seems a reasonable rule of thumb not to keep a

non-cooperative partner. A question is then to which extend this rule of thumb can appear

if players rationally decide whether to keep their partner or not. Given that players prefer

cooperative partners simply because facing a cooperative player strictly payoff dominates

facing a non-cooperative one, a rational player chooses the option where the chances of

finding a cooperative partner are highest.

If players in σCC keep their current couple then the chances of having a cooperative partner

are 1− PCC . If, however, they choose not to keep their couple, then they are matched with

another player at random from the population of σCD and σD. In this case the chances of

finding a cooperative partner are 1
1−σCC (σCD(1− PCD) + σDPD). It is not hard to show that

1− PCC > 1
1− σCC (σCD(1− PCD) + σDPD)

and, thus, chances of having a cooperative couple are highest for players in σCC if they keep

their current partner.

Clearly, players in σCD want to change partner has their couple played D and obtained the

maximum possible payoff and, furthermore, by changing partner there is some probability of

facing a player also in σCD who cooperates with them. Finally, players in σD have incentive to

change partners if their chances of meeting a cooperative player increase by facing a random

partner. If the player in σD faced a player in σCD then she looses her couple as the player

in σCD wants top change partner. On the other hand, if the player in σD faced a player

also in σD then the chances that their current partner cooperates is given by σCCf(R,P )

whilst the chances of having a cooperative partner if they change their couple are given by
1

1−σCC (σCD(1− PCD) + σDPD). It is not hard to show that if f(R,P ) < 0.5 then

σCCf(R,P ) <
1

1− σCC (σCD(1− PCD) + σDPD)

and, thus, all players in σD have the highest chances of meeting a cooperative player if they

change their partner. If f(R,P ) ≥ 0.5 then under some circumstances players in σD who

faced a player also in σD prefer to keep their current partner. As already argued above when

assortative matching was considered, if this was allowed then cooperation would be possible

for a bigger set of parameter values than in our main model.
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5 Conclusions

The present paper investigated cooperation in a setting where players who learn by imitation

are matched to play a Prisoner’s Dilemma game. Our contribution to the literature lies in

the way matching takes place: players that belong to a pair were both parties cooperated

repeat partner while the rest of players are randomly matched into pairs.

In the benchmark case with random matching, we showed that cooperation vanishes for

any interior initial condition. When moving to the correlated matching setting, we proved

that if some conditions on the payoff matrix and/or the specific way imitation takes place are

satisfied, then a positive amount of cooperation appears from any interior initial condition.

Furthermore, we found that no assortative equilibrium exists and that a situation where all

players cooperate can be stable in the long run. Finally, we showed that if players change

actions less frequently then cooperation has higher chances of surviving.
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Appendix

Random Matching

With random matching, there is no need to distinguish between players who cooperated

and were paired with a player who also cooperated, σCC , and players who cooperated and

faced a player who did not cooperate, σCD. Thus, these two sets of players are grouped into

the same set σC .

Let σt+1
C the fraction of players who chose C at time t with σ0

C ∈ [0, 1] given. Let 1− σC
be the fraction of players who chose D at time t. Furthermore, let PRC : A2×R2 → [0, 1] be

the probability with which a cooperative player switches to D and let PRD : A2×R2 → [0, 1]

be the probability with which a player who chose D switches to C. Assume PRC and PRD

satisfy Assumptions 1− 3. The evolution of σC is then given by

σt+1
C = σtC(1− PRC) + (1− σC)PRD. (8)

Proceeding in a similar fashion as in equation (2), PRC is positive only if the player in

σC observed a player in 1−σC . Three different situations can occur now: First, if the player

23



in σC faced a player in σC and observed a player who faced another one in σC , then own

payoff equals R while observed payoff equals T . Second, if the player in σC faced a player in

1− σC and observed a player who faced another one in σC , then own payoff equals S while

observed payoff equals T . Finally, if the player in σC faced a player in 1− σC and observed

a player who faced another one in 1 − σC , then own payoff equals S while observed payoff

equals P . Therefore, we have that

PRC = (1− σC)
[
σ2
Cf(T,R) + (1− σC)σCf(T, S) + (1− σC)2f(P, S)

]
. (9)

On the other hand, we have that PD is positive only if the player in 1−σC faced another

one who played D, and observes an individual choosing C that faced a player who also chose

C. In this case, observed payoff equals R while own payoff equals P . Hence, we can write

PRD as follows:

PRD = (1− σC)σ2
Cf(R,P ). (10)

Lemma 1. With random matching only σC = 1 and σC = 0 are equilibria. Furthermore, for

any σ0
C ∈ (0, 1)

lim
t→∞σ

t
C = 0.

