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1 Introduction

A decision maker typically faces a lot of uncertainty when deciding over a course

of action. For example, investors know they face the risk of losing all their money.

Students do not know which University degree maximises their future job market

prospects. Consumers do not know which product offers the best price/quality ratio...

To be more specific, suppose someone has the opportunity to invest in a project whose

returns are positively correlated with the “general future health of the U.S. economy”.

Obviously, assessing the future state of the U.S. economy is a hard task and no human

being is smart enough to make an errorless prediction about it. However, investors

do not live like Robinson Crusoe - isolated on an island. Instead, they realise that

the economy is populated by many other potential investors who all face the same

type of risk. Moreover, they know that if they were to meet and exchange opinions,

this would enable them to reduce their forecasting error. But if investors really care

about one another’s opinions, how will this information be disseminated throughout

the economy?

Casual observation of everyday life suggests there are two different channels through

which investors may learn about one another’s opinions: one may learn through words

or one may learn through actions. With the former, we have in mind a situation in

which one investor simply tells her opinion to (possibly many) other investors. For

example, every now and then managing directors of important companies appear in

the media and express their opinions on a wide range of issues such as future techno-

logical developments, future oil prices, future market growth, etc... Some institutions

are even specialised in collecting and summarising the opinions of a large number

of market participants. For example, the Munich-based IFO institute for economic

research releases a quarterly index reflecting the business confidence of the average

German investor. With learning through actions, we mean that if someone invests in

a one-million-dollar project in the U.S., this reveals her confidence in the American

business climate.

In this paper, we analyse the interaction between both communication channels.

More specifically, we consider the following set-up: N players must take an investment

decision and possess a private, imperfect signal concerning the future state of the

world. Investment is only profitable in the good state. For the sake of simplicity,

we assume that the returns of the investment project only depend on the state of

the world. Hence, for efficiency reasons one would want to have all players truthfully

exchanging their signals. Players can invest in two periods. In the second period,

everyone observes how many agents invested at time one. One randomly drawn
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player (the sender) is asked to divulge her private information (i.e. her signal) to the

other players (the receivers) prior to the first investment period, and we compute all

monotone equilibria1 of our game.

We first show that both communication channels do not co-exist peacefully, in the

sense that there does not exist a monotone equilibrium in which the sender truthfully

announces her private information and in which subsequently a lot of information

is generated through actions. This tension between both communication channels

manifests itself differently depending on the surplus generated by the project: for low

surplus projects the unique monotone equilibrium is the pooling one2, while for high

surplus projects there also exists an equilibrium in which the sender truthfully re-

veals her private information but in which “little” information is transmitted through

actions.

The intuition behind this result goes as follows: in our model expected payoffs are

driven by the relative number of optimists in the economy (the higher the proportion

of optimists in the population, the higher the probability that the world is in the good

state). At time two all players observe the number of period-one investments and use

this knowledge to get an “idea” of the proportion of optimists in the economy. This

updating process depends on the period-one investment strategies3 (which are affected

by the sender’s message). If the investment only generates a low surplus, pessimists

will - independently of the sender’s message - never invest in the first period. Both

sender’s types then want to send the message which makes the optimists invest with as

large a probability as possible4. Thus both sender’s types share the same preferences

over the receivers’ actions, and therefore no information can be transmitted through

cheap talk. For high surplus projects, however, this intuition is incomplete. In that

case all players face a positive gain of investing after receiving the message “I am

an optimist”. If a player then believes that everyone will invest at time one, it’s

optimal for her to do so too (i.e. an informational cascade5 in which everyone invests

1Bluntly stated, in a monotone equilibrium we rule out the (unintuitive) possibility that pes-
simistic players are more likely to invest (at time one) than optimistic ones.

2In this equilibrium no credible information is transmitted through words, but “a lot” of infor-
mation is transmitted through actions.

3For example, upon observing k period-one investments, players compute different posteriors if
pessimists invested (at time one) with zero probability and optimists with a probability equal to
one, than if pessimists invested with the same probability as the optimists.

4If the sender succeeds for example in making the optimistic receivers invest with probability
one, she perfectly learns the proportion of optimists in the population.

5All players - irrespective of their private information - rely on the public information (i.e. the
message of the sender) and take the same action at time one. By definition, this is an informational
cascade.
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is ignited by the arrival of a favourable message). In our model this informational

cascade induces a pessimist to send the message “I am a pessimist”: if she were to

deviate and sent instead the message “I am an optimist”, she wouldn’t be able to

learn anything about the proportion of optimists in the population and would never

invest. An optimist faces a high opportunity cost of waiting, and independently of

her message, invests at time one. Hence, she cannot gain by sending the message “I

am a pessimist”.6

We next argue that our analysis allows us to draw some positive and norma-

tive conclusions. In particular, we show that an investment subsidy, by artificially

increasing the surplus generated by the project, promotes truthful revelation of pri-

vate information. However, this does not mean that an investment subsidy always

increases welfare: a social planner knows that if the subsidy induces truthful reve-

lation, this comes at the cost of less information transmission through actions. In

the paper we show that a social planner may even want to tax investments to cause

information to be revealed through actions instead of words. Finally, we also show

that a more able sender (i.e. a sender possessing a more precise signal) has more

incentives to truthfully reveal her private information than a less able one.

This paper belongs to the literature on informational cascades (see a.o. Baner-

jee (1992), Bikhchandani, Hirschleifer and Welch (BHW,1992), Chamley and Gale

(CG,1994), Chamley (2001),...). Those papers assume away any preplay commu-

nication and study the efficiency properties of social learning (= learning through

actions). We provide a justification for this approach: for low surplus projects, no

information can be transmitted through words because players want to influence their

future learning capabilities. In those papers the public information is the consequence

of some costly actions undertaken by the early movers: for example a second mover

knows that the first mover is an optimist because she spent money to undertake a new

investment project. Hence, in those papers the credibility of the public information is

not an issue. In this paper it is costless to send public information, and its credibility

must therefore be carefully checked. Those papers show how an informational cascade

develops as a consequence of the arrival of some early (and credible) information. In

this paper, we show that the causality can also be reversed: it is the informational

cascade, by reducing the gain of sending the message ”I am an optimist”, which causes

the public information to be credible.

6Note that in the separating equilibrium information only gets transmitted through actions when
the sender announces “I am a pessimist”. As will become clear below, the amount of information
produced after the arrival of an unfavourable message is always lower than the one that would have
been produced in the absence of cheap talk (or in the pooling equilibrium).
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Obviously, this is not the first paper to investigate the credibility of cheap talk

statements. In a seminal paper, Crawford and Sobel (1982) already analysed the

issue of information transmission through cheap talk. However, in their model the

receiver chooses an action which influences both player’s payoffs after having received

a message from the informed sender. In our model the sender first sends a message

and then plays a (waiting) game with the receivers. Farrell (1987,1988), Farrell and

Gibbons (1989) and Baliga and Morris (2000) also assume that both players play

a game after having received or sent a message. However, they consider a very

different game: in Farrell (1987,1988) and Baliga and Morris the communication

stage is followed by a coordination game, while in Farrell and Gibbons both players

engage in a bargaining game after the communication stage. As we consider a (very)

different game, we also get very different results: Crawford and Sobel have shown

how the credibility of cheap talk statements are undermined when the sender and

the receiver have different preferences over the optimal action, Baliga and Morris

argued that positive spillovers impede information exchange, while we show how social

learning may destroy incentives for truthtelling (and how informational cascades help

in restoring these incentives).

This paper is organised as follows. In section two, we present our two-stage game.

In the third section, we take the players’ posteriors as given and solve for all monotone

continuation equilibria. We next compute equilibrium strategies in the sender-receiver

game (section four). We first show how the credibility of cheap talk may be under-

mined when players can postpone their investment decisions (Proposition 2). Next,

we show how this credibility can be restored by an informational cascade (Propo-

sition 3). In section 5, we discuss some normative and positive implications of our

theory. In section 6 we analyse the case in which the sender may be uninformed.

Final comments are summarised in the seventh and final section.

2 The Model

Assume that a population of N ≥ 5 risk neutral players must decide whether to in-

vest in a risky project or not. The value V of the investment project can take two

values: V ∈ {1, 0}, with equal probabilities . The state of the economy is described

by Θ ∈ {G, B}. If Θ = G the good state prevails and V = 1 whereas if Θ = B, the

economy is in a bad state and V = 0. The cost of the investment project is denoted

by c. Each player receives a private, conditionally independent signal concerning the

realised state of the world. Formally, player l’s signal sl ∈ {g, b} (l = 1, ..., N) where

Pr(g|G) = Pr(b|B) = p > 1
2
. We assume that:
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A1: 1 − p < c < p.

A1 implies that a player who received signal g is - a priori - willing to invest (Pr(G|g) =

p > c), and that a player who received a signal b is a priori not willing to invest

(Pr(G|b) = 1− p < c). Henceforth, we call a player who received a good (bad) signal

an optimist (pessimist)7. If c ≤ 1
2

(c > 1
2
), we call the investment opportunity a high

(low) surplus project. We analyse the stage game that unfolds as follows:

-1 The state of nature is realised and players receive signals,

0 A randomly selected player i is asked to report her signal. Her message, ŝi ∈
{g, b}, is made public to all the other players,

1 All players make investment decisions,

2 All players observe who invested at time one, and those who haven’t invested

yet make new investment decisions,

3 All players learn the true state of the world. Payoffs are received and the game

ends.

In the first stage (time zero) player i (= the sender) influences the posteriors of the

remaining players (= the receivers), and thus the equilibrium strategies at the second

stage (time one and two). Henceforth we call the second stage the waiting game (or

the continuation game). At time one, player l must choose an action, al, from the

set {invest, wait}. At time two all players who waited at time one must choose an

action from the set {invest, not invest}. Each player only possesses one investment

opportunity, so a period-one investor cannot invest in a second project at time two.

Investments are irreversible. If a player does not invest in any of the two periods, she

gets zero. Investment decisions at period one are represented by a N -vector x where

the l-th coordinate equals 1 if player l invested at time one and zero otherwise. δ

denotes the discount factor.

We let ht (t = 0, 1, 2) denote the history of the game at time t. Thus h0 = {∅},
h1 = ŝi and h2 = (ŝi, x). Ht denotes the set of all possible histories at time t, and the

set of histories is H =
⋃2

t=0 Ht. A symmetric behavioural strategy for the receivers

7Observe that in our model all players are Bayesian rational: optimists (pessimists) do not
overestimate (underestimate) the probability that Θ = G. Hence, our definitions differ from the
ones that are used by behavioural economists. However, these definitions are intuitive and should
not confuse the reader.
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is a function ρ : {g, b} × H → [0, 1] with the interpretation that ρ(sj, ht) represents

the probability of investing at date t given sj and ht (j = 1, ..., N and j �= i). For

instance, ρ(g, b) is the probability that an optimistic receiver invests at time one

given that ŝi = b, and ρ(b, g) is the probability that a pessimistic receiver invests at

time one given that ŝi = g. Since each player can only invest once, ρ(sj, h2) = 0

if player j invested at time one, and ρ(sj, h0) = 0 since no one can invest at time

zero. A behavioural strategy for the sender is a function σ : {g, b} × H → [0, 1].

σ(g, h0) (σ(b, h0)) represents the probability with which an optimistic (pessimistic)

sender sends ŝi = g. σ(·, h1) (σ(·, h2)) represents the probability that player i invests

at date one (two). As before, σ(·, h2) = 0 if the sender invested in the first period.

Let ρ1 ≡ (ρ(b, h1), ρ(g, h1)), σ1 ≡ (σ(b, h1), σ(g, h1)) and σ0 ≡ (σ(b, h0), σ(g, h0)).

Suppose player j is an optimistic receiver. At time one, player j computes qω ≡
Pr(G|sj = g, ŝi, σ(g, h0), σ(b, h0)). If σ(g, h0) = 1 and σ(b, h0) = 0 (in this case an

optimistic sender always sends a favourable message, while a pessimist always sends

an unfavourable one) then qω = p2

p2+(1−p)2
≡ qω after a good message, and qω = 1

2
after

a bad message. A simple computation shows that for all values of ŝi, σ(g, h0), σ(b, h0),

qω ∈ [1
2
, qω], and that all values in the interval are attained for some values of σ(g, h0),

σ(b, h0) and ŝi. Similarly, qπ denotes a pessimist’s posterior probability that Θ = G

and qπ ∈ [q
π
, 1

2
] where q

π
= (1−p)2

p2+(1−p)2
. Henceforth, to save on notations, we will, in

general, not include σ(·) and ρ(·) in our list of conditioning variables. This omission

should not confuse the reader as it will be obvious which σ(·) and ρ(·) enter into the

computation of a player’s posterior.

When solving our game, we rely on four equilibrium selection criteria. First,

we require a candidate equilibrium to belong to the class of the perfect Bayesian

equilibria. Henceforth, σ∗(·) (ρ∗(·)) denotes the value taken by σ(·) (ρ(·)) in a perfect

Bayesian equilibrium (PBE). In a PBE strategies and beliefs (concerning the other

players’ types) must be such that (i) the sender cannot gain by choosing a σ �= σ∗ given

her beliefs and given ρ∗, (ii) receivers cannot gain by choosing a ρ �= ρ∗ given their

beliefs and given σ∗ and (iii) beliefs must be computed using Bayes’s rule whenever

possible. As usual, a pooling equilibrium is a PBE in which σ∗(g, h0) = σ∗(b, h0).

In that case the message ŝi = g is as likely to come from an optimistic as from a

pessimistic sender. Hence, in that case messages have no informational content and

do not affect posteriors. For the sake of concreteness (and wlog), we assume that

σ∗(g, h0) ≥ σ∗(b, h0). This assumption merely defines message ŝi = g as the one

which influences posteriors in a (weakly) favourable way. Under this assumption,

a separating equilibrium is a PBE in which σ∗(g, h0) = 1 and σ∗(b, h0) = 0. Note

that at time one qω can be different from p (the posterior of the receivers may differ
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from the sender’s). Therefore, we do not impose σ∗(g, h1) to be equal to ρ∗(g, h1).

