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Abstract

Standard equilibrium concepts in game theory find it diffi cult to explain the em-

pirical evidence from a large number of static games including the prisoners’dilemma

game, the hawk-dove game, voting games, public goods games and oligopoly games.

Under uncertainty about what others will do in one-shot games, evidence suggests

that people often use evidential reasoning (ER), i.e., they assign diagnostic signifi-

cance to their own actions in forming beliefs about the actions of other like-minded

players. This is best viewed as a heuristic or bias relative to the standard approach.

We provide a formal theoretical framework that incorporates ER into static games by

proposing evidential games and the relevant solution concept: evidential equilibrium

(EE). We derive the relation between a Nash equilibrium and an EE. We illustrate

these concepts in the context of the prisoners’dilemma game.
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1 Introduction

A considerable body of evidence shows that the predictions of the standard equilibrium
concepts in game theory are not borne out by a significant fraction of experimental sub-
jects.1 In this paper, we are interested in static games of complete information. Examples
include the prisoners’dilemma, the voting game, the public goods game, the hawk-dove
game and oligopoly games.
Let us briefly note the nature of the violations of the standard equilibrium concepts in

some static games of interest. A more detailed treatment is given in the main body of the
paper. More than half the subjects in the prisoners’dilemma game play the dominated
action ‘cooperate’. Voters vote in elections when it is clear to them that they will not
be pivotal. Under traditional preferences, if there is a cost to voting, the act of voting is
dominated by not-voting. The dominant action in public goods games is to free-ride. Yet,
we can elicit near first-best levels of contributions with like-minded players2.
The evidence from these and similar games suggests the following stylized facts that

any reasonable theory of static games may aspire to explain; we consider the empirical
evidence behind these claims in the body of the paper.

S1. A significant fraction of players behave in a manner that is consistent with the
predictions of classical game theory. For instance, many players defect in a prisoners’
dilemma game, many people abstain from voting and many people do not contribute
at all in public goods games.

S2. An even larger fraction of players violate the predictions of classical game theory
and they often seem to behave in an apparently non-strategic manner. For instance,
the action ‘cooperate’in a prisoner’s dilemma game is a dominated action but these
actions by players, jointly, lead to higher payoffs. These findings are fairly robust
even in the other static games that we do not consider in this paper.3

S3. In environments where players think that they are playing with other like-minded
players, evidence shows that they impute diagnostic significance to their own actions
when forming beliefs about the actions of others. For instance, those who cooperate

1See, Camerer (2003) for a book length treatment.
2In Bayesian games, like-minded players is often used to denote the case where players share the same

priors. However, in this paper we use like-mindedness in its more general psychological sense.
3For instance, in a second price common value auction, Ivanov et al. (2010) find that more than 30%

of their subjects choose dominated bids. Controlling for lack of attention, misconception or insuffi cient
incentives, de Sousa et al. (2012) find in a p-beauty contest with chess players that half of their exper-
imental subjects behave in a non-strategic manner. The authors argue that (p.3): “Our results overall
suggest that the existence of non-strategic players in one-shot games is a robust feature. Rather than
disregarding non-strategic players as noise, we believe that they should be considered as one of the main
empirical regularities found in situations in which economic agents are confronted with new situations.”
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(respectively defect) in prisoners’dilemma games think that the vast majority of
other players will also cooperate (respectively defect). Similarly, despite publicly
available information on election polls, those who vote Democrat (respectively Re-
publican) in the US Presidential elections believe that a significant majority of other
voters will also vote Democrat (respectively Republican).

Each of the static games that we consider has an exceedingly simple structure. Hence,
we believe that the anomalies relative to the predictions of classical game theory are less
likely to arise from mistakenly playing the incorrect action.4

The main focus of our paper is on S3, which also allows us to shed light on S1 and
S2. There is always considerable uncertainty about what others will do in one-shot games.
Think of being in an experiment where you are playing a prisoner’s dilemma game or a
voting game or a public goods game. How do you infer what the other players are likely
to play? Considerable evidence, that we shall review later, suggests that people often use
evidential reasoning (ER), i.e., they assign diagnostic significance to their own actions in
forming beliefs about the actions of other like-minded players. We stress that a player
using ER does not believe that his actions influence the actions of other players. ER
merely influences a player’s own belief about which unobserved action other players are
likely to take.
ER is best viewed as a heuristic or bias. In the early 1970’s Kahneman and Tversky

proposed the heuristics and biases approach. A substantial literature developed subse-
quently that identified a rich range of heuristics and generated evidence that they are used
by human subjects. See, for instance Kahneman et al. (1982) and Kahneman (2003). ER,
like these heuristics, is fast and frugal in the use/processing of information and in cogni-
tive requirements. As with all heuristics, players who use ER may find ex-post that their
initial beliefs were incorrect. ER can lead to violation of some of the principles of classical
decision theory, for example Savage’s sure thing principle. However, these violations have
been well documented. For example, the sure thing principle is violated in the Ellsberg
paradox (which, however, is a non-game theoretic situation).
Evidence supports the interpretation of evidential reasoning as a heuristic. People who

use evidential reasoning are not aware of using it despite their behavior being obviously
consistent with evidential reasoning. Evidential reasoning appears to arise as an automatic,
rather than a deliberate effort or intention, e.g., it does not require awareness. Evidence
supporting this view comes from experiments which show that evidential reasoning was not
hampered by cognitive load or time required to complete an action; see Krueger (2007).
Furthermore, other evidence, also reported in Krueger (2007), suggests that considerable

4For this reason our focus is not on behavioral alternatives such as quantal response equilibrium (QRE)
in which players play a noisy best response but otherwise have consistent beliefs.
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cognitive effort is required to suspend evidential reasoning. The evidence from Acevedo
and Krueger (2005) indicates that evidential reasoning applies to human-human interaction
but not to human-nonhuman interaction. Players using evidential reasoning do not believe
that their actions cause the action of others; it merely informs their belief about the actions
taken by others. Another feature of evidential reasoning is that individuals continue to
behave in a self interested manner.
It might be useful to distinguish between to types of heuristics. The first involves no

violation of the standard assumptions of game theory. They propose extra conditions that
are consistent with the standard assumptions of game theory but whose aim is to reduce
the multiplicity of Nash equilibria. Examples include payoff dominance and risk dominance
(Harsanyi and Selten, 1988). Note that in some cases these heuristics are in conflict (in
some games payoff-dominance could select one equilibrium but risk-dominance could select
another). In fact, the whole program of refinements of Nash (van Damme, 1991) may be
viewed in this light. We may call these conservative heuristics. The second type, which we
may call radical heuristics, involve relaxation of some of the standard assumptions of game
theory. Examples include Stackelberg reasoning (Colman and Bacharach, 1997; Colman et
al., 2014). Evidential reasoning is firmly in the group of radical heuristics.
Section 2, Evidential Games, gives a formal treatment of evidential reasoning and

proposes several concepts that we will find useful in the rest of the paper. An evidential
game is simply a game where players use evidential reasoning. An evidential equilibrium
is one where each player chooses to optimize given his beliefs about the behavior of the
other players (inferred from his own behavior in accordance with evidential reasoning).
A consistent evidential equilibrium is an evidential equilibrium where beliefs turn out to
be correct. Our formulation of evidential reasoning yields causal reasoning, the mode
of reasoning assumed in the traditional framework in economics, as a special case. If
players use causal reasoning then a consistent evidential equilibrium corresponds to a
Nash equilibrium in the ordinary sense. We introduce the concept of a social projection
function (SPF) and give formal definitions of like mindedness, ingroup and outgroup.
Section 3 argues that evidential reasoning is a useful heuristic rather than a valid

method of inference. Sections 4, 5 and 6 show that evidential reasoning can answer the
following questions: Why do people voluntarily contribute to public goods? Why do
people vote? Why is there so much cooperation in the prisoners’dilemma game? Section
7 examines the uniqueness of outcomes under evidential reasoning in the context of the
Nash demand game. Oligopoly games are considered in section 8. In section 9, we argue
that causal reasoning cannot adequately explain cooperation in the prisoners’dilemma
game. Section 10 concludes.
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2 Evidential equilibrium in static games of complete
information