Proof. We can see from equation (8) that both σC = 1 and σC = 0 are equilibria. The proof

is completed by showing that from any point σC ∈ (0, 1) the system converges to σC = 0.

If σC ∈ (0, 1), using Assumptions 2 and 3 we obtain the following:

σ2
Cf(T,R) + (1− σC)σCf(T, S) + (1− σC)2f(P, S) > (1− σC)σCf(T, S)

≥ (1− σC)σCf(T, P )

≥ (1− σC)σCf(R,P ).

Thus, we have that

σCf(R,P ) < σ2
Cf(R,P ) + σ2

Cf(T,R) +

(1− σC)σCf(T, S) + (1− σC)2f(P, S).

Multiply both sides by σC(1− σC) and use equations (10) and (9) to obtain

PRD < σC (PRC + PRD) . (11)

From (8) we have that ∆σC = PRD − σC(PRC + PRD). Hence, by equation (11), we

know that whenever σC ∈ (0, 1), ∆σC < 0. Thus, no point σC ∈ (0, 1) can be an equilibrium

and the system cannot converge to σC = 1 from any initial condition σC ∈ (0, 1).
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We still have to show that the system cannot converge to a point that is not an equilibrium.

This is straightforward since ∆σC is a polynomial in σC and, hence, continuous for all σC ∈
[0, 1].

On the Existence of Interior Equilibria

In order to characterize the existence of interior equilibria, we have to examine the equi-

libria of the system given in (4) and (5). As already stated in the main text, a necessary

condition for equilibrium is that equation (6) has to hold. If we substitute the values of

PCC , PCD and PD then equation (6) becomes

σCCσCD (f(T,R) + f(R,P )) + σCDσDf(P, S)

−σCCσDf(R,P ) + σ2
CD (f(T, S)− f(P, S)) = 0. (12)

Furthermore, if we impose the necessary equilibrium condition σt+1
CC = σtCC and substitute

(12) in (5) we obtain

σCCPCC (2− PCC)− 1
1− σCC (σCD + σCCPCC)2 = 0.

If we then substitute the value of PCC we have

(1− σCC)
(
σCCσ

2
CDf(R, T )2 − 2σCCσCDf(T,R)

)

+σ2
CD (1 + σCCf(T,R) (2 + σCC)) = 0. (13)

Equations (12) and (13) together with the fact that σD = 1− σCC − σCD and σCD ≤ σD
are necessary and sufficient conditions for equilibrium. Thus, an interior equilibrium exists

if there is a (σCC , σCD) ∈ ◦
Ω such that both (12) and (13) are satisfied.

Proof of proposition 3

Proof. Define the set Σr = (σCC , σCD) ∈ ◦
Ω ∩ Br(0, 0). For sufficiently small ε > 0 we can

disregard terms of order o(ε2) and write the system (4) and (5) when (σCC , σCD) ∈ Σε as

σt+1
CD − σtCD = σtD

(
f(R,P )σtCC − f(P, S)σtCD

)
,

σt+1
CC − σtCC = 0.

The approximation above is correct up to a term of order ε2. Thus, when the process is

arbitrarily close to (0, 0), the change in σCC with respect to the change in σCD is negligible.
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The system above converges to σCD = σCC
f(R,P )
f(P,S)

8. Hence, if we start in Σε with ε small,

the process converges to a situation where σCD = σCC
f(R,P )
f(P,S) . The system may hit the path

σCD = σCC
f(R,P )
f(P,S) outside the set Σε. This poses no problem as the further away from (0, 0)

the system can be in this case is within the set Σ
ε
f(R,P )
f(P,S)

, which is also arbitrarily close to

(0, 0) when ε is small.

After starting in Σε and once the system reaches σCD = σCC
f(R,P )
f(P,S) , we can rewrite (5) as

σt+1
CC − σtCC =

(
σtCC

)2 f(R,P )
f(P, S)

(
f(R,P )
f(P, S)

− 2f(T,R)
)
.

The equation of the motion of σCD is irrelevant because in the neighborhood of (0, 0) the

system moves along the path σCD = σCC
f(R,P )
f(P,S) as we just proved. To be more precise, the

Center Manifold Theorem is being used here (see Sastry (1999) Section 7.8 or Khalil (1995)

Section 8.1).

By Bézout’s Theorem, the system (4) and (5) has a finite number of solutions (see Kirwan

(1992)). Thus, we can fix ε > 0 such that no equilibrium points exists in Σε r (0, 0).