Similarly, we allow σ∗(b, h1) to be different from ρ∗(b, h1).

Second, we restrict ourselves to the class of monotone strategies. Consider players

l and l′ (where l or l′ may be the sender). Call q (q′) the time-one posteriors of player

l (l′) (where q and q′ ∈ {1 − p, qπ, p, qω}). Strategies are said to be monotone if they

possess the following two properties: 1) if q = q′, then Pr(l invests at time one) = Pr(l′

invests at time one), 2) if Pr(l invests at time one) > Pr(l′ invests at time one), then

q > q′. Remark that from the first property, monotone strategies are symmetric. Note

that the first property implies that whenever the sender’s message is uninformative,

the sender invests at period 1 with the same probability as a receiver of the same

type, which need not hold in symmetric strategies. Property two implies that the

time-one investment probabilities (weakly) increase in the time-one posteriors. We

do not expect “real-world” players to play non-monotone strategies, and, in that

sense, we believe this to be a realistic restriction on the strategy profiles.

Third, consider a candidate equilibrium in which optimistic (pessimistic) receivers

randomise at time one with probability ρ̂(g, ·) (ρ̂(b, ·)). We require each PBE to be

stable in the following sense: suppose player j is an optimistic (pessimistic) receiver.

Suppose she anticipates all other optimistic (pessimistic) receivers to randomise with

probability ρ̂(g, ·)−ε1 (ρ̂(b, ·)−ε1) (where ε1 represents an arbitrary small, but strictly

positive number). Then, it must be optimal for player j to invest at time one.

Finally, we require every candidate equilibrium to be robust to the introduction

of an ε-reputational cost. More specifically, we assume that with probability ε2 re-

ceivers detect any “lie” (i.e. the optimistic sender who sends message ŝi = b, or the

pessimistic sender who sends message ŝi = g) from the sender, in which case she

suffers a reputational cost equal to ε3. It is important to note that ε2 is unrelated to

the sender’s behaviour in the continuation game. This assumption ensures that the

sender’s behaviour in the continuation game is only driven by informational reasons

(and not by her desire to “mask” a past lie). Let ε ≡ ε2.ε3 and we assume that ε

represents an arbitrary small, but strictly positive, number. With this reputational

cost, an optimistic sender prefers to send a favourable to an unfavourable message

(as will become clear below, in the absence of this ε, she would be indifferent between

the two messages).

3 Strategic Waiting

Before proving the existence of a PBE in our game, we restrict our attention to

monotone continuation equilibria. Henceforth, σ̃(·) (ρ̃(·)) denotes the value taken by
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σ(·) (ρ(·)) in a monotone continuation equilibrium (MCE). A MCE is identical to a

PBE except that we do not require the sender to choose σ̃0 optimally given her beliefs

and given equilibrium behaviour in the continuation game. Stated differently, in a

MCE we do not endogenise the receivers’ time-one posteriors. Instead, we just treat

them as if they were exogenous and compute all monotone continuation equilibria.

Note that every PBE is a MCE, while the contrary need not hold.

Our model is void of any competition effects or positive network externalities.

Hence, a player’s expected gain of investing is solely determined by the relative num-

ber of optimists (as compared to the number of pessimists) in the population. Call n

the random number of optimists in our population. The higher n (for any fixed N),

the higher Pr(G|n) and the higher the expected gain from investing. Unfortunately,

by postponing one’s investment decision, players observe x instead of n. Hence, at

time two all players who waited at time one face an inference problem: on the basis

of x they must try to get “as precise an idea” about n.

As we only consider symmetric strategies, player i does not care about who invests,

but rather in how many players invest. Therefore, from the sender’s point of view

all information contained in x can be summarised by ks (= the number of receivers

who invest at time one).8 Similarly, from a receiver’s point of view all information

contained in x can be summarised by k (= the number of remaining receivers who

invest at time one) and ai (= the time-one action of the sender). Note that k = ks

or k = ks − 1.

We thus continue our analysis by working with k, ks and ai. Let q ∈ {qπ, qω, 1 −
p, p}. If player j waits, she observes k and ai and invests if Pr(G|q, k, ai) ≥ c. Hence,

for a given k and ai player j’s payoff equals max{0, Pr(G|q, k, ai) − c}. Of course,

player j cannot ex ante know the realization of k and ai. Therefore, player j’s ex ante

gain of waiting (net of discounting costs), W (q, σ1, ρ1), equals

W (q, σ1, ρ1) =
∑
ai

∑
k

max{0, Pr(G|q, k, ai) − c}Pr(k|q, ai) Pr(ai|q).(1)

Similarly, player i’s gain of waiting, W (q, ρ1), equals

W (q, ρ1) =
∑
ks

max{0, Pr(G|q, ks) − c}Pr(ks|q).(2)

We know enough to start analysing equilibrium behaviour in the continuation game.

We first investigate the case in which the project is a low surplus one (i.e. c > 1
2
)

and in which the sender truthfully announces that she’s an optimist (i.e. qπ = 1
2

8In mathematical terms, we mean that Pr(n|x, si) = Pr(n|ks, si), ∀n.
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and qω = qω). This case is both simple and rich enough to capture many important

mechanisms of our model. We show that in this case there exists a unique MCE in

which σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = 0 and ρ̃(g, g) ∈ (0, 1). As 1 − p < 1
2

= Pr(G|sj =

b, ŝi = g) < c, it trivially follows that σ̃(b, g) and ρ̃(b, g) equal zero. To understand

why σ̃(g, g) also equals zero, we first must understand how ρ̃(g, g) is determined

and how it varies with changes in q. As all receivers know that si = g and that

σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = 0, equation (1) can be rewritten as

W (qω, (0, 0), (0, ρ(g, g))) =
∑
k

max{0, Pr(G|qω, k, wait) − c}Pr(k|qω, wait).(3)

To gain some insight behind equations (1), (2) and (3), it is useful to contrast the

polar case in which equation (3) is evaluated at ρ(g, g) = 0 with the other one in

which (3) is evaluated at ρ(g, g) = 1. Thus, suppose that ρ(g, g) = 0. Then,

Pr(k = 0, |qω, ai = wait, σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = ρ(g, g) = 0) = 1.

At time two, player j computes Pr(G|qω, 0, wait) = qω. This is intuitive: player j,

independently of n, always observes zero period-one investments. Stated differently,

if ρ(g, g) = 0, it’s as if she doesn’t receive any additional information concerning

the realised state of the world. Therefore she has no reason to change her posterior

and Pr(G|qω, 0, wait) = qω. Hence, W (qω, (0, 0), (0, 0)) = qω − c. Suppose now that

ρ(g, g) = 1. Then, in the next period player j learns how many optimists are present

in the economy (i.e. n = k+2)9. At time two player j computes Pr(G|n), and invests

if Pr(G|n) ≥ c. As before, player j cannot ex ante know how many optimists are

present in the economy, and therefore:

W (qω, (0, 0), (0, 1)) =
∑
n

max{0, Pr(G|n) − c}Pr(n|qω)(4)

Lemma 1 ∀N ≥ 5, W (q, σ1, (0, 1)) > q − c.

Proof: See Appendix.

To understand Lemma 1, in this paragraph we intuitively explain why ∀N ≥ 5,

W (qω, (0, 0), (0, 1)) > qω − c. We can rewrite player j’s gain of investing as follows:

qω − c =
∑
n

Pr(G|n) Pr(n|qω) − c.

9By assumption, player j is an optimist who waited at time one. Moreover, we analyse a case in
which player j learned (through the sender’s message) that si = g. Therefore, n = k + 2.
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Suppose ρ(g, g) = 1 and assume that player j decides to wait at time one and then

to invest unconditionally (i.e. to invest at time two independently of n). The above

equality merely states that investing at time one is payoff-equivalent (net of discount-

ing costs) to unconditionally investing at time two. Equation (4) learns us that wait-

ing (when ρ(g, g) = 1) is equivalent to making an optimal conditional second-period

investment decision. Observe that n cannot take a value lower than two because

both players j and i are assumed to be optimists. If Pr(G|n = 2) is higher or equal

than c, then the optimal conditional second-period investment decision always coin-

cides with unconditionally investing at time two. This means that qω − c is equal

to W (qω, (0, 0), (0, 1)). Hence, W (qω, (0, 0), (0, 1)) is strictly greater than qω − c if

(and only if) Pr(G|n = 2) < c. In this model all players possess a signal of the same

precision and Pr(Θ = G) = 1
2
. Therefore, ∀ c ∈ (1−p, p) it takes three pessimistic re-

ceivers to refrain an optimist, who learned through the sender’s message that si = g,

from investing (and therefore N must be greater or equal than five).

Lemma 1 holds ∀q. This is intuitive: suppose for instance that player j antici-

pates that Θ = G with probability qω < qω. this means that player j puts a (strictly)

positive probability on the event that si = b (and thus that n = 1). As Pr(G|n =

1) < Pr(G|n = 2), it follows that qω − c is also strictly lower than W (qω, (0, 0), (0, 1)).

Lemma 1 holds ∀σ1. This is also intuitive: whenever σ(g, h1) �= σ(b, h1), the sender’s

time-one action conveys some information about her type. Obviously, this cannot

decrease player j’s gain of waiting. To focus on the interesting parameter range, we

assume that:

A2: qω−c
W (qω,(0,0),(0,1))

< δ < 1

The first inequality of A2 puts a lower bound on the discount factor δ such that an

optimistic receiver, who learned (through the sender’s message) that si = g, faces a

positive option value of waiting (i.e. if player j expects all the optimistic receivers to

invest and all the other players to wait, then she rather waits). The first inequality

ensures thus that ρ̃(g, g) < 1. The second inequality ensures that ρ̃(g, g) > 0.

Lemma 2 Under A2, q − c < δW (q, (0, 0), (0, 1)).

Proof: See Appendix.

In words, Lemma 2 states that if a player who possesses the highest possible posterior

faces a positive option value of waiting, then this will also be true for all less optimistic

ones. The intuition behind Lemma 2 will be explained on the basis of Graph 2 below.

Equation (3) is increasing in ρ(g, g). To see this, compare the following two “sce-

narios”. In scenario one all optimistic receivers randomise with probability ρ′(g, g),
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in scenario two all optimistic receivers randomise with probability ρ(g, g) < ρ′(g, g).

Call nr the number of optimistic receivers.10 Call k′ (k) the number of players in-

vesting at time one when nr − 1 optimistic receivers invest with probability ρ′(g, g)

(ρ(g, g)). Now, having nr − 1 players investing with probability ρ(g, g) is ex ante

equivalent to the following two-stage experiment: first let all nr − 1 players invest

with probability ρ′(g, g). Next let all k′ investors re-randomise with probability ρ(g,g)
ρ′(g,g)

.

Therefore the statistic k is generated by adding noise to the statistic k′. Therefore k′

is a sufficient statistic for k. From Blackwell’s value of information theorem (1951)

we know that this implies that W (qω, (0, 0), (0, ρ′(g, g))) ≥ W (qω, (0, 0), (0, ρ(g, g))).

Moreover, Chamley and Gale (1994, Proposition 2) have shown that

∀ρ(g, g), ρ′(g, g) ∈ [0, λ], W (qω, (0, 0), (0, ρ(g, g))) = W (qω, (0, 0), (0, ρ′(g, g))), while

∀ρ′(g, g) > λ, W (qω, (0, 0), (0, ρ(g, g))) < W (qω, (0, 0), (0, ρ′(g, g))).

This line of reasoning also extends to equations (1) and (2)11.

Intuitively, ρ(g, g) captures the ex ante amount of information produced by the

optimistic receivers. The higher ρ(g, g), the easier one can infer n out of k (this can

best be seen by comparing the two polar cases where ρ(g, g) = 0 and ρ(g, g) = 1 (see

above)) and thus the higher the ex ante gain of waiting. Graphically one has:

�

�

λ ρ̃(g, g)

qω − c

δ(qω − c)

δW (qω, (0, 0), (0, 1)) δW (qω, (0, 0), (0, ρ(g, g)))

10 ρ(g, g)

Graph 1: Existence of a MCE in which ρ̃(g, g) ∈ (0, 1).

In equilibrium the gain of waiting must be equal to the gain of investing, i.e. qω − c =

δW (qω, (0, 0), (0, ρ̃(g, g)). If ρ(g, g) = λ, δW (qω, (0, 0), (0, λ)) = δ[qω − c] < qω − c. If

10Note that nr = n if si = b, otherwise nr = n − 1.
11For a formal proof, see the Appendix.
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ρ(g, g) = 1, by A2, δW (qω, (0, 0), (0, 1)) > qω − c. By monotonicity, as qω > c there

exists a unique ρ̃(g, g) which makes the optimists indifferent between investing and

waiting. So far, we assumed that σ̃(g, g) = 0 and showed that ρ̃(g, g) ∈ (0, 1). We

still must explain why the gain of waiting of the optimistic sender exceeds her gain

of investing. Consider therefore the following graph.

�

�

aρ̃(·) ρ̃
′
(·)

qω − c

q
′
ω − c

δW (qω, (0, 0), (0, ρ(g, h1)))

δW (q
′
ω, (0, 0), (0, ρ′(g, h1)))

0 ρ(g, h1)

Graph 2: The effect of a change in qω on ρ̃(g, h1).