2.1 Elements of standard game theory5

Consider the following standard description of a static game of complete information,
{N,A,π}. N = {1, 2, ..., n} is the set of players. Ai ⊆ R is the set of actions open to
player i. We denote a typical member of Ai by ai. A = ×ni=1Ai gives all possible action
profiles of the players. A−i ⊆ Rn−1 is the set of vectors of actions open to the other players.
Denote by Si, the set of probability distributions over the set of actions Ai. We denote a
typical element of Si by si and call it a strategy. si (ai) is the probability with which player
i plays ai ∈ Ai, so si (ai) ≥ 0 and

∑
ai∈Ai si (ai) = 1. In particular, if si (ai) = 1 (hence,

si (a
′
i) = 0 for a′i 6= ai), then we call s a pure strategy and we identify it with the action ai.
A profile of strategies of all players is denoted by s= (s1, s2, ..., sn) ∈S, where S= ×ni=1Si

is the set of all possible profiles of strategies. A particular profile of strategies of other
players is denoted by s−i = (s1, ..., si−1, si+1, ..., sn) ∈S−i = ×j∈N−{i}Sj. The payoff to
player i is a mapping πi :S→ R. Let π be the vector of payoffs to all players. Given a
strategy profile, s= (si, s−i) ∈S, the payoff to player i is πi (si, s−i) ∈ R. The structure
of the game, {N,A,π}, is common knowledge among the players. In an experimental
setup common knowledge can be achieved by a public announcement of {N,A,π}. This
is the sense in which this is a game of complete information. However, when each player,
i, chooses his strategy, si, he does not know the strategies, s−i, that have been, or will be,
chosen by the other players. This is the sense in which this is a static game.

Definition 1 : s∗i ∈ Si is a dominant strategy for player i ∈ N if πi (s∗i , s−i) ≥ πi (si, s−i)

for each si ∈ Si and each s−i ∈S−i. If πi (s∗i , s−i) > πi (si, s−i) for each si ∈ Si−{s∗i } and
each s−i ∈S−i, then s∗i is a strictly dominant strategy for player i.

Definition 2 (Nash, 1950b, 1951): A strategy profile s∗ = (s∗1, s
∗
2, ..., s

∗
n) ∈S is a Nash

equilibrium in the game Γ = {N,A,π} if s∗i maximizes πi
(
si, s

∗
−i
)
with respect to si, given

s∗−i, for each i ∈ N , i.e.,

πi
(
s∗i , s

∗
−i
)
≥ πi

(
si, s

∗
−i
)
for all si ∈ Si.

Note that there is no role for beliefs about the strategies of others in the game
{N,A,π}, nor in the definition of a Nash equilibrium (Definition 2). Hence, we aug-
ment the game {N,A,π} with a profile of “social projection functions”, P, that specify
the beliefs of players; this is undertaken in subsection 2.2, below.

5See, for example, Fudenberg and Tirole (1991), part I.
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2.2 Social projection functions

We would like to define a function that captures the beliefs that a player has about the
strategies of the other players, conditional on his own strategy. We will call such a function
a social projection function.6

Definition 3 (Social projection functions, SPF): A social projection function for player
i is a mapping Pi : Si →S−i, that assigns to each strategy, si ∈ Si, for player i, an n− 1

vector of strategies for the other players. We write Pij (aj|si) for the subjective belief of
player i that player j plays aj ∈ Aj, conditional on player i playing si ∈ Si. Hence,
Pij (aj|si) ≥ 0 and

∑
aj∈Aj Pij (aj|si) = 1. We may write Pi (si) =se−i (si) to indicate that

Pi (si) is the (n− 1) vector of strategies that player i anticipates that the other players will
follow if player i adopts the strategy si.

We now define causal reasoning, the mode of reasoning assumed in classical game
theory. Then we define evidential reasoning.

Definition 4 (Causal Reasoning): We say that player i uses causal reasoning if Pij (aj|si)
is independent of si for each aj ∈ Aj and each j 6= i, i.e., if Pi (si) = Pi (s

′
i) for all

si, s
′
i ∈ Si.

Definition 5 (Evidential Reasoning) We say that player i uses evidential reasoning if it
is not necessarily the case that Pi (si) = Pi (s

′
i) for all si, s

′
i ∈ Si.

Remark 1 : (a) In a static game of complete information, players are uncertain of the
actions taken by others. Under evidential reasoning, player i resolves this uncertainty by
assigning diagnostic significance to his own choice of strategy, si, in inferring the strate-
gies of the other players, s−i, using his social projection function, Pi. For this reason,
Definition 5 allows for Pi (.|si) to change as si changes. However, it is crucially important
to realize that there is no causal connection between si and s−i. The choice of si by player
i merely influences his belief about the strategies, s−i, of the other players. In particular,
players who use evidential reasoning know that their own actions have no causal effects in
altering the actions of others when they change their own actions.
(b) An SPF (Definition 3) specifies the beliefs of a player for all possible actions of others,
including out-of-equilibrium actions. The beliefs of a player need not turn out to be fulfilled
in equilibrium. In this respect, ER is similar to other disequilibrium-in-beliefs models such
as the level-k model (Example 3, below).

6We use the term social projection function because, on the one hand, it is obviously connected with
social projection and evidential reasoning and, on the other hand, to distinguish it from the term projection
function as commonly used in mathematics.
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(c) If player i uses causal reasoning as in classical game theory (see Definition 4) then he
assigns no diagnostic significance to his own strategy, si, in inferring the strategies, s−i,
followed by the other players.7 Thus, under causal reasoning, Pi (si) remains fixed as si
changes. From Definitions 4, 5, causal reasoning is a special case of evidential reasoning.

Many different types of social projection functions (SPF’s) are possible. There are
possibly various degrees of like-mindedness. However, a particularly salient SPF is one
where a player believes that a like-minded player will play a strategy that is identical to
his own. We call this the identity social projection function. This SPF seems important
when choices are low dimensional and players play symmetric games. Examples include
cooperate or defect in a prisoners’dilemma game, vote Democrats or Republicans in US
Presidential elections, coordinate or fail to coordinate in coordination games, or play hawk
or dove in the hawk-dove game.

Definition 6 (Identity social projection function): Let M ⊆ N be a subset of players.
Suppose that all players in M have the same action set, i.e., Ai = Aj = A for all i, j ∈M .
Let Pi be the social projection function for player i ∈ M . Recall that Pij (a|si) is the
probability that player i assigns to player j playing action a when the strategy of player i
is given by si. If Pij (a|si) = si (a) for all a ∈ A and all j ∈ M − {i}, then we say that
Pi is an identity social projection function on M . If M = N , then we say that Pi is an
identity social projection function.

Example 1 (Self-similarity in the hawk-dove game)8: Consider the following game be-
tween two players. If both choose hawk (H), then each gets 0. If both choose dove (D),
then each gets 2. If one chooses H (the hawk) and the other chooses D (the dove), then the
hawk gets 3 and the dove gets 1. These payoffs are summarized by the following matrix,
where the row player plays D with probability p ∈ [0, 1] while the column player plays D
with probability q ∈ [0, 1].

D (q) H (1− q)
D (p) 2, 2 1, 3
H (1− p) 3, 1 0, 0

Table 1: A Hawk-Dove Game
7By contrast, in a dynamic game (under causal reasoning), if (say) player 1 moves first, choosing the

strategy σ1, followed by player 2 who chooses strategy σ2, having observed a realization of σ1, then σ2
may very well depend on σ1. When choosing σ1, player 1 will take into account the influence of his choice
on the future behaviour of player 2. This should not be confused with evidential reasoning.

8We are grateful to Subir Bose for drawing our attention to this example.
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Under causal reasoning (Definition 4), the row player should use a constant social projec-
tion function. However, the experimental results reported by Rubinstein and Salant (2015)
show that the higher the probability, p, with which the row player plays D, the higher the
probability, q, she thinks the column player will play D. This can be formalized by the row
player adopting the identity social projection function (Definition 6):

P12 (D|p) = p. (1)

2.3 Ingroups, outgroups and evidential reasoning

Players need not impute diagnostic significance to their actions when others are perceived
not to be like-minded; the next definition formalizes this idea.