For any κ < ε, if f(R,P ) > 2f(T,R)f(P, S) then σt+1
CC − σtCC > 0. Thus, since σt+1

CC −
σtCC > 0 and σCD = σCC

f(R,P )
f(P,S) , if the system starts in the boundary of Σκ, then it will leave

that set. Assume that the system, after leaving Σκ, does not hit the boundary of the other

bigger set Σε. Since for any point in Σε we have that σt+1
CC − σtCC > 0, by continuity of (5)

and (4) if the process does not hit the boundary of Σε then we must have that there exists a

point (σCC , σCD) ∈ Σε r (0, 0) such that σt+1
CC − σtCC = 0 and, thus, σt+1

CD − σtCD = 0. That

is, there must exists at least one equilibrium point in Σε r (0, 0), which is a contradiction.

Thus, if the process starts in Σκ, then it must hit the boundary of Σε. We know that for

any point in Σε, if f(R,P ) > 2f(T,R)f(P, S) then σt+1
CC − σtCC > 0 and σCD = σCC

f(R,P )
f(P,S) .

Thus, starting in boundary of Σκ the process leaves Σε, which is the condition for the point

(0, 0) ∈ Ω to be a repeller.

Assume now that f(R,P ) < 2f(T,R)f(P, S). By continuity, σt+1
CC − σtCC < 0, σCD =

σCC
f(R,P )
f(P,S) and the fact that no equilibrium point exists in Σε r (0, 0), if the system starts

in Σε r Σκ then it eventually enters the set Σκ for any κ < ε. This is the condition for

asymptotic stability.

8If f(P, S) = 0 then the result in the lemma follows.
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Proof of proposition 5

Proof. Proceeding in a similar fashion as above, define the set Σ′r = (σCC , σCD) ∈ ◦
Ω∩Br(1, 0).

For sufficiently small ε > 0, we can disregard terms of order o(ε2) and write σt+1
D using the

system (4) and (5) when (σCC , σCD) ∈ Σ′ε as

σt+1
D − σtD = σtCD (f(R,P ) + f(T,R))− σtDf(R,P ).

Assume ε is such that no equilibrium points exists in Σ′ε r (1, 0). Then the system

above converges to σD = σCD

(
1 + f(T,R)

f(R,P )

)
9. Hence, if we start in Σ′ε with ε small, the

process converges to a situation where σD = σCD

(
1 + f(T,R)

f(R,P )

)
. The system may hit the path

σD = σCD

(
1 + f(T,R)

f(R,P )

)
outside the set Σ′ε. This poses no problem as the further away from

(1, 0) the system can be in this case is within the set Σ′
ε
�

1+
f(T,R)
f(R,P )

�, which is also arbitrarily

close to (1, 0) when ε is small.

After starting in Σ′ε and once the system reaches σD = σCD

(
1 + f(T,R)

f(R,P )

)
, we can rewrite

(5) as

σt+1
CC − σtCC =

(σtCD)2

1− σtCC

(
1− f(T,R)

(
2 + f(T,R)

(
2

f(R,P )
− 1
)))

=
(σtCD)2

1− σtCC
A

with A = 1− f(T,R)
(

2 + f(T,R)
(

2
f(R,P ) − 1

))
.

For any κ < ε, if A < 0 then σt+1
CC − σtCC < 0. Thus, since σt+1

CC − σtCC < 0 and

σD = σCD

(
1 + f(T,R)

f(R,P )

)
, if the system starts in the boundary of Σ′κ, then it will leave that

set. Assume that the system, after leaving Σ′κ, does not hit the boundary of the other bigger

set Σ′ε. Since for any point in Σ′ε we have that σt+1
CC − σtCC < 0, by continuity of (5) and (4)

if the process does not hit the boundary of Σ′ε then we must have that there exists a point

(σCC , σCD) ∈ Σεr (1, 0) such that σt+1
CC −σtCC = 0 and, thus, σt+1

CD −σtCD = 0. That is, there

must exists at least one equilibrium point in Σε r (1, 0), a contradiction.

Thus, if the process starts in Σ′κ, then it must hit the boundary of Σ′ε. We know that for

any point in Σ′ε, if A < 0 then σt+1
CC − σtCC < 0 and σD = σCD

(
1 + f(T,R)

f(R,P )

)
. Thus, starting

in boundary of Σ′κ the process leaves Σ′ε, which is the condition for the point (1, 0) ∈ Ω to be

a repeller.

Assume now that A > 0. By continuity, σt+1
CC −σtCC > 0, σD = σCD

(
1 + f(T,R)

f(R,P )

)
and the

fact that no equilibrium point exists in Σε r (1, 0)′, if the system starts in Σ′ε r Σ′κ then it

eventually enters the set Σ′κ for any κ < ε. This is the condition for asymptotic stability.
9If f(R,P ) = 0 then σtD ≥ σ0

D for all t. Furthermore, convergence is guaranteed as no equilibrium point

exists in Σ′ε r (1, 0) and, thus, Σ′ε r (1, 0) cannot contain any cycle.
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