The Graph above addresses the question: “What happens with ρ̃(g, h1) if qω in-

creases?” Suppose player j first anticipates that Θ = G with probability qω. As

before, graph two shows the existence of a unique ρ̃(g, h1) where the gain of investing

equals the gain of waiting. Assume now that for some exogenous reason player j

becomes “more optimistic” in the sense that she now anticipates that Θ = G with

probability q
′
ω > qω. Graph two shows that the comparison between ρ̃(·) and ρ̃

′
(·)

depends on the relative strength of two opposing effects. On the one hand, an increase

in qω increases an optimist’s gain of investing, which, were W (·) independent of qω,

would increase ρ(g, h1) from ρ̃(g, h1) to point a in graph two. On the other hand,

an increase in qω also leads to an increase in the gain of waiting. This second effect

decreases ρ(g, h1) from point a until the point ρ̃
′
(g, h1). The relative strength of both

effects ultimately depends on how the shift of the gain of waiting compares to the

one of the gain of investing. One can show that the first effect always dominates the

second one and thus that ρ̃
′
(g, h1) > ρ̃(g, h1).

The intuition behind this result mainly lies in the presence of a discount factor

in the model. An increase in qω increases W (qω, ·) for two different reasons: (i) it

increases the likelihood that Pr(G|qω, k, ai) > c and thus that player j will get a

non-zero expected utility and (ii) it increases her expected gain of investing whenever

13



player j does so. However, the presence of δ in front of W (qω, ·) (and not in front

of qω − c) dampens this increase in W (qω, ·). Note that in this and our previous

paragraph, our reasoning did not rely on the fact that in our limit case σ1 = (0, 0)

and σ(b, h0) = 0. Actually, one can show that this positive correlation between ρ̃(·)
and qω is robust in the sense that it holds ∀σ1. Graph 2 also provides the intuition

behind Lemma 2. To see this, suppose that q
′
ω = qω and that ρ1 = (0, 1). From

A2, we know that q
′
ω − c < δW (q

′
ω, (0, 0), (0, 1)). From Graph 2 follows that ∀q,

δW (q, (0, 0), (0, 1)) > q − c (the downward shift in the gain of investing overcompen-

sates the one in the gain of waiting).

There are two different reasons why σ̃(g, g) = 0: the first one is due to the fact

that the sender observes ks and not k, the second one is due to the fact that p < qω.

To illustrate the first reason suppose the sender’s posterior probability that Θ = G

equals the one of the optimistic receivers. One can think about the statistics k and

ks as follows. Let the nr optimistic receivers invest with probability ρ̃(·). Next,

construct k as follows: if player j invested12, k = ks − 1, otherwise k = ks. Hence,

ks is a sufficient statistic for k and, thus, player i’s gain of waiting cannot be lower

than player j’s. To illustrate the second reason, suppose that if the sender waits, she

observes k instead of ks. Call a the probability with which the optimistic receivers

must invest to make an optimistic sender indifferent between investing and waiting.

From Graph 1, we know that a ∈ (0, 1). As qω > p, from the explanation of Graph 2

we know that ρ̃(g, g) > a. From Proposition 2 of Chamley and Gale (1994) we know

that this implies that p − c < δW (p, (0, ρ̃(g, g))). We know enough to state:

Proposition 1 (Characterisation of all MCE’s)

1) If qπ < 1 − p < c < qω < p, ∃ a unique MCE in which ρ̃(b, b) = σ̃(b, b) = 0 and

ρ̃(g, b) ∈ [0, 1), σ̃(g, b) = 1.

2) If qπ < 1−p < qω ≤ c < p, ∃ a unique MCE in which ρ̃(b, b) = σ̃(b, b) = ρ̃(g, b) = 0

and σ̃(g, b) = 1.

3) If 1−p < qπ < c < p < qω, ∃ a unique MCE in which σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = 0

and ρ̃(g, g) ∈ (0, 1).

4) If 1− p < c ≤ qπ < 1
2

< p < qω, ∃ an MCE in which σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = 0

and ρ̃(g, g) ∈ (0, 1). Depending on the values of our exogenous parameters, there may

also exist one (and only one) other MCE in which σ̃(b, g) = 0 and ρ̃(b, g) = σ̃(g, g) =

ρ̃(g, g) = 1.

5) If 1 − p < c ≤ qπ = 1
2

< p < qω = qω, ∃ two MCE’s. In the first one σ̃(b, g) =

ρ̃(b, g) = σ̃(g, g) = 0 and ρ̃(g, g) ∈ (0, 1). In the second one σ̃(b, g) = 0 and ρ̃(b, g) =

12Remind that player j is an optimistic receiver who is indifferent between investing and waiting
and who, therefore, invests with probability ρ̃(·).
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σ̃(g, g) = ρ̃(g, g) = 1.

6) If qπ = 1 − p < c < qω = p, ∃ a unique MCE in which σ̃(b, h1) = ρ̃(b, h1) = 0 and

σ̃(g, h1) = ρ̃(g, h1) ∈ (0, 1).

Proof: See Appendix.

In cases 1) and 2) we characterise all MCE’s when σ(b, h0) < σ(g, h0) and when the

sender sent ŝi = b. In cases 3), 4) and 5) we characterise all MCE’s when σ(b, h0) <

σ(g, h0) and when the sender sent ŝi = g. Case 6) considers the case in which the

sender’s message did not affect the receiver’s posteriors (i.e. σ(b, h0) = σ(g, h0)).

In case 1), qω < p. As we are focusing on monotone strategies we assume that

ρ(g, b) ≤ σ(g, b). There does not exist a MCE in which both the optimistic receivers

and the optimistic sender randomise as this contradicts (a.o.) the insight summarised

in Graph 2. There are two possibilities: (i) δW (qω, (0, 1), (0, 0)) ≥ qω − c or (ii)

δW (qω, (0, 1), (0, 0)) < qω − c. To understand the important distinction between

(i) and (ii), suppose that sj = g and that player j anticipates all receivers to wait

at time one. As already argued above, k does then not contain any information

about the realisation of nr. As σ̃1 = (0, 1), ai perfectly reveals the sender’s type. In

possibility (i), the informational gain of observing ai exceeds the discounting cost,

and, thus, player j prefers to wait. Similarly, an optimistic sender, anticipating that

ρ̃1 = (0, 0), faces no informational gain of waiting while its discounting cost is positive.

Hence, it’s in her best interest to invest at time one and, thus, there exists a MCE

in which ρ̃1 = (0, 0) and σ̃1 = (0, 1). We now explain why in possibility (ii) the

continuation game is characterised by a unique MCE in which ρ̃(g, b) ∈ (0, 1) and

σ̃(g, b) = 1. In possibility (ii), the additional information (about the sender’s type)

does not compensate the discounting cost. Hence, there does not exist a MCE in

which ρ̃1 = (0, 0). From Lemma 2, we know that qω − c < δW (qω, (0, 0), (0, 1)).

Obviously,

W (qω, (0, 0), (0, 1)) ≤ W (qω, (0, 1), (0, 1)),

because in the former case no information (about the sender’s type) is revealed

through ai, while in the latter case ai perfectly reveals her type. Thus,

δW (qω, (0, 1), (0, 0)) < qω − c < δW (qω, (0, 1), (0, 1)),

and from CG’s analysis (see Graph 1) we know there exists a unique ρ̃(g, b) which

equates an optimist’s gain of investing with her gain of waiting. We are left to

intuitively explain why the optimistic sender, knowing that ρ̃1 = (0, ρ̃(g, b)), prefers

to invest with probability one. This can best be illustrated on the basis of the following

Graph:
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�

�

ρ̃(g, b)

δW (p, (0, ρ̃(g, b)))

a

p − c

δW (p, (0, ρ̃(g, b)))

10 ρ(g, b)

Graph 3: An optimist’s optimal time 1 action after sending ŝi = b.

To understand graph 3, first note that an optimist’s payoff of sending an unfavourable

message equals max{p−c, δW (p, (0, ρ̃(g, b)))}. p−c denotes her payoff of investing at

time one, given that she sent an unfavourable message. δW (p, (0, ρ̃(g, b))) denotes her

payoff of waiting given that she sent an unfavourable message. Call a the probability

with which optimists must invest to make player i indifferent between investing and

waiting. As the optimists received an unfavourable message, they anticipate that

Θ = G with a probability equal to qω < p. From the insight summarised in Graph

2, we know that ρ̃(g, b) < a (because qω < p). From CG’s analysis follows that

δW (p, (0, ρ̃(g, b))) < p− c. Therefore, if an optimist were to sent message b, it would

be optimal for her to invest at time one.13

Case 2) is identical to case 1) except that qω ≤ c. Unsurprisingly, in this case no

one (except the optimistic sender) invests at time one. The intuition why cases 3),

4) and 5) are characterised by a MCE in which only the optimistic receivers invest,

is based on the insights summarised in Graphs 1 and 2. In case 4) we must make a

distinction between the following two possibilities: (i) δW (qπ, (0, 1), (1, 1)) > qπ − c

or (ii) δW (qπ, (0, 1), (1, 1)) ≤ qπ − c. Observe that in both (i) and (ii), the pessimistic

receivers invest with the same probability as the optimistic ones. As k does then not

contain any information about the realisation of nr, a receiver only wants to wait to

learn the sender’s type. As in case 1), in (i) the informational gain of observing ai

exceeds the discounting cost and there cannot exist a MCE in which all receivers invest

at time one. The contrary situation applies in possibility (ii). Case 5) is identical to

case 4) except that the sender truthfully announced that she’s an optimist. Hence,

observing ai = invest does not yield any additional information about the sender’s

type. Therefore, a pessimistic receiver who anticipates everyone to invest at time one

13Note that in this paragraph, we abstracted from the fact that the sender observes ks, while the
receivers “only” observe k. As proven in the Appendix, as long as we focus on the class of monotone
strategies, this is without loss of generality.
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(i.e. ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) = 1), cannot gain by waiting. Case 6 corresponds to

the case originally analysed by CG.

Consider the MCE in which all receivers invest at time one (see cases 4) and 5)).

Note that all receivers possess some public (i.e. the favourable message sent by player

i) and some private information (i.e. their signals). All players, independently of their

signals, rely on the public information by investing at time one. This behaviour is

identical to the one followed by the players inside an informational cascade in BHW’s

and Banerjee’s (1992) model. In those models all players also possess some public (i.e.

the action(s) of the first mover(s)) and private information (i.e. their signals) and they,

independently of their signals, all adopt the same action. Therefore, we call the MCE

in which ρ∗(b, g) = ρ∗(g, g) = 1 an informational cascade. Chamley (2001) has shown

that this informational cascade does not hinge on our use of a binomial distribution.

Rather, it can be recovered under a wide range of distributional assumptions.

4 Cheap Talk

We now analyse player i’s incentives to truthfully reveal her private information at

time zero. In our opinion one may think about player i in two ways. First, one may

interpret player i as a “guru” whose opinion concerning investment matters is often

asked by the media. Second, given our assumptions one would want to introduce an

opinion poll (instead of just interviewing one player) at time zero. Unfortunately,

analytical results are harder to get when one introduces other players at time zero.

Therefore one can also interpret our model as one explaining “the economics of opinion

polls” under the simplifying assumption that the size of the opinion poll equals one.

We first state and prove the following “negative” result.

Proposition 2 For low surplus projects, there exists a unique monotone PBE in

which σ∗(b, h0) = σ∗(g, h0) = 1. This PBE is supported by the out-of-equilibrium

belief that if ŝi = b, the sender is a pessimist.

Proof: See Appendix.

Proposition 2 basically states that for projects with low surplus, no information can

be transmitted through cheap talk: as the message ŝi = g is as likely to come from an

optimistic sender as from a pessimistic one, posteriors are unaffected by the sender’s

message. We explain the intuition behind Propositon 2 in two paragraphs. First, we

explain why σ∗(b, h0) must be equal to σ∗(g, h0). Next, we explain why σ∗(b, h0) =

σ∗(g, h0) = 1. This permits us to better highlight the role played by the ε-reputational

cost in our model.
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Player i only possesses a noisy signal concerning the realised state of the world

and is primarily interested in knowing n (and this is true for the optimistic as for

the pessimistic sender). From the insight summarised in graph 2, we know that if

player i succeeds to increase qω, this will enable her (whenever ρ(b, h1) remains equal

to zero) to get a “better idea” of n after observing k. Stated differently, the higher

qω, the higher player i’s gain of waiting (provided that ρ(b, h1) remains equal to zero).

If c > 1
2

= qπ, then ρ∗(b, h1) will -independently of σ(g, h0), σ(b, h0) and ŝi - always

be equal to zero. Both sender’s types thus want to send the message which yields

the largest increase in qω and therefore the pessimist loses if she were to reveal her

negative private information. Hence, in the absence of an ε-reputational cost, σ∗(b, h0)

cannot be different from σ∗(g, h0).

The reason why σ∗(b, h0) = σ∗(g, h0) = 1 is based on our ε-reputational cost. As

messages do not affect posteriors, the optimistic sender cannot influence her gain of

waiting. To avoid paying ε, she thus strictly prefers to send ŝi = g. The pessimistic

sender knows that σ∗(g, h0) = 1. As argued above, if she sends ŝi = g, she learns

more (about the receivers’ types) than by sending ŝi = b (note, however, that this

will be at the expense of her reputation). As ε → 0, she also strictly prefers to send

ŝi = g instead of ŝi = b.

Note that Proposition 2 fundamentally rests on the assumption that players can

wait and observe the period-one investment decisions. If players were not allowed

to observe past investment decisions, our game would be characterised by a unique

PBE in which σ∗(g, h0) = 1 and σ∗(b, h0) = 0. The intuition is simple: if the sender

is optimistic she will, independently of her message, invest in the first period. If she

is pessimistic she will, independently of her message, not invest. Hence, to save on

the ε-reputational cost, a sender strictly prefers to truthfully report her type. Hence,

Proposition 2 shows how the credibility of cheap talk statements can be adversely

affected when players can learn through actions. As we mentioned in our introduction,

the literature on social learning (see a.o. Banerjee (1992), Bikhchandani, Hirschleifer

and Welch (BHW,1992), Chamley and Gale (CG,1994), Chamley (2001),...) assumes

that information only gets revealed through actions. As those models are void of any

competition effects, some economists wonder why information should not be revealed

through words.14 Proposition 2 thus provides a justification for the “ad-hoc” omission

of a cheap-talk communication channel in many herding models. This paper also

14For example, Zwiebel (1995,p.16) wrote:

Relative performance evaluation also justify agents’ unwillingness to share information,
an issue that is problematic in many herding models.
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possesses a more “positive” result which is summarised below.