Definition 7 (Ingroups and Outgroups): Suppose that players use evidential reasoning.
(a) Player i regards player j (j 6= i) as an outgroup member if Pij (aj|si) is independent
of si, i.e., if Pij (aj|si) = Pij (aj|s′i) for all si, s′i ∈ Si and all aj ∈ Aj. Otherwise, player i
regards player j (j 6= i) as an ingroup member.
(b) Let M ⊂ N be a non-empty set of players. If every player in M regards every other
player in M as an ingroup member, then M is an ingroup.
(c) Let L ⊂ N and M ⊂ N be disjoint non-empty sets of players. Suppose every player in
L regards every player in M as an outgroup member. Then we say that M is an outgroup
relative to L.

Remark 2 : Player i plays action ai ∈ Ai with probability si (ai) and believes that player j
will play action aj ∈ Aj with probability Pij (aj|si) (the latter is conditional on si). Hence,
player i believes that the joint probability of ai and aj being played is Pij (ai, aj|si) =

si (ai)Pij (aj|si). Suppose that player i regards player j as an outgroup member. Then
(and only then) Pij (aj|si) is independent of si ∈ Si. Hence, in this case, Pij (ai, aj|si) =

si (ai)Pij (aj|si). Thus, if player i regards player j as an outgroup member, then player
i believes that the probability with which he (player i) plays ai ∈ Ai is independent from
the probability that he believes j will play aj ∈ Aj. In particular, if player i uses causal
reasoning, then he regards all others as outgroup members and, hence, he believes that his
actions are independent of the actions of all other players.

Definition 8 (Perfect ingroups): Let M ⊆ N be a subset of players. Suppose that all
players in M have the same action set, i.e., Ai = Aj = A for all i, j ∈ M . Let Pi be the
social projection function for player i ∈ M . If Pi is an identity social projection function
on M , for each player i ∈M , then M is a perfect ingroup.
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Definition 9 (Evidential game): Consider the static game of complete information, {N,A,π}.
Let P = (P1,P2, ...,Pn) be a profile of social projection functions, where Pi is the social
projection function of player i ∈ N (Definition 3). Then we denote the game augmented
with the vector of social projection functions, P, by Γ = {N,A,π,P} and we call it an
evidential game. We say that players in such a game use evidential reasoning.

Definition 10 If each Pi (si) is independent of si, then we say that Γ is a causal game.

Remark 3 : (a) From Definition 9, a causal game is a special case of an evidential game.
(b) Suppose Pi (si) is independent of si, for each player, i, so that Γ = {N,A,π,P} is
a causal game. Γ is still richer than the static game of complete information, {N,A,π},
because Γ incorporates players’beliefs about other players’actions, as given by P.

Example 2 (Matching pennies): Consider the matching pennies game.

H T
H −1, 1 1,−1
T 1,−1 −1, 1

The set of players is N = {1, 2}. The action sets are A1 = A2 = {H,T}. Player 1, the
row player, plays H and T with respective probabilities p, 1 − p. Player 2, the column
player, plays H and T with respective probabilities q, 1− q. The sets of possible strategies
are S1 = {p : 0 ≤ p ≤ 1} for player 1 and S2 = {q : 0 ≤ q ≤ 1} for player 2. If player
1 plays H (say) and player 2 plays T , then the payoff is 1 to player 1 and −1 to player
2. For any profile of strategies (p, q), p, q ∈ [0, 1], the payoff functions of the players
are π1 (p, q) = − (1− 2p) (1− 2q) and π2 (p, q) = (1− 2p) (1− 2q). The following are
examples of social projection functions{

P12 (H | p) = p, for all p ∈ [0, 1] ,
P21 (H | q) = 0.5, for all q ∈ [0, 1] .

(2)

According to (2), player 1, who uses evidential reasoning, believes that if he (player 1)
plays H with probability p, then so will player 2 for any p ∈ [0, 1]. Hence, player 1 has
an identity social projection function. It is critical to note that these are the ‘beliefs’of
player 1. There is no presumption that these beliefs will turn out to be justified ex-post.
Player 2, who uses causal reasoning, believes that player 1 will play H with probability 0.5,
whatever strategy, q, player 2 chooses. Hence, player 1 regards player 2 as an ingroup
member but player 2 regards player 1 as an outgroup member, so N = {1, 2} fails to be an
ingroup. On the other hand, if both players had identity social projection functions, then
N = {1, 2} would be an ingroup (in fact, a perfect ingroup). By contrast, if in (2) we had,
say, P12 (H | p) = 0.3 for all p ∈ [0, 1], then both players would exhibit causal reasoning;
and this example would become a causal game.
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Example 3 (An application of the level-k model to the p-beauty contest): A large number
of contestants are asked to choose an integer between 0 and 100, inclusive. It is announced
that the winner is the one who gives an answer closest to 2

3
the average of the choices of all

the other players. A level-0 player simply makes a random uniform choice. Thus, if player
j is of level-0, then the action of player j is aj = 50. A level-1 player assumes all other
players are level-0 and, therefore, assumes all other players will choose 50. Thus, if player
i is level-1, his social projection function will be Pij (aj|si) = 1 for aj = 50 or Pij (aj|si) = 0

for aj 6= 50. Thus, the optimal choice for player i, if i is level-1, is ai = 100
3
' 33. 333.

A level-2 player assumes all other players are level-1 and, therefore, assumes all other
players will choose 100

3
. Thus, if player i is level-2, his social projection function will be

Pij (aj|si) = 1 for aj = 100
3
or Pij (aj|si) = 0 for aj 6= 100

3
. Thus, the optimal choice for

player i, if i is level-2, is ai = 200
9
' 22. 222, and so on. Note that all players use causal

reasoning since, for each player, Pij (aj|si) is independent of si.

Intuitively, an “ingroup” is a group of players each of whom believes that the others
are like-minded and, hence, would behave in a similar, but not necessarily identical, man-
ner. The literature has typically assumed that players do not use their own actions as
diagnostic of the actions of “outgroup”players; see, for instance, Krueger (2007), Robbins
and Krueger (2005); and our definitions reflect this (see, in particular, Definition 7).
However, recent evidence suggests a more nuanced view that is also consistent with

our definitions. Koudenburg et al. (2011) show that voters project their own preference
for a political party to non-voters even when they are informed about the poll results for
non-voters. Thus, voters may regard non-voters as ingroup members, though in a strict
sense only the set of voters may be thought to form an ingroup (Definition 7).
Riketta and Sacramento (2008) cite several references to show that members of an

ingroup assign beliefs about other members even when they could have no possible infor-
mation about those members. They find that an ingroup member may have a harmonious
(or cooperative) relation with other members. On the other hand, they also find that an
ingroup member may be in competition (or conflict) with other members. In the latter
case, an ingroup member may believe that the actions of others are in contrast to his own
actions (the contrast effect). The following is an illustration.

Example 4 (The contrast effect): Consider the matching pennies game of Example 2.
Instead of (2), consider the following social projection functions:{

P12 (H | p) = 1− p, for all p ∈ [0, 1] ,
P21 (H | q) = 1− q, for all q ∈ [0, 1] .

(3)

According to (3) player 1 believes that if he (player 1) plays H with (say) probability 1,
then player 2 will play H with probability 0; and similarly for player 2. Both players use

9



evidential reasoning but exhibit the contrast effect. Each player regards the other as an
ingroup member. Hence, N = {1, 2} is an ingroup. But N fails to be a perfect ingroup
because players are not using their identity social projection functions.

2.4 Equilibria

In this section, we propose an appropriate equilibrium concept for static evidential games
of complete information. We call this an evidential equilibrium.

Definition 11 (Optimal strategies): An optimal strategy for player i, s∗i ∈ Si, in the
evidential game Γ = {N,A,π,P} (Definition 9), is one that maximizes the payoff function,
πi (si,Pi (si)) of player i.

Definition 12 (Evidential equilibria): The strategy profile s∗ = (s∗1, s
∗
2, ..., s

∗
n) ∈S is an

evidential equilibrium of the evidential game Γ = {N,A,π,P} if s∗i is an optimal strategy
for each i ∈ N (Definition 11).

Definitions 11, 12 identify an important feature of an evidential equilibrium. In static
games of complete information, under uncertainty about what others will do, evidential
reasoning converts an essentially strategic situation to a decision-theoretic problem. This
is made possible by treating the social projection function as an essential part of the game.
Our strategy appears to be consistent with the evidence (see subsections 6.3 and 9.5).
The optimal action of each player in an evidential equilibrium is found from solving

a decision-theoretic problem rather than a strategic problem. There are no higher order
beliefs. Players do not think about strategically exploiting the SPF of the other player.
Indeed the game Γ = {N,A,π,P} does not involve any assumptions about the mutual
or common knowledge of P. Requiring πi and Pi to be continuous functions on com-
pact mixed strategy spaces guarantees that an equilibrium exists in the decision theoretic
problem.
Note that Definition 12 only requires that a strategy for a player be optimal given his

beliefs. But, of course, beliefs may turn out to be wrong, ex-post. Ultimately, the choice
among models in all science is guided by the evidence. The evidence reviewed above (and
below) shows that in static games, beliefs about others often turn out to be incorrect.9

Nevertheless, it is of interest to consider the special case where beliefs turn out to be
correct, at least in equilibrium. This is the subject of the next two definitions.

9Even in experiments, where successive rounds of play lead to an improvement in the accuracy of
beliefs, one may be interested in explaining the behavior in early rounds of play where beliefs do not turn
out to be correct. Often such behavior mimics real life situations in which decision makers do not get
repeated or frequent opportunities to make their decisions.
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Definition 13 (Mutually consistent strategies): A strategy profile s∗ = (s∗1, s
∗
2, ..., s

∗
n)∈S

of the evidential game Γ = {N,A,π,P} (Definition 9) is a mutually consistent vector of
strategies if Pi (s

∗
i ) =s∗−i for all i ∈ N , i.e., if Pij (aj|s∗i ) = s∗j (aj), for all i, j ∈ N , i 6= j,

and all aj ∈ Aj.

In other words, a strategy profile s∗ = (s∗1, s
∗
2, ..., s

∗
n) is a mutually consistent vector

of strategies if, for all players i, j ∈ N , i 6= j and all actions, aj, open to player j, the
probability Pij (aj|s∗i ) that player i believes that player j will play action aj (given s∗i ) is
equal to the actual probability s∗j (aj) with which player j plays aj.

Definition 14 (Consistent evidential equilibria): A consistent evidential equilibrium of
the evidential game Γ = {N,A,π,P} is an evidential equilibrium, s∗ ∈S, which is also a
mutually consistent vector of strategies (Definitions 12 and 13).

2.5 Nash equilibria and consistent evidential equilibria

As one might expect, there is a natural correspondence between Nash equilibria and con-
sistent evidential equilibria. This is formally stated and established by the following propo-
sition.

Proposition 1 : (a) Let s∗ ∈S be a Nash equilibrium in the static game of complete infor-
mation, {N,A,π}. Consider the (constant) social projection functions: Pi (si) =s∗−i, i ∈
N . Then s∗, is a consistent evidential equilibrium in the evidential game Γ = {N,A,π,P}.
Furthermore, Γ is a causal game.
(b) Let s∗ ∈S be an evidential equilibrium in the evidential game Γ = {N,A,π,P}, where
P is the profile of constant social projection functions Pi (si) =s∗−i, i ∈ N (hence, s∗ is a
consistent evidential equilibrium and Γ is a causal game). Then s∗ is a Nash equilibrium
in the static game of complete information {N,A,π}.

Proof of Proposition 1: (a) Let s∗ ∈S be a Nash equilibrium in the static game of
complete information, {N,A,π}. Consider the social projection functions: Pi (si) =s∗−i,
i ∈ N . Since s∗ is a Nash equilibrium (Definition 2), it follows that s∗i maximizes πi

(
si, s

∗
−i
)

with respect to si, given s∗−i, for each i ∈ N . Since, by construction, Pi (.|si) =s∗−i, i ∈ N ,
it follows that s∗i maximizes πi (si,Pi (si)) with respect to si, for each i ∈ N . Hence, s∗ is
an evidential equilibrium (Definitions 11 and 12) in the evidential game Γ = {N,A,π,P}.
Furthermore, since, by construction, Pi (si) =s∗−i, i ∈ N , it follows that s∗ is a consistent
evidential equilibrium (Definitions 13 and 14). Since P is a profile of constant social
projection functions, it follows that Γ = {N,A,π,P} is a causal game (Definition 9).
(b) Let s∗ ∈S be an evidential equilibrium in the evidential game Γ = {N,A,π,P},

where P is the profile of constant social projection functions Pi (si) =s∗−i, i ∈ N . Then s∗i
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maximizes πi (si,Pi (si)) with respect to si, for each i ∈ N (Definitions 11 and 12). But
Pi (si) =s∗−i, i ∈ N , hence s∗i maximizes πi

(
si, s

∗
−i
)
with respect to si, for each i ∈ N .

Hence, s∗ is a Nash equilibrium in the static game of complete information {N,A,π}
(Definition 2). �.

3 Calvinism and the development of capitalism

Consider the following example from Quattrone and Tversky (1984).10 According to the
Calvinist doctrine of predestination, those who are to be saved have been chosen by God
at the beginning of time, and nothing that one can do will lead to salvation unless one has
been chosen. Although one cannot increase the chance of salvation by good works, one can
produce diagnostic evidence of having been chosen by engaging in acts of piety, devotion
to duty, hard work and self denial. According to Max Weber, this is exactly how millions
of people responded to the Calvinist doctrine and why capitalism developed more quickly
in Protestant rather than Catholic countries; see Weber (1904-1905) and Nozick (1993).

3.1 A normal form

Consider the following simultaneous move game between two players: God and Man. God
decides whether to save man (Y es) or not to save man (No). Man decides whether to do
good works (GW ) or not (NGW ). When making his choice, man does not know whether
he has been saved or not. Being saved is better than not being saved. On the other hand,
doing good works is onerous and/or costly. Therefore, if man knew he has been saved,
then he would prefer not to do good works. Likewise, if man knew he had not been saved
then he would again prefer not to do good works. Thus, by Savage’s sure thing principle
(Savage, 1954), man should prefer not to do good works even if he did not know whether
he has been saved or not. The following is a possible payoff matrix for this game, where
God is the row player and man is the column player. The numbers in the cells are the
payoffs to man.

GW NGW
Y es 2 3
No 0 1

Table 2: Payoffs to man

Clearly, not doing good works (NGW ) is dominant for man over doing good works
(GW ), whether man knows he has been saved (Y es) or not (No). More explicitly, let p =

10We are grateful to Andrew Colman for drawing our attention to this example.
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probability that God has saved man (Y es) and let q = probability that man does good
works (GW ). Then the expected payoff to man is

π (q, p) = p (2q + 3 (1− q)) + (1− p) (1− q) = 1 + 2p− q, (4)

which is, clearly, maximized when q = 0, i.e., when man does not do good works; whatever
probability, p, man assigns to having been saved by God.

3.2 A social projection function

Consider, for example, the social projection function:

P21 (Y es|q) = q. (5)

Recall that a strategy for man is fully specified by the probability, q ∈ [0, 1], with which he
does good works (GW ). Likewise, a strategy for God is fully specified by the probability,
p ∈ [0, 1], with which God saves man (Y es). Thus, (5) says that man believes that if he
does good works with probability q, then that indicates to him that he has been saved by
God with probability p = q. Substituting p = q in (4) we get:

π (q, q) = 1 + q, (6)

which is, clearly, maximized when q = 1, i.e., when man does do good works.