Proposition 3 For high surplus projects our game is characterised by two monotone

PBE’s: a pooling and a separating one. In the separating equilibrium, ρ∗(b, g) =

ρ∗(g, g) = 1. The pooling equilibrium is supported by the out-of-equilibrium belief that

if ŝi = b, the sender is a pessimist.

Proof: See Appendix.

The intuition behind our pooling equilibrium (in which both sender’s types send the

message ŝi = g) is identical to the one we explained above. We are left to explain

the intuition behind our separating equilibrium. Suppose the investment project is a

high surplus one (i.e. c ≤ 1
2
) and that all receivers revise their posteriors under the

assumption that σ∗(b, h0) = 0 and that σ∗(g, h0) = 1. Consider first the optimistic

sender. From the insight summarised in graph 3, we know that if she deviates and

sends ŝi = b, it’s optimal for her to invest at time one. Similarly, if she sends

ŝi = g, from point 5 of Proposition 1 we know that it’s optimal for her to invest at

time one along with all the other receivers. Hence, absent the ε-reputational cost, an

optimistic sender is indifferent between the two messages. If she prefers not to be

caught “lying”, she strictly prefers to truthfully report her signal. Consider now the

pessimistic sender. If she sends ŝi = b, qπ < 1 − p < c < qω = 1
2
. From points 1

and 2 of proposition 1 we know that ρ∗(g, b) ∈ [0, 1). We now argue that ρ∗(g, b) > 0

if c < 1
2
. As all receivers know si at time one, no additional information (about the

sender’s type) can be learned through the observation of ai. Therefore, a receiver’s

gain of waiting is independent of σ1.
15 Hence, if qω = 1

2
> c,

δW (
1

2
, (0, 1), (0, 0)) = δW (

1

2
, (0, 0), (0, 0)) = δ(

1

2
− c) <

1

2
− c.

From Graph 1, we know there exists then a unique ρ∗(g, b) > 0 such that an optimistic

receiver is indifferent between investing and waiting. Hence,

E(Ui|si = b, ŝi = b) = δW (1 − p, (0, ρ∗(g, b))) > 0, ∀c <
1

2
.

If ŝi = g, c ≤ qπ = 1
2

< p < qω. From point 5 of Proposition 1, we know there exists

a MCE in which everyone invests at time one, and thus E(Ui|si = b, ŝi = g) = 0.

As E(Ui|si = b, ŝi = b) > E(Ui|si = b, ŝi = g) (whenever c < 1
2
), a pessimist strictly

prefers to reveal her unfavourable information.

15See the Appendix for a formal proof.
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In words, a separating equilibrium is fundamentally driven because: (i) both

sender’s types face different opportunity costs of waiting and (ii) sending a favourable

message creates an informational cascade. An optimist believes the investment project

is good. For her “time is money” and she is only willing to postpone her investment

plans (with probability one) if pessimists don’t invest and if optimists invest with a

probability higher than a (see Graph 3). Unfortunately these two aims cannot be

simultaneously achieved by none of the two messages. Therefore, in the presence of

an ε-reputational cost, she strictly prefers to send ŝi = g. A pessimist believes the

investment project is bad. She is unwilling to invest unless she observes “relatively

many” optimists investing at time one. If the pessimist were to deviate and sent a

favourable message, an informational cascade would occur, she wouldn’t receive any

payoff-relevant information and she would get zero. Hence, it is the informational

cascade which ultimately induces a pessimist to send an unfavourable message. If

ρ∗(b, h1) would always be equal to zero (as is the case for low surplus projects), a

pessimist would never want to send a negative message because - if this message were

to be believed - this would reduce ρ∗(g, h1).

Observe that Proposition 3 also stresses the importance of the informational cas-

cade to elicit private information. There only exist two monotone PBE’s. There

does thus not exist a monotone PBE in which σ∗(b, h0) < σ∗(g, h0) and in which

(ρ∗(b, g), ρ∗(g, g)) �= (1, 1).

5 Some normative and positive implications of our

theory

5.1 Should we subsidise investments?

Denote by sub an investment subsidy granted to each period-one investor. Call c′ ≡
c − sub. A social planner can, by appropriately choosing sub, alter the amount of

learning in two different ways. First, by making it relatively more attractive to invest

at time one, she can influence all players’ gain of waiting in a favourable way. Second,

by setting sub such that c′ ≤ 1
2

< c, she changes the sender’s incentives to truthfully

reveal her private information (and thus the nature (separating vs pooling) of the

equilibrium played in our game). In a full-fledged welfare study, one should compute

the value of sub which maximises expected welfare. This exercise, however, is lengthy

and outside the scope of this paper. Rather, in this subsection we assume that

sub ∈ [−ε, sub) and highlight some advantages and disadvantages of setting sub �= 0.

If sub = −ε (where, as above, ε represents an arbitrary small, but strictly positive
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number) this means that the social planner taxes first-period investments. Note that

we only allow for a “low” subsidy16 in the sense that

sub < sub ≡ min{sub1, sub2}, where

sub1 ≡ δW (qω, (0, 0), (0, 1))− (qω − c) and

sub2 ≡ c + p − 1.

If sub < sub1, this means that the most optimistic type in our model still faces a

positive option value of waiting. If sub < sub2, this means that 1 − p < c′. In the

Appendix, we show that ∀sub ∈ [−ε, sub), Propositions 2 and 3 are unaffected by the

introduction of a first-period subsidy, i.e. if c′ > 1
2
, the unique monotone PBE is the

pooling one, if c′ ≤ 1
2

there exists a separating and a pooling equilibrium.

We first analyse the case in which the first-period subsidy does not change the

nature of the played equilibrium. To illustrate our way of working, suppose the in-

vestment project is a high surplus one and that players always focus on the separating

equilibrium. As mentioned above, in this equilibrium the message of the sender reveals

her type, and strategies of period one are given by: after a good message, everyone

invests in period 1, after a bad message, optimistic receivers invest with probability

ρ∗(g, b), and the remaining players do not invest.

Lemma 3 ∀sub ∈ [0, sub), ρ∗(g, b) is strictly increasing in sub and ρ∗(g, b) < 1.

Proof: See Appendix.

The intuition behind Lemma 3 is straightforward. We are considering a separating

equilibrium. Thus, after the arrival of an unfavourable message, optimistic receivers

know they are the only players in the economy who face a positive gain of investing.

If an optimistic receiver waits, she forfeits the investment subsidy. Hence, the higher

sub, the higher a player’s cost of waiting. However, in equilibrium the gain of waiting

must equal the cost of waiting, and, thus, the higher sub, the higher a player’s gain

of waiting (and from Graph 1 we know that this requires a higher ρ∗(g, b)).

Wel(g, sub, sep) (Wel(b, sub, sep)) denotes the expected payoffs (net of the sub-

sidies received) of the optimistic (pessimistic) players given the first-period subsidy

16We consider an investment subsidy which may be paid to a potentially very large number of
firms. In comparison to the investment cost, it is then unlikely that the subsidy would be very
important. We do not have in mind a situation in which a government offers a generous subsidy
to attract an important investment project (e.g. the subsidy offered by the French Government to
attract Eurodisney).
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and given that all players focus on the separating equilibrium. For the optimistic

players, one has

Wel(g, sub, sep) =
N

2
(p − c + sub) − (

1

2
2p(1 − p)(N − 1)ρ∗(g, b)

+
1

2
[(p2 + (1 − p)2)(N − 1) + 1])sub.

The first term is given by the expected number of optimists multiplied by their ex-

pected utilities. The second is the expected number of optimistic players who invest

in period one17 times the subsidy which is paid to them. Note that this last expression

simplifies to

Wel(g, sub, sep) =
N

2
(p − c) + (N − 1)p(1 − p)(1 − ρ∗(g, b))sub.(5)

From Lemma 3 we know that (1−ρ∗(g, b))sub (and thus also Wel(g, sub, sep)) need not

be monotonic in sub. This is intuitive: an increase in sub increases an optimist’s gain

of waiting, but also reduces the probability that an optimist will wait and effectively

benefit from a more informative signal. For pessimists, one has

Wel(b, sub, sep) = (N − 1)p(1 − p)(
1

2
− c)(6)

+
1

2
[(p2+(1−p)2)(N−1)δW (

(1 − p)2

p2 + (1 − p)2
, (0, 1), (0, ρ∗(g, b)))+δW (1−p, (0, ρ∗(g, b)))].

The first term corresponds to the expected welfare for pessimistic receivers given an

optimistic sender. Similarly, the first term between square brackets corresponds to

the expected welfare of all pessimistic receivers given a pessimistic sender. The second

term between square brackets corresponds to the expected utility of the pessimistic

sender. In the Appendix, we prove that Wel(b, sub, sep) is strictly increasing in sub.

This is also intuitive: the higher sub, the higher ρ∗(g, b) and the higher a pessimist’s

gain of waiting. Total social welfare equals

Wel(sub, sep) = Wel(g, sub, sep) + Wel(b, sub, sep).

Suppose now all players focus on the pooling equilibrium. From above, we know that

both sender’s types then send the message ŝi = g, that optimists invest with prob-

ability ρ∗(g, g) and that pessimists do not invest. Note that receiving the message

17With probability 1
2 , the sender is pessimistic, in which case 2p(1−p)(N −1) optimistic receivers

invest at time one with probability ρ∗(g, b); with probability 1
2 , the sender is optimistic, in which

case (p2 + (1 − p)2)(N − 1) + 1 optimistic players (= conditional expected number of optimistic
receivers plus the optimistic sender) invest at time one with probability one.

22



ŝi = g in the pooling equilibrium is informationally different from receiving the same

message in the separating one (and, more importantly, leads to a different behav-

iour in the continuation game). To avoid confusion, in this subsection we denote by

ρ∗(g, h1) (ρ∗(g, g)) the probability with which all optimists invest at time one in the

pooling (separating) equilibrium. Here again, we estimate the social welfare sepa-

rately for optimists and for pessimists (total welfare is denoted by Wel(sub, pool)).

For optimists, this writes:

Wel(g, sub, pool) =
N

2
(p − c) +

N

2
(1 − ρ∗(g, h1))sub.(7)

For pessimists, we have:

Wel(b, sub, pool) =
N

2
δW (1 − p, (0, ρ∗(g, h1))).(8)

Lemma 4 ∀sub ∈ [0, sub), ρ∗(g, h1) is strictly increasing in sub and ρ∗(g, h1) < 1.

Proof: See Appendix.

The intuition is similar to the one behind Lemma 3. As above, Wel(g, sub, pool) need

not be monotonic in sub, while Wel(b, sub, pool) strictly increases in sub. Our main

result is summarised below.

Proposition 4 If the subsidy does not alter the nature of the played equilibrium, any

sub ∈ (0, sub) is (strictly) better (for welfare) than no subsidy at all. The relationship

between welfare and sub need, however, not be monotonic.

Proof: From Lemmas 3 and 4 follows that ∀sub ∈ (0, sub) (1 − ρ∗(g, b))sub and

(1 − ρ∗(g, h1))sub are both strictly positive. This result, combined with our earlier

insight (proven in the Appendix) that equations (6) and (8) are strictly increasing

in sub, shows that Wel(sub, sep) > Wel(0, sep) and Wel(sub, pool) > Wel(0, pool).

Q.E.D.

Proposition 4 is not very surprising: because of the information externality the

social benefit of investing at time one exceeds the private one. Hence, a social planner

fixes sub > 0 to close the gap between both benefits. However, it would be premature

to conclude that - in the presence of information externalities - investments must

always be subsidised as the example below suggests.

Suppose c = 1
2

and that our players focus on the separating equilibrium. We now

show that the social planner can increase welfare by imposing an arbitrarily small,

but strictly positive, investment tax (i.e. sub = −ε). We first compute Wel(0, sep).
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Observe that in the separating equilibrium Pr(G|sj = g, ŝi = b) = 1
2

= c, and thus

there exists a PBE in which ρ∗(g, b) = 0. Hence, from equation (5) follows that

Wel(g, 0, sep) =
N

2
(p − c).(9)

As ρ∗(g, b) = 0,

δW (
(1 − p)2

p2 + (1 − p)2
, (0, 1), (0, 0)) = δW (1 − p, (0, 0)) = 0,

and from equation (6) we know that

Wel(b, 0, sep) = (N − 1)p(1 − p)(
1

2
− c) = 0.(10)

Adding (9) and (10), one has

Wel(0, sep) =
N

2
(p − c).(11)

This is intuitive: if ŝi = g, pessimists invest at time one and get a zero payoff. If

ŝi = b, ρ∗(g, b) = 0 and our pessimistic players also get a zero payoff. Hence, if c = 1
2

total welfare is only determined by the expected utilities of the optimistic players. If

ŝi = g, all optimists invest at time one. If ŝi = b, optimistic receivers do not invest,

but nonetheless obtain the same payoff (i.e. zero) as the one they would obtain if

they were to invest at time one. Stated differently, unconditionally investing at time

one is - for an optimist - payoff equivalent to the alternative strategy in which she

only invests if ŝi = g. Thus, an optimist gets p− c and, in expected terms, half of the

population is optimistic. Thus, welfare equals N
2
(p − c).

If sub = −ε, c′ > 1
2

and the unique monotone PBE is the pooling one. As ε → 0,

Wel(g,−ε, pool) → N

2
(p − c) and Wel(b,−ε, pool) = δW (1 − p, (0, ρ∗(g, h1))).

As ρ∗(g, h1) > ρ∗(g, b) = 0, pessimists benefit from a more informative statistic in

the pooling equilibrium and thus Wel(0, sep) < Wel(−ε, pool). Our main insight is

summarised below.

Proposition 5 An investment tax can - by altering the nature of the played equilib-

rium - (strictly) increase welfare.
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5.2 How does the sender’s ability influence her incentives for
truthful revelation?