3.3 Is evidential reasoning rational or is it a useful heuristic?

If man knew that he had been saved by God, then his optimal action would be not to do
good works, because the latter in onerous and nothing he can do can influence the decision
that God has already taken. Likewise, if man knew that he had not been saved by God,
then, again, his optimal action would be not to do good works. Here evidential reasoning
has no role to play.
However, the situation is quite different if man did not know whether he had been saved

by God or not. Here, evidential reasoning plays a role by assuring man that if he does good
works then this indicates to him that he has been saved. Note that evidential reasoning
is not a valid mode of inference. For if it is best not to do good words if you are saved
and also if you are not saved, then, according to classical logic, it is best not to do good
works. This can be formally proved using the tautology (P ⇒ Q)⇒ [(not P ⇒ Q)⇒ Q].
Therefore, it is best to view evidential reasoning as a heuristic or bias. Our reading of the
evidence suggests that evidential reasoning can explain people’s irrational but systematic
behaviour in static games.
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4 Why do people voluntarily contribute to a public
good?

The results from public goods games are now well established; see, for instance, Dawes
and Thaler (1988) and Fehr and Gächter (2000). What accounts for the high rates of
cooperation in the initial round of a public goods game? Under evidential reasoning, many
players may take their own desire to contribute in the first round as diagnostic of the
probability with which other players will contribute, hence, they contribute.11

Gächter and Thöni (2005) investigate whether cooperation in public goods games with
voluntary contribution is higher among like-minded people. In order to separate the sub-
jects into like-minded people they initially run a single-round of the public good experi-
ment. The subjects are then grouped by the amount of contributions they made in this
round. For instance, the top 3 contributors are grouped into a separate group (the TOP
group) as having the greatest inclination to contribute. The public good game is then
played separately in each group. Over the next 10 rounds, contributions are much higher
and free riding much lower in the TOP group, which achieves nearly the first best level
in several rounds.12 Evidential reasoning would predict that when high contributors have
greater confidence that they are grouped with like-minded people, they contribute more,
hence the pattern of these results is consistent with evidential reasoning.

5 Why do people vote and how do they form beliefs?

Under causal reasoning, any one voter is most unlikely to be pivotal, so nobody should
vote. But then why do so many people vote? This is the voting paradox.
The explanation of voting when a voter uses evidential reasoning is as follows. “If I

do not vote for my preferred party, then probably like-minded people will not vote, and
my preferred party will lose to the other party. On the other hand, if I decide to vote
then, probably, other like-minded people will also make a similar decision and my party
has a better chance of winning. So I vote if I wish my party to win, otherwise I do not.”13

In each case, the binary voting decision (vote or not vote) has diagnostic significance in
forming beliefs about whether other like-minded people will vote, although it is critical to
note that one’s action to vote does not cause others to vote.
11For the dynamic version of the public good game we conjecture that evidential reasoning in conjunction

with negative reciprocity gives a better description of the evidence from public good games.
12Even the endgame effect, i.e., the sharp drop in contributions in the last round is most pronounced

among the bottom group.
13Other possible explanations for voting, for instance, that people vote out of a sense of civic duty

cannot explain several kinds of strategic voting and the variation in voter turnout when an election is
believed to be close; see Krueger and Acevedo (2008).
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Year Presidential Candidates
% of Democrat voters
expecting Democrat win

% of Republican voters
expecting Republican win

1988 Dukakis vs. Bush 51.7 94.2
1984 Mondale vs. Reagan 28.8 99.9
1980 Carter vs. Reagan 87.0 80.4
1976 Carter vs. Ford 84.2 80.4
1972 McGovern vs. Nixon 24.7 99.6
1968 Humphrey vs. Nixon 62.5 95.4
1964 Johnson vs. Goldwater 98.6 30.5
1960 Kennedy vs. Nixon 78.4 84.2
1956 Stevenson vs. Eisenhower 54.6 97.6
1952 Stevenson vs. Eisenhower 81.4 85.9

Table 3: Source: Forsythe et al., 1992, Table 6

As Krueger and Acevedo (2008, p. 468) put it: “Compared with a Republican who ab-
stains, for example, a Republican who votes can be more confident that other Republicans
vote in large numbers”. Quattrone and Tversky (1984), Grafstein (1991) and Koudenburg
et al. (2011) show that experimental evidence is strongly supportive of this view.
Delavande and Manski (2012) argue that state and national poll information in the US

is readily available public knowledge. On the other hand, private knowledge in elections
is likely to be very limited. Hence, all individuals should form similar estimates of the
winning probabilities of the political parties. In contrast to these expectations, they find
strong support for evidential reasoning. Voters who vote, assign too high a probability to
their preferred party of winning the elections. Their findings are invariant with respect
to males/females, whites/non-whites, educated/non-educated etc. Hence, and consistent
with earlier work, there is a strong possibility that evidential reasoning is hard-wired in
humans.
Consider Table 3 that reports survey evidence from successive US Presidential elections

that is supportive of the evidential reasoning explanation. Voters who intend to vote
Democrats typically assign high probabilities to the Democrat candidate winning. By
contrast, voters who intend to vote Republican assign high probabilities to a Republican
win. Thus, voters seem to take their own actions as diagnostic of what other like-minded
people will do. These findings show that, in some circumstances at least, people behave
as if their actions were causal even when they are merely diagnostic or evidential.
Of course, not everyone votes in elections. A possible explanation is that not all voters

subscribe to evidential reasoning. The evidence appears to be consistent with a mix of
voters, some follow evidential reasoning, while others follow the classical mode of reasoning,
i.e., causal reasoning. Voters who do not vote appear to follow causal reasoning while those
who do vote appear to follow evidential reasoning. Estimating the respective fractions of
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voters who follow evidential and causal reasoning is an interesting and open empirical
question, but one that lies outside the scope of our paper. Similar comments also apply
to the other experimental games that we consider in which some people cooperate while
others do not.

6 Explaining the prisoners’dilemma under evidential
reasoning

We have two players, henceN = {1, 2}. Each player has two actions: Cooperate (C) or De-
fect (D). Hence, A1 = A2 = {C,D},A = {C,D}×{C,D} = {(C,C) , (C,D) , (D,C) , (D,D)}.
The payoff matrix is

C D
C 8, 8 0, 10
D 10, 0 4, 4

Table 4: A Prisoner’s Dilemma Game

So if player 1 chooses, say, C and player 2 chooses D, then player 1 gets 0 and player
2 gets 10.

6.1 The prisoners’dilemma under causal reasoning

Each player has a strictly dominant action, D (Definition 1), thus, the unique Nash equi-
librium of this game is (D,D) (Definition 2). By contrast, the empirical evidence, reviewed
in subsection 6.3 below, shows that 50% or more of the outcomes involve the play (C,C).

6.2 The prisoners’dilemma under evidential reasoning

A strategy for player i is entirely determined by the probability pi with which he plays C.
His expected payoff, πi (pi, pj), can be found from Table 4:

πi (pi, pj) = 4 + 6pj − 4pi + 2pipj, i 6= j. (7)

We consider the following four cases.
Case 1: Both players use evidential reasoning (Definition 5).
Consider the social projection function (Definition 3) for player i:

Pij (C|pi) = pi, i 6= j, (8)
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Remark 4 : The social projection function (8) should not be interpreted as saying that
by playing C with probability pi player i can induce player j 6= i to play C with probability
pi; indeed there is no such causal link. Player i does not know what action the other player
will take or has taken. Rather, (8) is a heuristic device. Player i may reason as follows
“I would like to cooperate with probability pi. Since player j is like-minded, I believe he
will also choose cooperate with probability pi, just like me”. None of the players attempts
to strategically exploit the SPF of the other players. Indeed there is no requirement in an
evidential game that there even be mutual knowledge of the social projection functions.

From (8), we see that both players use evidential reasoning (Definition 5), so Γ =

{N,A,π,P} is an evidential game (Definition 9). In particular, each player uses his
identity social projection function (Definition 6). Together, both players form an ingroup
(Definition 7). In fact, N forms a perfect ingroup (Definition 8).

Proposition 2 : For the prisoners’dilemma game, Table 4, (C,C) is a consistent evi-
dential equilibrium under the identity social projection function (8).