So far we assumed that the sender was “as able” as the receivers in the sense that all

players possess a signal of the same precision. One may find it more natural to endow

player i with a more precise signal. After all, in our model she can be interpreted as

a guru and people typically think of them as being better informed (that’s the reason

why they appear in the media). There is a straightforward way to allow for a better

informed sender. Let’s assume that player i’s signal is drawn from the distribution:

Pr(g|G) = Pr(b|B) = r and Pr(b|G) = Pr(g|B) = 1−r (where 1 > r > p). The higher

r, the “smarter” or the better informed the sender. Our main result is summarised

below:

Proposition 6 ∀c ∈ (1 − p, min{p, (1−p)r
(1−p)r+p(1−r)

}), ∃ a separating equilibrium. This

range of parameter values cannot decrease in the precision of the sender’s signal.

Proof: A MCE in which ρ̃(b, g) = ρ̃(g, g) = 1 exists only if Pr(G|b, ŝi = g) ≥ c. This

posterior probability is now computed as:

Pr(G|b, ŝi = g) =
Pr(G, ŝi = g|b)
Pr(ŝi = g|b) =

(1 − p)r

(1 − p)r + p(1 − r)
>

1

2
.

Using a reasoning identical to the one we outlined above, one can check that, if

c ∈ (1 − p, (1−p)r
(1−p)r+p(1−r)

), there exists a separating equilibrium. Q.E.D.

The intuition behind proposition 6 is simple. As we showed in Proposition 3, a

separating equilibrium exists if ρ∗(b, g) = 1. In other words, a separating equilibrium

only exists if the sender can make the pessimists change their minds. Proposition 6

therefore rests on the intuitive idea that the “smarter” the sender (or the more precise

her private information), the “easier” it will be for her to make the pessimists change

their minds. If the sender cannot convince the remaining pessimists to invest at time

one (either because the sender is commonly perceived to be “stupid” or because the

investment project only generates a low surplus) then she doesn’t want to reveal

any unfavourable information because this will worsen her second-period inference

problem.

6 The case of an uninformed sender

So far, we did not allow the sender to be uninformed. One may find this a restrictive

assumption. However in this section we argue that the central result of our paper

also holds with an uninformed sender.
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Suppose that with some probability ε (where, as above, ε represents an arbitrarily

small, but strictly positive number) player i does not possess any private informa-

tion.18 More specifically, assume that Pr(si = g|G) = Pr(si = b|B) = (1 − ε)p,

Pr(si = φ|G) = Pr(si = φ|B) = ε and Pr(si = b|G) = Pr(si = g|B) = (1 − ε)(1 − p).

Player i’s message is now ∈ {b, φ, g}. Throughout this subsection, we assume that

c ∈ (1 − p, 1
2
].

In this set-up there exists a semi-separating equilibrium in which the b-type and

the φ-type both send the same message (say, message ŝi = φ) and the g-type sends

a different message (say, message ŝi = g). To understand this, we first explain how

in equilibrium player j computes her posteriors given the different sender’s strate-

gies. First, assume player j is an optimist. Upon receiving the message ŝi = φ, she

computes:

Pr(G|sj = g, ŝi = φ, only b-type and φ-type send message φ) >
1

2

Next, assume player j is a pessimist, she computes:

Pr(G|sj = b, ŝi = φ, only b-type and φ-type send message φ) < 1 − p(12)

Similarly, if player i sends ŝi = g, a pessimist computes:

Pr(G|sj = b, ŝi = g, only g-type sends message g) =
1

2

From the previous section we know that a pessimistic sender strictly prefers to send

message ŝi = φ rather than message ŝi = g. Consider now a sender who doesn’t

possess any information. What is her expected gain of sending message ŝi = g? In

that case from above we know that there exists a continuation equilibrium in which

everyone invests at time one. As player i faces a positive gain of investing, she gets
1
2
− c ≥ c. What is her expected gain of sending message ŝi = φ? Upon receiving

message ŝi = φ, from (12) follows that pessimists do not invest at time one. Optimists

compute Pr(G|sj = g, ŝi = φ) and invest with probability ρ∗(g, φ). If player i invests

she gets 1
2
− c. If she waits, she gets δW (1

2
, ρ∗(g, φ)). From our previous section we

know that the following equalities and inequality are satisfied:

gain send g =
1

2
− c = δW (

1

2
, a) < δW (

1

2
, ρ∗(g, φ)) = gain send φ

18Note that, for simplifying reasons, we still assume that sj ∈ {g, b} (j �= i), i.e. only the sender
may be uninformed.
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Therefore it’s optimal for her to wait at time one and she strictly prefers to send

message ŝi = φ.19

Finally, from the previous section we also know that an optimistic sender cannot

gain by deviating neither. The proposition below summarises the insight present in

this subsection:

Proposition 7 If there exists an arbitrarily small probability of player i being un-

informed, then ∀c ∈ (1 − p, 1
2
], there exists a semi-separating equilibrium. In that

equilibrium ρ∗(g, g) = ρ∗(b, g) = 1.

Proof: See Appendix.

Two conclusions can be drawn out of our last proposition : (i) the separating equilib-

rium highlighted in Proposition (3) is driven by the assumption that the sender can

either be an optimist or a pessimist, (ii) however this does not mean that the insight

present in Proposition (3) is worthless. After all, the occurence of an informational

cascade along the equilibrium path is also stressed in Proposition (7). Our last Propo-

sition shows that one should not interpret Proposition (3) as follows: “Informational

cascades induce all possible types of players to truthfully reveal their private informa-

tion”. Instead, Proposition (3) should be interpreted as: “Informational cascades put

an upper limit above which some types of players don’t want to misrepresent their

information”.

7 Conclusions

In this paper we introduced cheap talk in an investment model with information ex-

ternalities. We first showed that for low surplus projects, the unique monotone PBE

is the pooling one. This is because a pessimist is reluctant to divulge her bad informa-

tion as this worsens her second-period inference problem. For high surplus projects,

however, there exists a separating equilibrium: as a pessimist doesn’t learn anything

upon observing an informational cascade (which occurs whenever the sender sends

a favourable message) revelation of bad information is compatible with maximising

behaviour. A subsidy on low-surplus projects increases welfare, provided the subsidy

19In the equation above a ∈ [0, 1) denotes the probability with which optimists must invest at
time one to make an uninformed sender indifferent between investing and waiting. As ε > 0,
Pr(G|sj = g, ŝi = φ) > 1

2 . From the insight presented in Graph 2 we know that a < ρ∗(g, φ). Note
that, when explaining the intuition behind our semi-separating equilibrium, we abstracted from the
fact that the sender observes ks and not k. As shown in the Appendix, this is without loss of
generality.
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does not turn a low-surplus project into a high-surplus one. Without an adequate

equilibrium selection theory, one cannot appraise the welfare consequences of a policy

aimed at subsidising high-surplus projects. Finally, we argued that in our context

“smart” people have more incentives to truthfully reveal their private information

than “stupid” ones.

The reader must bear in mind that we only introduced cheap talk in an endogenous-

queue set-up. More research is thus needed to check the robustness of exogenous-

queue herding models to the introduction of cheap talk. In our model one should

think about the sender as a famous investor who’s being interviewed by the media.

We believe it would be equally interesting to consider a set-up in which many players

have access to the communication channel through words. In particular, we have two

interpretations in mind. First, one could model “the economics of opinion polls” in

which a subset of the population is asked to simultaneously send a message to all

players in the economy. Second, one could model “the economics of business lunches”

in which a subset of the population meet and discuss the investment climate prior to

the first investment date (the outcome of the discussion is not divulged to the other

players in the economy). We also believe this to constitute an interesting topic for

future research.
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Appendix

1 Some Definitions and Useful Lemmas

Let q ∈ {qω, qπ, 1 − p, p}.

ρ1 ≡ (ρ(b, h1), ρ(g, h1)), ρ̃1 ≡ (ρ̃(b, h1), ρ̃(g, h1)), and

σ1 ≡ (σ(b, h1), σ(g, h1)), σ̃1 ≡ (σ̃(b, h1), σ̃(g, h1)).

∆r(q, σ1, ρ1) ≡ δW (q, σ1, ρ1) − (q − c′),(13)

where c′ = c − sub, and

W (q, σ1, ρ1) =
∑
ai

∑
k

max{0, Pr(G|q, k, ai) − c}Pr(k|q, ai) Pr(ai|q).(14)

Similarly,

∆s(q, ρ1) ≡ δW (q, ρ1) − (q − c′),

where,

W (q, ρ1) ≡
∑
ks

max{0, Pr(G|si, k
s) − c}Pr(ks|si).

In words, ∆r(q, σ1, ρ1) denotes a receiver’s difference between her gain of waiting and

her gain of investing given her posterior, σ1, ρ1 and sub. ∆s(p, ρ1) denotes the differ-

ence between an optimistic sender’s gain of waiting and her gain of investing. Note

that the sender, when observing k investments, computes her posterior by explicitly

taking into account the fact that N − 1 (and not N − 2) players were investing with

probability ρ(b, h1) if they were pessimists and with probability ρ(g, h1) if they were

optimists. Observe that, as sub ∈ [−ε, sub) (ε > 0 and ε → 0 and the definition of

sub can be found in the body of our paper), 1 − p < c′ < p.

Lemma 5 ∆r(q, σ1, ρ1) is (weakly) increasing in (σ(g, h1) − σ(b, h1)).

Proof: As we are focusing on monotone strategies σ(g, h1) − σ(b, h1) ≥ 0. We prove

the Lemma in two different steps. First, we show that ∆r(·) is weakly increasing

in σ(g, h1) for any given σ(b, h1) ≤ σ(g, h1). Next, we show that ∆r(·) is weakly

decreasing in σ(b, h1) for any given σ(b, h1) ≤ σ(g, h1).

Step 1: Fix an arbitrary σ(b, h1) ≤ σ(g, h1), and consider two investment proba-

bilities σ(g, h1) < σ′(g, h1). Call ai (a′
i) the time-one action taken by the sender when

σ1 = (σ(b, h1), σ(g, h1)) (σ1 = (σ(b, h1), σ
′(g, h1))). Having the optimistic sender

randomize with probability σ(g, h1) is ex ante identical to the following two-stage
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experiment: let the optimistic sender invest with probability σ′(g, h1). Construct ai

then in the following way:

if a′
i = invest,

⎧⎨
⎩

ai = invest with probability σ(g,h1)
σ′(g,h1)

,

ai = wait with probability 1 − σ(g,h1)
σ′(g,h1)

,

if a′
i = wait, ai = wait with probability 1.

Hence, a′
i is a sufficient statistic for ai and from Blackwell’s theorem follows that

∀σ(b, h1) ≤ σ(g, h1), W (q, (σ(b, h1), σ(g, h1)), ρ1) ≤ W (q, (σ(b, h1), σ
′(g, h1)), ρ1).

Step 2: Fix an arbitrary σ(g, h1) ≥ σ(b, h1), and consider two investment proba-

bilities σ′(b, h1) < σ(b, h1). Call ai (a′
i) the time-one action taken by the sender when

σ1 = (σ(b, h1), σ(g, h1)) (σ1 = (σ′(b, h1), σ(g, h1))). As above, one can construct ai on

the basis of a′
i in the following way: let the pessimistic sender wait with probability

1 − σ′(b, h1).

If a′
i = wait,

⎧⎨
⎩

ai = wait with probability 1−σ(b,h1)
1−σ′(b,h1)

,

ai = invest with probability 1 − 1−σ(b,h1)
1−σ′(b,h1)

,

if a′
i = invest, ai = invest with probability 1.

As before, a′
i is a sufficient statistic for ai and from Blackwell’s theorem follows

that ∀σ(b, h1) ≤ σ(g, h1), W (q, (σ(b, h1), σ(g, h1)), ρ1) ≤ W (q, (σ′(b, h1), σ(g, h1)), ρ1).

Q.E.D.

Lemma 6 ∆r(q, σ1, ρ1) is strictly decreasing in q, ∀ρ1, ∀σ1.

Proof: Consider player l and player l′. Both players received the same message from

the sender but player l anticipates that Θ = G with probability q, while player l′

anticipates that Θ = G with probability q′. Suppose, wlog, that q′ > q. Observe that

equation (14) can be rewritten as:

W (q, σ1, ρ1) = q
∑
x

Pr(x|G, ŝi)(1 − c)I{Pr(g|q,x)≥c}(15)

+(1 − q)
∑
x

Pr(x|B, ŝi)(−c)I{Pr(g|q,x)≥c},

where I{·} represents the indicator function. Remind that x denotes a (1×N) vector

where the l-th element equals one if player l invested at time one and zero otherwise.

We start by proving the following inequality:

q′ − q ≥ W (q′, σ1, ρ1) − W (q, σ1, ρ1).(16)
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Note that

W (q′, σ1, ρ1) − W (q, σ1, ρ1) ≤ W (q′, σ1, ρ1) − W ′(q, σ1, ρ1),

where,

W ′(q, σ1, ρ1) ≡ q
∑
x

Pr(x|G, ŝi)(1 − c)I{Pr(g|q′,x)≥c}

+(1 − q)
∑
x

Pr(x|B, ŝi)(−c)I{Pr(g|q′,x)≥c}.

Hence, a sufficient condition for (16) to hold is that

q′ − q ≥ W (q′, σ1, ρ1) − W ′(q, σ1, ρ1).(17)

Note that the RHS of (17) can be written as:

W (q′, σ1, ρ1) − W ′(q, σ1, ρ1) = (q′ − q)
∑
x

Pr(x|G, ŝi)(1 − c)I{Pr(g|q′,x)≥c}(18)

−(q′ − q)
∑
x

Pr(x|B, ŝi)(−c)I{Pr(g|q′,x)≥c}.

Note also that the LHS of (17) can be rewritten as:

q′ − q = (q′ − q)
∑
x

Pr(x|G, ŝi)(1 − c) − (q′ − q)
∑
x

Pr(x|B, ŝi)(−c).(19)

Using (18) and (19), inequality (17) can be rewritten as

(q′ − q)
∑
x

Pr(x|G, ŝi)(1 − c)(1 − I{Pr(g|q′,x)≥c})

+(q′ − q)
∑
x

Pr(x|B, ŝi)c(1 − I{Pr(g|q′,x)≥c}) ≥ 0,

which is obviously satisfied. Using (13), one has

∆r(q′, σ1, ρ1) − ∆r(q, σ1, ρ1) = δ(W (q′, σ1, ρ1) − W (q, σ1, ρ1)) − (q′ − q).

From above (+ using the fact that δ < 1), it follows that

∆r(q′, σ1, ρ1) < ∆r(q, σ1, ρ1),

which proves the Lemma. Q.E.D.

Lemma 7 ∆s(p, ρ1) = ∆r(p, ρ1, ρ1) and ∆s(1 − p, ρ1) = ∆r(1 − p, ρ1, ρ1).
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Proof: Suppose sj = g (the argument if sj = b is fully symmetric). Observe that,

as qω = p, player j did not learn anything about the sender’s type after the com-

munication stage. Observe also that the sender invests with the same probability as

the receivers. Both observations imply that observing ai = invest is informationally

equivalent to observing al = invest (where l �= j and l �= i). Hence, if player j waits

she has access to an information service that is ex ante identical to the one of the

optimistic sender. Thus, player j and the optimistic sender face the same gain of

waiting and the same gain of investing, which implies the Lemma. Q.E.D.

Lemma 8 ∆s(p, ρ1) is strictly decreasing in p, ∀ρ1.

Proof: From Lemma 7, we know that ∆s(p, ρ1) = ∆r(p, ρ1, ρ1). But then it follows

from Lemma 6 that ∆r(p, ρ1, ρ1) is strictly decreasing in p. Q.E.D.

Lemma 9 ∀ρ′(g, h1) > ρ(g, h1), ∆r(q, σ1, (0, ρ(g, h1)) ≤ ∆r(q, σ1, (0, ρ
′(g, h1)), where

the inequality becomes strict whenever ρ′(g, h1) > ρc ≥ 0.

Proof: First observe that whenever Pr(G|q, k, ai) is well defined, one has:

Remark 1: Pr(G|q, k = 0, ai) < Pr(G|q, k = 1, ai) < ... < Pr(G|q, k = N − 2, ai).

Remark 2: Pr(G|q, k = 0, ai) is strictly decreasing in ρ(g, h1).

Remark 3: Pr(G|q, k = 0, ai = wait) ≤ Pr(G|q, k = 0, ai = invest).

Remark 3 rests on the observation that, as 1 − p < c′, σ∗(b, h1) = 0. Before defining

ρc we must make a distinction between the following two cases: (1) Pr(G|q, 0, wait)

is well defined and (2) Pr(G|q, 0, wait) is not well defined. Observe that whenever

ρ′(g, h1) > 0, (2) only happens if - after the communication stage - all players learned

that si = g and that σ(g, g) = 1. In (1) we must make the following distinction:

(a) Pr(G|q, wait) > c and (b) Pr(G|q, wait) ≤ c. In (a) we define ρc as the prob-

ability with which N − 2 receivers must invest (if they are optimists) such that

Pr(G|q, 0, wait) = c. Observe that in (a)

Pr(G|q, 0, wait, ρ(g, h1) = 1) < c < Pr(G|q, wait) = Pr(G|q, 0, wait, ρ(g, h1) = 0),

and, thus, in (a) 0 < ρc < 1. In (b) there does not exist a ρ(g, h1) > 0 such that

Pr(G|q, 0, wait) = c. Hence, in (b) we define ρc as being equal to zero. In (2) we

make the following distinction: (c) Pr(G|q, invest) > c and (d) Pr(G|q, invest) ≤ c.

As before, in (c) we define ρc as the probability with which the N − 2 receivers must
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invest (if they are optimists) such that Pr(G|q, 0, invest) = c. In this case 0 < ρc < 1.

In (d) we define ρc as being equal to zero.

Call k′ (k) the number of time-one investors when N − 2 receivers invest with

probability ρ′(g, h1) (ρ(g, h1))if they are optimists, and with probability zero if they

are pessimists. From the explanation given in the text we know that k′ is a sufficient

statistic for k. Consider two receivers: player 1 and player 2. Both players anticipate

that Θ = G with probability q. If player 1 (2) waits, she observes statistic k′ (k).

If ρ(g, h1) < ρ′(g, h1) ≤ ρc, from Remarks 1, 2 and 3 we know that both players

always invest at time two and ∆r(q, σ1, (0, ρ(g, h1)) = ∆r(q, σ1, (0, ρ
′(g, h1)). If ρc ≤

ρ(g, h1) < ρ′(g, h1), with strictly positive probability

Pr(G|q, k = 0, ai) ≤ c < Pr(G|q, k′ = N − 2, ai),

in which case player two (wrongly) doesn’t invest and loses Pr(G|q, k′ = N−2, ai)−c >

0. Hence, whenever ρ′(g, h1) > ρ(g, h1) ≥ ρc,

∆r(q, σ1, (0, ρ(g, h1)) < ∆r(q, σ1, (0, ρ
′(g, h1)).

Q.E.D.

Lemma 9 gives rise to the following Corollary.

Corollary 1 ∀ρ′(g, h1) > ρ(g, h1),

1) ∆s(p, (0, ρ′(g, h1))) ≥ ∆s(p, (0, ρ(g, h1))) where the inequality becomes strict when-

ever W (p, (0, ρ(g, h1))) > p − c,

2) ∆s(1 − p, (0, ρ′(g, h1))) > ∆s(1 − p, (0, ρ(g, h1))).

Proof: This Corollary was already proven in Chamley and Gale (1994) (see their

Proposition 2). In our set-up the Corollary follows from our previous Lemmas as the

argument below shows.

Suppose that q ∈ {1 − p, p} and that σ1 = ρ1. From Lemma 7, we know that

player j’s gain of waiting is then identical to player i’s. Define ρc in a similar way as

in the proof of Proposition 9. Observe that 0 < ρc < 1 ⇔ W (p, ρ1, ρ1) > p − c. The

Corollary then follows from the proof of Lemma 9. Q.E.D.

Lemma 10 ∆r(1
2
, σ1, ρ1) and ∆r(qω, σ1, ρ1) are independent of σ1.

Proof: Observe that W (q, σ1, ρ1) can also be rewritten as

W (q, σ1, ρ1) = Pr(ai = invest|sj, ŝi)W
r(q′, ρ1)(20)

+ Pr(ai = wait|sj, ŝi)W
r(q′′, ρ1), where
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q′ = Pr(G|sj, ŝi, ai = invest), q′′ = Pr(G|sj, ŝi, ai = wait),

W r(q′, ρ1) =
∑
k

max{0, Pr(G|sj, ŝi, k, invest) − c}Pr(k|sj, ŝi, ai = invest) and

W r(q′′, ρ1) =
∑
k

max{0, Pr(G|sj, ŝi, k, wait) − c}Pr(k|sj, ŝi, ai = wait).

If q = 1
2

or if q = qω, this means that the receivers learned si through the sender’s

message. Hence,

W (q, σ1, ρ1) = W r(q′, ρ1) = W r(q′′, ρ1) =
∑
k

max{0, Pr(G|sj, k, si) − c}Pr(k|sj, si),

which is independent of σ1. Q.E.D.

Lemma 11 ∀ρ(b, h1) < ρ′(b, h1), ∆r(q, σ1, (ρ(b, h1), 1)) ≥ ∆r(q, σ1, (ρ
′(b, h1), 1)), where

the inequality becomes strict whenever ρ(b, h1) < ρc ≤ 1.

Proof: The proof mirrors the one we outlined in Proposition 9. Whenever ρ(b, h1) < 1

and ρ(g, h1) = 1, the act of waiting becomes informative and the probability with

which each pessimist decides to take the informative action equals (1−ρ(b, h1)). Take

any two waiting probabilities 1 − ρ(b, h1) > 1 − ρ′(b, h1). Call z (z′) the number of

players who waited when pessimistic receivers randomised with probability 1−ρ(b, h1)

(1 − ρ′(b, h1)) and optimistic receivers with probability zero. Having N − 2 players

randomising with probability ρ(b, h1) (if they are pessimists) is ex ante identical to

the following two-stage experiment: take N − 2 players and let them wait (if they

are pessimists) with probability (1 − ρ(b, h1)). Next, take the z non-investors and

let them invest with probability 1−ρ′(b,h1)
1−ρ(b,h1)

. Hence, the statistic z′ can be constructed

by adding noise to the statistic z. In the rest of the proof we always assume that

ρ(b, h1) < 1. Whenever Pr(G|q, z, ai) is well defined one has:

Remark 1: Pr(G|q, z = 0, ai) > Pr(G|q, z = 1, ai) > ... > Pr(G|q, z = N − 2, ai).

Remark 2: Pr(G|q, z = 0, ai) is strictly decreasing in ρ(b, h1).

Remark 3: Pr(G|q, z, wait) ≤ Pr(G|q, z, invest).

As above, we must distinguish among different cases. If Pr(G|q, z = 0, invest) is

well defined and if Pr(G|q, invest) < c, we define ρc as the probability with which

N − 2 receivers must invest (if they are pessimists) such that Pr(G|q, 0, invest) = c.
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If Pr(G|q, 0, invest) is not well defined and if Pr(G|q, wait) < c, we define ρc as the

probability with which N − 2 receivers must invest (if they are pessimists) such that

Pr(G|q, 0, wait) = c. In all the other cases we define ρc as being equal to one.

If ρc ≤ ρ(b, h1) < ρ′(b, h1) from Remarks 1, 2 and 3 we know that both play-

ers never invest at time two and ∆r(q, σ1, (ρ(b, h1), 1)) = ∆r(q, σ1, (ρ
′(b, h1), 1)). If

ρ(b, h1) < ρ′(b, h1) ≤ ρc with a strictly positive probability

Pr(G|q, z = N − 2, ai) < c ≤ Pr(G|q, z′ = 0, ai),

in which case player 2 wrongly invests (at time two) and loses c − Pr(G|q, z = N −
2, ai) > 0. Hence, ∀ρ(b, h1) < ρ′(b, h1) ≤ ρc,

∆r(q, σ1, (ρ(b, h1), 1)) > ∆r(q, σ1, (ρ
′(b, h1), 1)).

Q.E.D.

Lemma 12 ∆r(qω, (0, 0), (0, 0)) < 0 < ∆r(qω, (0, 0), (0, 1)).

Proof: The fact that ∆r(qω, (0, 0), (0, 0)) < 0 trivially follows from our assumption

that δ < 1. The second inequality rests on A2 and on the fcat that sub < sub1.

Q.E.D.

Lemma 13 ∆r(q, (0, 0), (0, 1)) > 0, ∀q and ∀sub ∈ [−ε, sub).

Proof: From Lemmas 12 and 6 follows that ∀q and ∀sub ∈ [−ε, sub),

0 < ∆r(qω, (0, 0), (0, 1)) < ∆r(q, (0, 0), (0, 1)).

Q.E.D.

2 Proof of all Lemmas and Propositions in our Paper

Proof of Lemma 1

Call nr the number of optimistic receivers in the economy. Observe that Pr(G|q, nr)

is increasing in nr. As explained in the paper if Pr(G|qω, nr = 1) = Pr(G|n = 2) < c,

then Pr(G|q, nr = 1) < c and W (q, σ1, (0, 1)) > q − c ∀q. Hence, we just focus on

the question: “How high must N be such that Pr(G|qω, nr = 1) < c?” The posterior

qω = qω can only be generated if (i) player i sent a favourable message and (ii)

σ(g, h0) = 1 and σ(b, h0) = 0. Therefore if qω = qω, n cannot take a value lower than

two. Now:

Pr(G|n = 2) =
C2

Np2(1 − p)N−2

C2
Np2(1 − p)N−2 + C2

N(1 − p)2pN−2
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where C2
N represents the number of possible combinations of two players out of a

population of N players. It can easily be shown that ∀N1 > N2 ≥ 2:

p2(1 − p)N1−2

p2(1 − p)N1−2 + (1 − p)2pN1−2
<

p2(1 − p)N2−2

p2(1 − p)N2−2 + (1 − p)2pN2−2

From statistical textbooks (see e.g. De Groot (1970)) we know that in our set-up

Pr(G|n) is driven by the difference between the good and the bad signals in the

population.20 Therefore if N ≥ 5, Pr(G|n = 2) ≤ 1 − p which is strictly lower than c

by A1. Q.E.D.

Proof of Lemma 2

Lemma 2 only considers the case in which c′ = c. In Lemma 13 we already proved

that the inequality holds ∀c′. Q.E.D.

Proof of Proposition 1

Proposition 1 only considers the case in which c′ = c, while we prove the Proposition

∀c′.

Proof of Point 1: If qπ < 1 − p < c′ < qω < p, ∃ a unique MCE in which

ρ̃(b, b) = σ̃(b, b) = 0 and ρ̃(g, b) ∈ [0, 1), σ̃(g, b) = 1.

The reader should bear in mind that when we claim uniqueness, we mean that (i) the

MCE must be stable (see our third equilibrium selection criterion explained in the

body of our paper) and (ii) we only focus on the class of monotone strategies (see our

second equilibrium selection criterion explained in the body of our paper).

Observe that qπ < 1 − p, which means that the sender sent message ŝi = b. As

qπ < 1 − p < c′, this implies that ρ̃(b, b) = σ̃(b, b) = 0. We first show that there does

not exist a monotone continuation equilibrium in which 0 < ρ̃(g, b) ≤ σ̃(g, b) < 1. As

both types are willing to randomise this means that

∆r(qω, (0, σ̃(g, b)), ρ̃1) = 0,

∆s(p, ρ̃1) = 0.