Proof of Proposition 2: Substituting from (8) into (7) we get

πi (pi, Pij (C|pi)) = 4 + 2pi + 2p2i , pi ∈ [0, 1] , i 6= j. (9)

From (9) we see that πi (pi, Pij (C|pi)) is maximized when pi = 1. It follows that C is
the unique optimal choice for player i ∈ N (Definitions 11). Hence, (C,C) is the unique
evidential equilibrium of this game (Definition 12). Each player expects the other to play
C, which turns out to be correct, ex-post. Therefore, (C,C) is a mutually consistent
vector of strategies (Definition 13). Hence, (C,C) is a consistent evidential equilibrium
(Definition 14). �.
In contrast, (C,C) is not the Nash equilibrium of the game (Definition 2). Indeed,

(C,C) requires each player to play a strictly dominated strategies. However, (C,C) is
Pareto optimal. Note that under evidential reasoning one does not need repeated game
arguments to justify cooperation in the static prisoners’dilemma game. Moreover, this
is consistent with the play of the cooperative strategy by a majority of the players (see
subsection 6.3 below). This suggests that a majority of the players may be using evidential
reasoning.
Case 2: Player 1 uses evidential reasoning (Definition 5) but player 2 uses causal

reasoning (Definition 4).
In this case, the SPF for each player is given by

P12 (C|p1) = p1, for all p1 ∈ [0, 1] , (10)

P21 (C|p2) = 1, for all p2 ∈ [0, 1] . (11)
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From (10) we see that player 1 uses evidential reasoning (Definition 5) and, in particu-
lar, his identity social projection function (Definition 6), as in Case 1 above. On the other
hand, from (11), we see that player 2 uses causal reasoning (Definition 4) and, in partic-
ular, mistakenly assumes that player 1 will always cooperate. This is an evidential game.
The unique evidential equilibrium (Definition 12) is (C,D). It is an evidential equilibrium
because each player’s chosen action is optimal, given his beliefs, which are captured by
his social projection function. It is not a consistent evidential equilibrium (Definition 14)
because the belief of player 1 turns out to be mistaken in equilibrium (P12 (C|C) = 1 but
player 2 plays D instead). By contrast, the belief of player 2 that player 1 play C turns
out to be correct in equilibrium.
Case 3: Both players use causal reasoning (Definition 4) but beliefs turn out to be

wrong ex-post.
In this case the SPF for each player is given by

P12 (C|p1) = 1, for all p1 ∈ [0, 1] , (12)

P21 (C|p2) = 1, for all p2 ∈ [0, 1] . (13)

Both players use causal reasoning (Definition 4), so this is a causal game (Definition 10).
Given these social projection functions, the unique payoff maximizing strategy for each
player is to play D (Definition 11). Hence, (D,D), is the unique evidential equilibrium
(Definition 12). It is also, of course, the unique Nash equilibrium of this game. However,
(D,D), is not a mutually consistent vector of strategies (Definition 13) because each player
expects his opponent to play C in response to D but the opponent’s response is D. Hence
(D,D) is not a consistent evidential equilibrium (Definition 14).
Case 4: Both players use causal reasoning (Definition 4) and beliefs turn out to be

correct ex-post.
In this case, the SPF for each player is given by

P12 (C|p1) = 0, for all p1 ∈ [0, 1] , (14)

P21 (C|p2) = 0, for all p2 ∈ [0, 1] . (15)

Both players use causal reasoning (Definition 4), so this is a causal game (Definition 10).
Given his social projection function, playing D is the unique optimal strategy for player
1 (Definition 11). And similarly for player 2. Hence (D,D) is the unique evidential equi-
librium (Definition 12). Furthermore, (D,D) is a mutually consistent vector of strategies
(Definition 13) because each player expects his rival to play D and, in fact, his rival does
play D. Hence, (D,D) is a consistent evidential equilibrium (Definition 14). The unique
Nash equilibrium of this game is, of course, (D,D). Hence this case illustrates Proposition
1a, namely, a Nash equilibrium of the game {N,A,π} is also a consistent evidential equi-
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librium (Definition 14) of the game {N,A,π,P} with a suitable choice of social projection
functions, P.

Remark 5 : When players are randomly matched to play the one-shot prisoners’dilemma
game, the weight of the evidence, reviewed in the next subsection, indicates a cooperation
rate of at least 50%. To our minds, the only satisfactory explanation is provided by evi-
dential reasoning with players using their identity social projection function (Definition 6).
However, substantial numbers also defect, and this can be explained (as usual) by causal
reasoning. Thus the evidence can best be explained by a mixture of players some of whom
use causal reasoning and the others use evidential reasoning.

6.3 Evidence on cooperation in the prisoners’dilemma game

In the static prisoners’dilemma game defection (D) is a strictly dominant strategy, recall
Table 4. Hence, a player using causal reasoning should defect. However, experimental
evidence indicates high cooperation rates. Rapoport (1988) finds cooperation rates of
50% in the prisoners dilemma game. In a study of the prisoners’dilemma based on high
stakes outcomes from a British TV show called Goldenballs, Darai and Grätz (2010) find
cooperation rates of 55% for stakes above £ 500 and cooperation rates of 74% for stakes
below this level. Zhong et al. (2007) show that the cooperation rates in prisoners’dilemma
studies go up to 60% when positive labels are used (such as a “cooperative game”rather
than a “prisoners’dilemma game”). When purely generic labels are used (such as C and
D) then the cooperation rates are about 50%. Khadjavi and Lange (2013) find that, while
the cooperation rates among students playing the static prisoners’dilemma game is 37%,
the cooperation rate among prison inmates is 56%.
Lewis (1979) used evidential reasoning to explain the unexpected levels of cooperation

in the one-shot prisoners’dilemma game. Mutual cooperation is better than mutual de-
fection. If players use evidential reasoning, they may take their own preference for mutual
cooperation as diagnostic evidence that their rival also has a preference for mutual coop-
eration, in which case both players are more likely to cooperate. These views are borne
out by the evidence. Cooperators believe that the probability of other players cooperating
is between 0.6 and 0.7. Similarly, players who defect believe that other players will defect
with probabilities between 0.6 to 0.7; see Krueger (2007). Darai and Grätz (2010) find
that pre-play promises of players to cooperate with each other and shake hands on it, in-
creases the cooperation rates. In classical theory this should have no effect, but evidential
reasoning may provide one possible explanation. Such actions may increase the likelihood,
in the minds of players, that they are facing like-minded players, hence, they cooperate
more.
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Like-mindedness is compatible with both outcomes, C and D, and we do observe
both outcomes in the PD game. Those who play C (respectively, D) also believe that a
disproportionately large share of the other players will play C (respectively, D). However,
why then do we observe so much cooperation in the static prisoners’ dilemma game?
According to Gintis (2009, page 145) humans have evolved the desire to cooperate with
other humans. However, this cannot be the only cause. For it cannot explain why the rate
of defection increases in the PD game when players know that their rivals have cooperated
(see subsection 9.5, below).
Rapoport (1966, p. 139-41) argued that each player takes his own belief that rational

players deserve the cooperative outcome as evidence that similarly rational players will
also cooperate. This is similar to evidential reasoning. Howard (1988) tests the assertion
by Rapoport (1966, p. 139-41) by running a contest between two computer programs.
One computer program is designed to play the dominant strategy, defect. Another com-
puter program, called the MIRROR program, is able to recognize if it is playing another
MIRROR program, in which case it also cooperates, otherwise it plays defect. There are
five copies each of the programs that plays a tournament and not surprisingly, the MIR-
ROR program achieves higher payoffs. In effect, what the MIRROR program is doing is
to replicate the notion that people would cooperate with other like-minded people. In
the conclusion, Howard (1988, p. 212) gives an argument that is identical in spirit to the
evidential reasoning argument: "If all players use the self-recognition program listed in the
Appendix, and play cooperatively only if they recognize their opponents as their twins,
then every game will be played cooperatively."
In contrast to the standard explanations (Appendix, below), the explanation of co-

operation based on evidential reasoning appears to be quite plausible. The fact that a
sizeable fraction of the experimental subjects also defect suggests that the results are best
accounted for by a mixture in the population of people who use evidential reasoning and
causal reasoning.