20For example, Pr(G|n = 1, N = 3) = Pr(G|n = 2, N = 5) = 1 − p. In both cases: #pessimists
−# optimists = N − n − n = 1.
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Both equalities cannot be simultaneously satisfied as we can successively apply Lem-

mas 5, 6 and 7 to construct the following contradiction:

0 = ∆r(qω, (0, σ̃(g, b)), ρ̃1)) ≥ ∆r(qω, ρ̃1, ρ̃1) > ∆r(p, ρ̃1, ρ̃1) = ∆s(p, ρ̃1) = 0.

Next, observe that there does not exist a monotone continuation equilibrium in which

σ̃(g, b) < 1 and ρ̃(g, b) = 0, because the optimistic sender, knowing that ρ̃(g, b) = 0,

then strictly prefers to invest at time one with probability one.

We now prove the existence of a monotone continuation equilibrium in which

σ̃(g, b) = 1 and ρ̃(g, b) ∈ [0, 1). Consider the optimistic receiver. She knows that

σ̃(g, b) = 1. There are then two possibilities: (i) ∆r(qω, (0, 1), (0, 0)) ≥ 0 and (ii)

∆r(qω, (0, 1), (0, 0)) < 0. In case (i), ρ̃(g, b) = 0. The optimistic sender knows that

ρ̃(g, b) = 0 and thus stictly prefers to invest at time one with probability one (i.e.

σ̃(g, b) = 1). In case (ii), from Lemmas 5 and 13, one has

∆r(qω, (0, 1), (0, 1)) ≥ ∆r(qω, (0, 0), (0, 1)) > 0.

From Lemma 9, there exists a unique ρ̃(g, b) ∈ (0, 1) such that ∆r(qω, (0, 1), (0, ρ̃(g, b))) =

0. Successively applying Lemmas 6, 5 and 7, one has

0 = ∆r(qω, (0, 1), ρ̃1) > ∆r(p, (0, 1), ρ̃1) ≥ ∆r(p, (0, ρ̃(g, b)), ρ̃1) = ∆s(p, ρ̃1),

and the optimistic sender, knowing that ρ̃(g, b) is fixed such that ∆r(qω, (0, 1), ρ̃1) = 0,

strictly prefers to invest at time one (i.e. σ̃(g, b) = 1). Q.E.D.

Proof of Point 2: If qπ < 1 − p < qω ≤ c′ < p, ∃ a unique MCE in which

ρ̃(b, b) = σ̃(b, b) = ρ̃(g, b) = 0 and σ̃(g, b) = 1.

In this case the sender also sent message ŝi = b. As qπ < 1−p < c′, ρ̃(b, b) = σ̃(b, b) =

0. Observe also that if qω ≤ c′, ∀ρ(g, b) > 0, ∆r(qω, σ1, (0, ρ(g, b))) > 0. Hence,

ρ̃(g, b) = 0. The optimistic sender, knowing that ρ̃(b, b) = ρ̃(g, b) = 0, strictly prefers

to invest at time one with probability one. Q.E.D.

Proof of Point 3: If 1 − p < qπ < c′ < p < qω, ∃ a unique MCE in which

σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = 0 and ρ̃(g, g) ∈ (0, 1).

In this case the sender sent message ŝi = g. As 1 − p < qπ < c′, σ̃(b, g) = ρ̃(b, g) = 0.

Suppose there exists a continuation equilibrium in which 0 < σ̃(g, g) ≤ ρ̃(g, g) < 1.

As both types of players are willing to randomize, this means that

∆r(qω, (0, σ̃(g, g)), (0, ρ̃(g, g))) = 0,
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∆s(p, (0, ρ̃(g, g))) = 0.

Both equalities cannot be simultaneously satisfied as we can successively apply Lem-

mas 5, 6 and 7 to construct the following contradiction:

0 = ∆r(qω, (0, σ̃(g, g)), ρ̃1) ≤ ∆r(qω, ρ̃1, ρ̃1) < ∆r(p, ρ̃1, ρ̃1) = ∆s(p, ρ̃1) = 0.

Note also that there cannot exist continuation equilibria in which σ̃(g, g) = ρ̃(g, g) = 0

or in which σ̃(g, g) = ρ̃(g, g) = 1 (both candidate continuation equilibria contradict

our assumption that δ < 1 and Lemma 13).

Suppose σ̃(g, g) = 0. From Chamley and Gale, we know that there exists then a

unique ρ̃(g, g) ∈ (0, 1) such that ∆r(qω, (0, 0), (0, ρ̃(g, g))) = 0. Successively applying

Lemmas 6, 5 and 7, one has

0 = ∆r(qω, (0, 0), ρ̃1) < ∆r(p, (0, 0), ρ̃1) ≤ ∆r(p, (0, ρ̃(g, g)), ρ̃1) = ∆s(p, ρ̃1),

and the pessimistic sender, knowing that ρ̃(g, g) is fixed such that ∆r(qω, (0, 0), ρ̃1) =

0, strictly prefers to wait at time one (i.e. σ̃(g, g) = 0). Q.E.D.

Proof of Point 4: If 1 − p < c′ ≤ qπ < 1
2

< p < qω, ∃ an MCE in which

σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = 0 and ρ̃(g, g) ∈ (0, 1). Depending on the values of

our exogenous parameters, there may also exist one (and only one) other MCE in

which σ̃(b, g) = 0 and ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) = 1.

In this case the sender sent message ŝi = g. As 1 − p < c′, σ̃(b, g) = 0. We prove

this point in seven different steps. Steps 1, 2 and 3 show that there does not exist a

monotone continuation equilibrium in which more than one type of player randomizes.

Steps 4, 5 and 6 show that there exists a unique monotone continuation equilibrium

in which only one type of player (i.e. the optimistic receiver) randomises (while the

optimistic sender and the pessimistic receiver wait with probability 1). Step 7 inves-

tigates the existence of monotone continuation equilibria in which none of our players

randomize.

Step 1: There does not exist a monotone continuation equilibrium in which 0 <

ρ̃(b, g) ≤ σ̃(g, g) ≤ ρ̃(g, g) < 1. Suppose the statement is true. Then one can apply

Lemma 6 to construct the following contradiction

0 = ∆r(qπ, σ̃1, ρ̃1) > ∆r(qω, σ̃1, ρ̃1) = 0.
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Step 2: There does not exist a monotone continuation equilibrium in which 0 =

ρ̃(b, g) < σ̃(g, g) ≤ ρ̃(g, g) < 1. Suppose the statement is true. Successively applying

Lemmas 7, 6 and 5 we can construct then the following contradiction

0 = ∆s(p, (0, ρ̃(g, g))) = ∆r(p, (0, ρ̃(g, g)), ρ̃1) >

∆r(qω, (0, ρ̃(g, g)), ρ̃1) ≥ ∆r(qω, (0, σ̃(g, g)), ρ̃1) = 0.

Step 3: There does not exist a monotone continuation equilibrium in which 0 <

ρ̃(b, g) ≤ σ̃(g, g) < 1 = ρ̃(g, g). Suppose the statement is true. This implies that

∆r(qπ, (0, σ̃(g, g)), (ρ̃(b, g), 1)) = 0,(21)

∆s(p, (ρ̃(b, g), 1)) = 0.(22)

Applying Lemmas 6 and 10 to equality (21), one has

0 = ∆r(qπ, σ̃1, ρ̃1) ≥ ∆r(
1

2
, σ̃1, ρ̃1) = ∆r(

1

2
, (0, 1), ρ̃1).(23)

Applying Lemmas 7 and 5 to equality (22), one has

0 = ∆s(p, ρ̃1) = ∆r(p, (ρ̃(b, g), 1), (ρ̃(b, g), 1)) ≤ ∆r(p, (0, 1), ρ̃1).(24)

Inequalities (23) and (24) cannot be simultaneously satisfied as we run into the fol-

lowing contradiction (after applying Lemma 6)

0 ≥ ∆r(
1

2
, (0, 1), ρ̃1) > ∆r(p, (0, 1), ρ̃1) ≥ 0.

Step 4: There does not exist a monotone continuation equilibrium in which 0 =

ρ̃(b, g) < σ̃(g, g) < 1 = ρ̃(g, g). This is easy to see: if ρ̃1 = (0, 1), from Lemmas 2, 5

and 7, follows that

0 < ∆r(p, (0, 0), (0, 1)) ≤ ∆r(p, (0, 1), ρ̃1) = ∆s(p, ρ̃1),

and thus the optimistic sender is not indifferent between investing and waiting.

Step 5: There does not exist a monotone continuation equilibrium in which 0 <

ρ̃(b, g) < σ̃(g, g) = ρ̃(g, g) = 1. Consider a pessimistic receiver. There are two

different possibilities: (i) ∆r(qπ, (0, 1), (1, 1)) ≥ 0 or (ii) ∆r(qπ, (0, 1), (1, 1)) < 0. In

case (i), a pessimistic receiver, knowing that by waiting she will perfectly learn the
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sender’s type, prefers to wait and is thus unwilling to randomize. In case (ii) from

Lemmas 5 and 2 we know that

∆r(qπ, (0, 1), (0, 1)) ≥ ∆r(qπ, (0, 0), (0, 1)) > 0.

From Lemma 11 we know that there exists a unique ρ̃(b, g) such that

∆r(qπ, (0, 1), (ρ̃(b, g), 1)) = 0.

In this case c′ < 1
2

and thus ∀sub ∈ [−ε, sub), c ∈ (1 − p, 1
2
). In particular this

implies that Pr(G|qπ,invest) = 1
2

> c and thus that ρc = 1 (for the definition of ρc,

see Lemma 11). From Lemma 11 we know that W (qπ, (0, 1), (ρ(b, g), 1)) is strictly

decreasing in ρ(b, g): this implies that a pessimistic receiver’s best response is in-

creasing in ρ(b, g): if ρ(b, g) > (<)ρ̃(b, g), player j strictly prefers to invest (wait). It

is well-known that this implies that the candidate continuation equilibrium in which

0 < ρ̃(b, g) < σ̃(g, g) = ρ̃(g, g) = 1 is unstable.

Step 6: There exists a unique monotone continuation equilibrium in which 0 =

ρ̃(b, g) = σ̃(g, g) < ρ̃(g, g) < 1. From Lemma 13, we know that ∆r(qω, (0, 0), (0, 0)) <

0 < ∆r(qω, (0, 0), (0, 1)). From Chamley and Gale we know that there exists a unique

ρ̃(g, g) ∈ (0, 1) such that ∆r(qω, (0, 0), (0, ρ̃(g, g))) = 0. As qπ < qω, from Lemma 6

follows that

0 = ∆r(qω, (0, 0), (0, ρ̃(g, g))) < ∆r(qπ, (0, 0), (0, ρ̃(g, g))),

and thus ρ̃(b, g) = 0. Similarly, using Lemmas 6, 5 and 7, one has

0 = ∆r(qω, (0, 0), (0, ρ̃(g, g))) < ∆r(p, (0, 0), ρ̃1) ≤ ∆r(p, ρ̃1, ρ̃1) = ∆s(p, ρ̃1),

and thus σ̃(g, g) = 0.

Step 7: A continuation equilibrium in which 0 = ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) or in

which 0 = ρ̃(b, g) = σ̃(g, g) < 1 = ρ̃(g, g) or in which 0 = ρ̃(b, g) < 1 = σ̃(g, g) =

ρ̃(g, g) cannot exist because they contradict A2. As qπ < 1
2
, this means that the

receivers, upon receiving the message ŝi = g, still face some uncertainty concerning

the sender’s type. Depending on the values of our exogenous parameters there are two

possibilities: (i) ∆r(qπ, (0, 1), (1, 1)) > 0 and (ii) ∆r(qπ, (0, 1), (1, 1)) ≤ 0. In case (i)

a pessimistic receiver, knowing that by waiting she learns the sender’s type, strictly

prefers to wait and, hence, there does not exist a continuation equilibrium in which

ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) = 1. In case (ii) using Lemmma 6 we know that

∆r(qω, (0, 1), (1, 1)) < ∆r(qπ, (0, 1), (1, 1)) ≤ 0,
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and thus ρ̃(b, g) = ρ̃(g, g) = 1. The optimistic sender, knowing that ρ̃(b, g) = ρ̃(g, g) =

1, strictly prefers to invest as well and thus σ̃(g, g) = 1. Q.E.D.

Proof of Point 5: If 1 − p < c′ ≤ qπ = 1
2

< p < qω, ∃ two MCE’s. In the first one

σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = 0 and ρ̃(g, g) ∈ (0, 1). In the second one σ̃(b, g) = 0 and

ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) = 1.

In this proof q ∈ {qπ, qω}. Observe that point 5 is identical to point 4, except that

qπ = 1
2
, which means that the receivers perfectly inferred the sender’s type out of her

message. From the analysis in point 4, we know that there exists a stable monotone

continuation equililbrium in which σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = 0 and ρ̃(g, g) ∈ (0, 1).

From Lemma 10 we know that ∆r(1
2
, (0, 1), (1, 1)) = ∆r(1

2
, (1, 1), (1, 1)) and that

∆r(qω, (0, 1), (1, 1)) = ∆r(qω, (1, 1), (1, 1)). Consider a receiver who anticipates that

σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) = 1. In that case there is no informational gain of

waiting. As δ < 1, δW (q, (1, 1), (1, 1)) < q− c. Hence, there exists an ε > 0 such that

∀sub ∈ [−ε, sub), δW (q, (1, 1), (1, 1)) < q − c′, and all receivers prefer to invest with

probability one. Similarly, the optimistic sender, knowing that ρ̃(b, g) = ρ̃(g, g) = 1,

strictly prefers to invest at time one. Hence, in case 5 there always exists a monotone

continuation equilibrium in which σ̃(b, g) = 0 and ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) = 1.

Q.E.D.

Proof of Point 6: If qπ = 1 − p < c′ < qω = p, ∃ a unique MCE in which

σ̃(b, h1) = ρ̃(b, h1) = 0 and σ̃(g, h1) = ρ̃(g, h1) ∈ (0, 1).