7 The Nash demand game

7.1 Non-uniqueness of outcomes in the Nash demand game un-
der causal reasoning and under evidential reasoning

Consider the Nash demand game (Nash, 1950a, 1953). Two players share a cake of size
one. Player 1 demands x ∈ [0, 1] and player 2 simultaneously demands y ∈ [0, 1]. If the
demands are feasible, i.e., if x + y ≤ 1, then each player receives what she demanded.
However, if the demands are not feasible, i.e., if x + y > 1, then each player gets 0. Any
pair, (x, y), such that x + y = 1 is a Nash non-cooperative equilibrium. Thus, the Nash
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non-cooperative equilibrium concept does not pin down a unique solution in the Nash
demand game.
The following theorem shows that a similar problem occurs with evidential reasoning.14

Proposition 3 : If we allow arbitrary social projection functions, then any outcome,
(a, b), such that a + b = 1, a > 0 and b > 0, is an outcome of a consistent evidential
equilibrium for the Nash demand game for suitably chosen social projection functions.

Proof of Proposition 3: Let a+b = 1, a > 0, b > 0. We shall construct social projection
functions under which (a, b) is a consistent evidential equilibrium. Consider the following
social projection functions. Let λ12 > 0 and λ21 > 0, where λ12λ21 = 1.15 For player 1, set
P12 (y|x) = 1 ⇔ y = λ12x, i.e., if player 1 makes the demand x then she expects player 2
to make the demand y = λ12x. For player 2, set P21 (x|y) = 1⇔ x = λ21y, i.e., if player 2
makes the demand y then she expects player 1 to make the demand x = λ21y. Thus, player
1 maximizes x subject to x+λ12x ≤ 1. The unique solution to this maximization problem
is x = 1

1+λ12
. Similarly, the unique solution to player 2’s maximization problem, maximize

y subject to λ21y + y ≤ 1, is y = 1
1+λ21

. It is straightforward to check that
(

1
1+λ12

, 1
1+λ21

)
is a consistent evidential equilibrium for the chosen social projection functions. Finally,
choosing λ12 = 1−a

a
and λ21 = 1−b

b
give the outcome (a, b). �.

Corollary 4 :
(
1
2
, 1
2

)
is the unique consistent evidential equilibrium for the Nash demand

game under the identity social projection functions: P12 (y|x) = 1⇔ y = x and P21 (x|y) =

1⇔ x = y.

Proof of Corollary 4: Take λ12 = λ21 = 1 in the proof of Proposition 3. �.
Corollary 4 shows that a particularly salient social projection function, the identity

function, leads to a 50-50 division of the pie. This might be of empirical interest, particu-
larly when studying norms of equal division.
To overcome the non-uniqueness problem highlighted by Proposition 3, we need criteria

to select social projection functions. One such criterion is to select the identity social
projection function for symmetric evidential games. The identity social projection function
appears plausible, maybe even compelling, for symmetric evidential games. But what
further criteria would help? One possibility is to appeal to the Nash bargaining axioms
(Nash, 1950a, 1953; Osborne and Rubinstein, 1990).16 These axioms are introduced in
subsection 7.2, below, followed by application to the Nash demand game under evidential
reasoning, in the subsequent subsection 7.3.

14We are grateful to Ludovic Renou for drawing our attention to this problem.
15The restriction λ12λ21 = 1 ensures that the shares demanded by both players sum upto one; see below.
16“One states as axioms several properties that it would seem natural for the solution to have and then

one discovers that the axioms actually determine the solution uniquely.”Nash (1953).
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7.2 Nash’s axioms and Nash’s theorem

First, some definitions.

Definition 15 : A bargaining problem is a pair 〈B,d〉, where B ⊂ R2 is compact and
convex and d ∈ B. We require that, for some b ∈ B, d1 < b1 and d2 < b2.

The bargaining problem 〈B,d〉 may be given the following interpretation. B is the set
of possible payoffs resulting from agreement. d is the pair of payoffs to the players if they
fail to agree.

Definition 16 : Let ßbe the set of all bargaining problems. A bargaining solution is a
mapping, F :ß→ R2, where F 〈B,d〉 ∈ B.

Definition 17 : b′∈ B is Pareto optimal if, for all b ∈ B, b1 ≤ b′1 and b2 ≤ b′2.

Definition 18 : A bargaining problem, 〈B,d〉, is symmetric if d1 = d2 and if (b1, b2) ∈
B⇔ (b2, b1) ∈ B.

Definition 19 : We say that the bargaining solution, F, satisfies independence of irrele-
vant alternatives if for all bargaining problems, 〈B,d〉 and 〈B′,d〉, such that B ⊂ B′ and
F 〈B′,d〉 ∈ B, we have F 〈B,d〉 = F 〈B′,d〉.

Definition 20 . Let 〈B,d〉 , 〈B′,d′〉 ∈ß, α1, α2, β1, β2 ∈ R, β1 > 0, β2 > 0. Let f :

B
onto→B′, f1 (b1) = α1 + β1b1, f2 (b2) = α2 + β2b2. Then we say that f is a positive affi ne

transformation of 〈B,d〉 onto 〈B′,d′〉.

7.2.1 The Nash axioms

Letßbe the set of all bargaining problems, F a bargaining solution and 〈B,d〉 a bargaining
problem. We introduce the following axioms.

Pareto: F 〈B,d〉 is Pareto optimal.

Symmetry: If 〈B,d〉 is symmetric then F1 〈B,d〉 = F2 〈B,d〉.

Independence: F satisfies independence of irrelevant alternatives.

Invariance: If f (b) = (α1 + β1b1, α2 + β2b2) is a positive affi ne transformation of 〈B,d〉
onto 〈B′,d′〉, then F1 〈B′,d′〉 = α1 + β1F1 〈B,d〉 , F2 〈B′,d′〉 = α2 + β2F2 〈B,d〉.
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7.2.2 The Nash theorem

Proposition 5 : There is a unique bargaining solution, F∗ :ß→ R2, satisfying the axioms:
Pareto, symmetry, independence and invariance. It is given by

F∗ 〈B,d〉 = arg max
(d1,d2)≤(b1,b2)∈B

(b1 − d1) (b2 − d2)

7.3 Application to the Nash demand game under evidential rea-
soning

We now illustrate, by an example, how the Nash axioms, Pareto, symmetry, independence
and invariance, can reduce the choice among social projection functions suffi ciently so as
to generate a unique outcome for the Nash demand game.

Example 5 (The Nash demand game under evidential reasoning) Assume that the utility
of player 1 is π1 (x) = xα and that of player 2 is π2 (y) = yβ, where α > 0, β > 0. Consider
the following social projection functions. Let λ12 > 0 and λ21 > 0, where λ12λ21 = 1.
For player 1, set P12 (y|x) = 1 ⇔ y = λ12x, i.e., if player 1 makes the demand x then
she expects player 2 to make the demand y = λ12x. For player 2, set P21 (x|y) = 1 ⇔
x = λ21y, i.e., if player 2 makes the demand y then she expects player 1 to make the
demand x = λ21y. Thus, player 1 maximizes xα subject to x + λ12x ≤ 1. The unique
solution to this maximization problem is x = 1

1+λ12
. Similarly, the unique solution to

player 2’s maximization problem, maximize yβ subject to λ21y + y ≤ 1, is y = 1
1+λ21

. It is

straightforward to check that
(

1
1+λ12

, 1
1+λ21

)
is a consistent evidential equilibrium for the

chosen social projection functions.
To make progress we need to select λ12, λ21. If α = β then the game is symmetric and
λ12 = λ21 (and hence λ12 = λ21 = 1) appear compelling. This give the plausible outcome
x = y = 1

2
. However, if α 6= β then the game is not symmetric and it is not clear,

a priori, how to choose λ12, λ21. If we invoke, in addition to symmetry, the other Nash
axioms, Pareto, independence and invariance, then, by Proposition 5, we must get the
unique outcome that is determined by maximizing the Nash product π1 (x) π2 (y) = xαyβ

(here d1 = π1 (0) = 0 and d2 = π2 (0) = 0). We then show that this unique outcome can
be supported by appropriate choice of λ12, λ21.
It is straightforward to show that the problem: choose x and y so as to maximize xαyβ

subject to x+ y ≤ 1, has the unique solution x = α
α+β

, y = β
α+β

. This, in turn, determines
the unique values λ12 = β

α
, λ21 = α

β
. Thus, social projection functions compatible with

the Nash axioms are P12 (y|x) = 1 ⇔ y = β
α
x, and P21 (x|y) = 1 ⇔ x = α

β
y. Note that

these social projection functions are not unique (because they were chosen to be linear).
However, the outcome x = α

α+β
, y = β

α+β
is unique, whatever social projection functions

are chosen provided they satisfy the Nash axioms.
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8 Oligopoly games

Consider a market for a single homogeneous good. The total industrial output, Q, is
produced by a fixed number of firms, n. Let qi be the output of firm i, then Q =

∑n
i=1 qi.