In this case qπ = 1 − p, which means that the receivers did not learn anything about

the sender’s type through her message. As qπ = 1−p < c′, σ̃(b, h1) = ρ̃(b, h1) = 0. As

explained in our paper, in this case we impose the restriction that σ̃(g, h1) = ρ̃(g, h1).

But then from Proposition 2 of Chamley and Gale follows that there exists a unique

ρ̃(g, h1) such that ∆r(p, (0, ρ̃(g, h1)), (0, ρ̃(g, h1))) = ∆s(p, (0, ρ̃(g, h1))) = 0. Q.E.D.

Proof of Proposition 2

Proposition 2 only considers the case in which c′ = c, while we provide a proof ∀c′.
In particular, we prove that ∀c′ > 1

2
, there exists a unique monotone PBE in which

σ∗(b, h0) = σ∗(g, h0) = 1. This PBE is supported by the out-of-equilibrium belief

that if ŝi = b, the sender is a pessimist.

First we show that σ∗(g, h0) = 1. Suppose there exists a monotone PBE in which

0 ≤ σ∗(b, h0) ≤ σ∗(g, h0) < 1. σ∗(g, h0) can only be strictly lower than one if
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E(Ui|si = g, ŝi = b) ≥ E(Ui|si = g, ŝi = g). As σ∗(b, h0) ≤ σ∗(g, h0), this means that

if the optimistic sender “lies” and sends ŝi = b, qω ≤ p. From points 1,2 and 6 of

Proposition 1, we know that her payoff (net of the ε-reputational cost) can then not

exceed p − c′. Hence,

E(Ui|si = g, ŝi = b) = p − c′ − ε < E(Ui|si = g, ŝi = g) = max{p − c′, δW (·)},

a contradiction.

As σ∗(g, h0) = 1, the message ŝi = b can only come from a pessimistic sender (if

σ∗(b, h0) also equals one, then we assume that in the out-of-equilibrium event that

ŝi = b, receivers believe with probability one that the sender is a pessimist). Hence,

Pr(G|sj = g, ŝi = b) = 1
2
. Suppose ŝi = b. Then, qπ < 1 − p < qω = 1

2
< c′ < p and

from point 2 of Proposition 1, we know that ρ∗(b, b) = ρ∗(g, b) = 0. Suppose that

ŝi = g. Then, 1 − p < qπ ≤ 1
2

< c′ < p ≤ qω and from points 3 and 6 of Proposition

1, we know that ρ∗(b, g) = 0 and that ρ∗(g, g) ∈ (0, 1). Hence,

E(Ui|si = b, ŝi = b) = 0,

E(Ui|si = b, ŝi = g) = δW (1 − p, (0, ρ∗(g, g)))− ε.

As ρ∗(g, g) > 0, this means that Pr(k = N − 1|si = b) > 0, in which case the

sender invests and gets a strictly positive payoff. Hence, δW (1− p, (0, ρ∗(g, g))) > 0.

As ε → 0, it follows that E(Ui|si = b, ŝi = b) < E(Ui|si = b, ŝi = g), and thus

σ∗(b, h0) = 1. Q.E.D.

Proof of Proposition 3

Proposition 3 only considers the case in which c′ = c, while we provide a proof ∀c′. In

particular, we prove that ∀c′ ≤ 1
2
, our game is characterised by two monotone PBE’s:

a pooling and a separating one. In the separating equilibrium, ρ∗(b, g) = ρ∗(g, g) = 1.

The pooling equilibrium is supported by the out-of-equilibrium belief that if ŝi = b,

the sender is a pessimist.

From the proof of Proposition 2, we know that σ∗(g, h0) = 1. We prove the Propo-

sition in three different steps. First we show that there does not exist a monotone

PBE in which 0 < σ∗(b, h0) < σ∗(g, h0) = 1. Next, we show that there exists a

separating equilibrium. Finally, we show that there exists a pooling equilibrium in

which σ∗(b, h0) = σ∗(g, h0) = 1.
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Step 1: Suppose there exists a monotone PBE in which 0 < σ∗(b, h0) < σ∗(g, h0) = 1.

σ∗(b, h0) can only be ∈ (0, 1) if E(Ui|si = b, ŝi = b) = E(Ui|si = b, ŝi = g). If the

pessimistic sender sends ŝi = b, qπ < 1 − p < c′ ≤ qω = 1
2

< p, and from points 1

and 2 of Proposition 1, we know that ρ∗(b, b) = 0 and that ρ∗(g, b) ∈ [0, 1). If she

sends ŝi = g, there are two possibilities: (a) 1 − p < qπ < c′ < p < qω and (b)

1 − p < c′ ≤ qπ < 1
2

< p < qω.

In case (a), from point 3 of Proposition 1 we know that ρ∗(b, g) = 0 and ρ∗(g, g) ∈
(0, 1). Hence,

E(Ui|si = b, ŝi = b) = δW (1 − p, (0, ρ∗(g, b))), and

E(Ui|si = b, ŝi = g) = δW (1 − p, (0, ρ∗(g, g)))− ε.

We now prove that ρ∗(g, g) > ρ∗(g, b). If ρ∗(g, b) = 0, it trivially follows that ρ∗(g, g) >

ρ∗(g, b). Therefore, suppose that ρ∗(g, b) > 0. In that case from points 1, 2 and 3 of

Proposition 1 we know that ρ∗(g, b) and ρ∗(g, g) were “generated” by the following

two equalities:

∆r(Pr(G|g, b), (0, 1), (0, ρ∗(g, b)) = 0,(25)

∆r(Pr(G|g, g), (0, 0), (0, ρ∗(g, g)) = 0.

As Pr(G|g, b) = 1
2
, from Lemma 10 we know that

∆r(Pr(G|g, b), (0, 0), (0, ρ∗(g, b)) = ∆r(Pr(G|g, b), (0, 1), (0, ρ∗(g, b)).

As Pr(G|g, b) < Pr(g, g), from Lemma 6 we know that

∆r(Pr(G|g, g), (0, 0), (0, ρ∗(g, b)) < ∆r(Pr(G|g, b), (0, 0), (0, ρ∗(g, b)) = 0.

Hence, for equality 25 to be respected it follows from Lemma 9 that ρ∗(g, g) >

ρ∗(g, b). But then it follows from Corollary 1 that δW (1 − p, (0, ρ∗(g, g))) > δW (1 −
p, (0, ρ∗(g, b))). As ε → 0, it follows that in case (a) E(Ui|si = b, ŝi = b) < E(Ui|si =

b, ŝi = g), a contradiction.

In case (b), from point 4 of Proposition 1 we know that there always exists a

monotone continuation equilibrium in which ρ∗(b, g) = 0 and ρ∗(g, g) ∈ (0, 1). De-

pending on the values of the exogenous parameters there may also exist another

monotone continuation equilibrium in which ρ∗(b, g) = ρ∗(g, g) = 1. If players focus

on the continuation equilibrium in which ρ∗(b, g) = 0 and ρ∗(g, g) ∈ (0, 1), using a

reasoning identical to the one of the paragraph above, we know that the pessimistic

sender cannot be indifferent between the two messages. Therefore, suppose players
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focus on the continuation equilibrium in which ρ∗(b, g) = ρ∗(g, g) = 1 (provided this

continuation equilibrium exists). In that case,

E(Ui|si = b, ŝi = b) = δW (1 − p, (0, ρ∗(g, b))), and

E(Ui|si = b, ŝi = g) = −ε.

As δW (1 − p, (0, ρ∗(g, b))) ≥ 0 > −ε, in case (b) the sender cannot be indifferent

between the two messages.

Step 2: If the pessimistic sender deviates and sends ŝi = g, 1 − p < c′ ≤ qπ =
1
2

< p < qω. From point 5 of Proposition 1, we know that there exists two monotone

continuation equilibria. If players focus on the one in which ρ∗(b, g) = 0 and ρ∗(g, g) ∈
(0, 1), using a reasoning identical to the one of two paragraphs above, the pessimistic

sender strictly prefers to send ŝi = g instead of ŝi = b. If players focus on the one in

which ρ∗(b, g) = ρ∗(g, g) = 1,

E(Ui|si = b, ŝi = g) = −ε < 0 ≤ E(Ui|si = b, ŝi = b) = δW (1 − p, (0, ρ∗(g, b))),

where the second inequality becomes strict whenever c′ < 1
2
. Hence, there exists a

monotone PBE in which σ∗(b, h0) = 0 and σ∗(g, h0) = 1.

Step 3: Suppose receivers update their posteriors under the assumption that σ∗(b, h0) =

σ∗(g, h0) = 1. In the out-of-equilibrium event that ŝi = b, we assume that receivers

believe that the sender is a pessimist (with probability one). Therefore,

E(Ui|si = b, ŝi = b) = δW (1 − p, (0, ρ∗(g, b))).

If she sends ŝi = g, qπ = 1 − p < c < qω = p, and from point 6 of Proposition 1 we

know that ρ∗(b, g) = 0 and ρ∗(g, g) ∈ (0, 1). Using a reasoning identical to the one

we outlined in step 1, ρ∗(g, g) > ρ∗(g, b). From Corollary 1 (+ the fact that ε → 0)

follows that the pessimistic sender strictly prefers to “lie” and send ŝi = g. Q.E.D.

Proof of Lemma 3

Define ρ∗(g, b, sub) as the probability which ensures the following equality

1

2
− c + sub = δW (

1

2
, (0, 1), (0, ρ∗(g, b, sub))).

From the paper we know that

sub < δW (qω, (0, 0), (0, 1))− (qω − c).(26)
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We now show that ∀sub ∈ [0, sub), ρ∗(g, b, sub) < 1. ρ∗(g, b, sub) = 1 only if

1

2
− c + sub ≥ δW (

1

2
, (0, 1), (0, 1)),

⇔ sub ≥ δW (
1

2
, (0, 1), (0, 1))− (

1

2
− c).(27)

Inequalities 26 and 27 cannot both be satisfied as we can use Lemmas 6 and 10 to

construct the following contradiction

sub ≥ δW (
1

2
, (0, 1), (0, 1))− (

1

2
− c) > δW (qω, (0, 1), (0, 1))− (qω − c)

= δW (qω, (0, 0), (0, 1))− (qω − c) > sub.

As ρ∗(g, b, sub) < 1 it trivially follows from Lemma 9 that ρ∗(g, b, sub) is strictly

increasing in sub. Q.E.D.

Proof of Lemma 4

The proof is similar to the one of Lemma 3. Define ρ∗(g, h1, sub) as the probability

which ensures the following equality

p − c + sub = δW (p, (0, ρ∗(g, h1, sub)), (0, ρ∗(g, h1, sub))).

∀sub ∈ [0, sub), ρ∗(g, h1, sub) < 1 as we otherwise run into the following contradiction

sub ≥ δW (p, (0, 1), (0, 1))− (p − c) > δW (qω, (0, 1), (0, 1))− (qω − c)

= δW (qω, (0, 0), (0, 1))− (qω − c) > sub.

As ρ∗(g, h1, sub) is always strictly lower than one, it trivially follows from Lemma 9

that ρ∗(g, h1, sub) is strictly increasing in sub. Q.E.D.

Proof of Proposition 4

From Corollary 1, we know that δW (1− p, (0, ρ∗(·))) is strictly increasing in ρ∗(·). If

qπ = (1−p)2

p2+(1−p)2
, this means that the pessimistic receivers learned that si = b. Hence,

Pr(G|qπ,wait) < c and ρc = 0 (for the definition of ρc, see Lemma 9). From Lemma 9

then follows that δW ( (1−p)2

p2+(1−p)2
, (0, 1), (0, ρ∗(g, b))) is also strictly increasing in ρ∗(·).

This insight - combined with our results summarised in Lemmas 3 and 4 - allows us

to conclude that equations 6 and 8 are strictly increasing in sub. The remainder of

the proof can be found in the body of our paper. Q.E.D.
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Proof of Proposition 7

We redefine σ1 as σ1 = (σ(b, h1), σ(φ, h1), σ(g, h1)), where σ(φ, h1) represents the

probability with which the uninformed sender invests at time one given the message

she sent at time zero. From the insight summarised in Proposition 3 it should be

obvious that the pessimistic sender strictly prefers to send ŝi = φ to ŝi = g. One has,

0 = ∆r(qω, (0, 0, 1), (0, ρ∗(g, φ))) = ∆r(qω, (0, 0, 0), (0, ρ∗(g, φ)))

≤ ∆s(qω, (0, ρ∗(g, φ))) < ∆s(
1

2
, (0, ρ∗(g, φ))).

The first equality sign states that optimists - after having received the message ŝi = φ

- must fix ρ∗(g, φ) such that they are indifferent between investing and waiting. Upon

receiving message ŝi = φ, player j knows that Pr(si = g|sj, ŝi = φ) = 0 and thus the

receiver’s gain of waiting is independent of σ(g, φ) (which explains the second equality

sign). The first inequality sign is based on the insight, explained in the body of our

paper, that ks is a sufficient statistic for k. The second inequality sign is based on

Lemma 6 (in the proof of Lemma 6, we do not rely on the fact that the sender can

only send two messages). The strings of equalities and inequalities presented above

prove that an uninformed sender strictly prefers to send ŝi = φ and wait, instead of

sending ŝi = g and invest at time one. One also has,

0 = ∆r(qω, (0, 0, 1), (0, ρ∗(g, φ))) ≥ ∆r(qω, (0, 0, ρ∗(g, φ)), (0, ρ∗(g, φ)))

> ∆r(p, (0, 0, ρ∗(g, φ)), (0, ρ∗(g, φ))) = ∆s(p, (0, ρ∗(g, φ))).

The first and the second inequality signs rely on Lemmas 5 and 6. Note that the

last equality sign only holds when ε → 0. Hence, the optimist - independently of her

message - invests at time one and she cannot gain by deviating. Q.E.D.
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