All consumers are price takers. The unit price, P (Q), is given by

P (Q) = A− aQ, a > 0, A > 0. (16)

There are zero fixed costs and the marginal cost of firm i is a constant, ci, i = 1, 2, ..., n,
where

0 ≤ c1 ≤ c2 ≤ ... ≤ cn < A, (17)

Hence, the profit of firm i is πi = (P − ci) qi , i = 1, 2, ..., n, which, using (16), can be
written as

πi (qi,q−i) =
(
A− ci − a

∑
j 6=i

qj

)
qi − aq2i , i = 1, 2, ..., n, (18)

where q−i is the vector of outputs of firms other than firm i. Maximizing πi (qi,q−i) with
respect to qi, given q−i, leads to firm i’s reaction function:

q∗i (q−i) =
A− ci

2a
− 1

2

∑
j 6=i

qj, i = 1, 2, ..., n. (19)

8.1 Causal reasoning

The next proposition summarizes the results under causal reasoning on the part of all
firms.

Proposition 6 : (a) Under perfect competition, P = c1, Q = A−c1
a
.

(b) The monopoly outcome is given by P = A+c1
2
, Q = A−c1

2a
.

(c) The Cournot output level of any firm is

qCi =
A+

∑
j 6=i cj − nci

(n+ 1) a
, i = 1, 2, ..., n. (20)

(d) In a Stackelberg leader-follower model where firm 1 is the leader while firm 2 is the
follower, the equilibrium output levels of the leader and the follower, respectively, are

qL1 =
A+ c2 − 2c1

2a
(leader), (21)

qF2 =
A+ 2c1 − 3c2

4a
(follower). (22)

Proof of Proposition 6:
(a) Under perfect competition, each firm produces at the minimum cost, c1, and price

is set equal to c1; (16) then gives Q = A−c1
a
.
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(b) Suppose we have a single firm (the monopolist) that produces at minimum cost, c1.
Setting

∑
j 6=i qj = 0 and q∗i (q−i) = Q (there are no other firms) in (19) gives Q = A−c1

2a
;

(16) then gives P = A+c1
2
.

(c) In a Cournot equilibrium, each firm chooses its out, qCi , so as to maximize its profit
(18), given the outputs, qCj , of the other firms. Set q

∗
i (q−i) = qCi and qj = qCj in (19) and

solve the resulting system of simultaneous linear equations to get (20).
(d) Consider a duopoly with firm 1 acting as leader and firm 2 acting as follower. The

follower chooses its output, qF2 , to maximize its profit given the out put level, q
L
1 , of the

leader; (19) then gives qF2
(
qL1
)

= A−c2
2a
− 1

2
qL1 . Substitute this into the profit function of

the leader (from (18)) to get πL1
(
qL1 , q

F
2

(
qL1
))

=
[
A− c1 − a

(
A−c2
2a
− 1

2
qL1
)]
qL1 − a

(
qL1
)2
.

Maximize this with respect to qL1 to get q
L
1 = A+c2−2c1

2a
and, hence, qF2 = A+2c1−3c2

4a
. �.

Remark 6 : Note the perfectly competitive, monopoly and Cournot games are all single
stage games, i.e., one-shot games. The firms choose their actions simultaneously (parts,
a, b and c of Proposition 6). However, the Stackelberg leader-follower model is a two-stage
game: The leader moves first choosing its output level correctly anticipating the reaction
of the follower. The follower then moves having observed the output level of the leader.

8.2 Evidential reasoning

Consider the consequences of evidential reasoning for the producers. All consumers are
causal reasoners, i.e., each consumer regards every other consumer and every firm as
an outgroup member (recall Definition 7). We also assume that each firm regards each
consumer as an outgroup member.17 This also allows us to continue to assume that the
market demand curve is given by (16).18

We now describe an evidential equilibrium, q∗, with the following properties. Suppose
that firm i is considering a deviation, qi, from q∗i . Firm i reasons as follows. “If I am
tempted to deviate by an amount qi − q∗i and if I believe that my rival, firm j, j 6= i, is
like-minded, then the rival is probably also tempted to deviate by an amount qj − q∗j =

λij (qi − q∗i )”; the interpretation of λij is given below in more detail. We formalize such
reasoning by the following social projection function (Definition 3):

Pij (qj|qi) = 1⇔ qj − q∗j = λij (qi − q∗i ) , j 6= i. (23)

17Thus if C is the set of consumers and F is the set of firms, then each is an outgroup relative to the
other (Definition 7c).
18If we allowed consumers to use evidential reasoning, then a single consumer could reason as follows “If

I cut my demand, then probably each like-minded consumer would also cut his demand. The aggregate
result would be a reduction in price for all of us”. Consumers would then be able to collude. The
consequence would be that we would no longer have an oligopoly model (as classically defined) but a
bargaining model. While this is very interesting, it lies beyond the scope of this paper and, in fact,
deserves a paper on its own.

25



The social projection specified in (23) is quite general. It nests several subcases, as we
show below. The generality of (23) should not be taken to mean that the predictive content
of the evidential reasoning model of oligopoly is empty. Rather, as in prisoners’dilemma
games, individuals display a wide variation in choices when they are asked to play oligopoly
game (see section 8.4 below). Variations in the parameter λij in (23) offer a parsimonious
way of capturing this heterogeneity by varying the degree of like-mindedness.
In particular, perfect like-mindedness, λij = 1, gives rise to the identity social projection

function (Definition 6); each firm believes that the other will deviate from q∗ by an identical
distance. The other extreme arises when no like-mindedness is perceived by firms, as in
models of causal reasoning. This corresponds to λij = 0. Intermediate cases of like-
mindedness correspond to values 0 < λij < 1 and to λij < 0. The distribution of values
of λij in any population is ultimately an empirical question that cannot be answered in a
theoretical model.
The next proposition gives the solution under evidential reasoning.

Proposition 7 : (a) Given the social projection functions (23), the unique evidential
equilibrium (Definition 12), q∗, is characterized by the following set of simultaneous linear
algebraic equations

2 +
∑

j 6=1 λ1j 1 ... 1

1 2 +
∑

j 6=2 λ2j ... 1

... ... ... ...
1 1 ... 2 +

∑
j 6=n λnj



q∗1
q∗2
...
q∗n

 =


A−c1
a

A−c2
a

...
A−cn
a

 (24)

(b) Furthermore, q∗ is a mutually consistent vector of strategies (Definition 13) and, hence,
a consistent evidential equilibrium.
(c) Conversely, given any vector of outputs, q∗, satisfying q∗i > 0 and

∑n
i=1 q

∗
i ≤ A−c1

a
, there

exits a profile of social projection of the form (23) such that q∗ is a consistent evidential
equilibrium. In particular,

λij = λi, i, j = 1, 2, ..., n, j 6= i, where

λi =
A− ci

(n− 1) aq∗i
− 2

n− 1
− 1

(n− 1) q∗i

∑
j 6=i

q∗j , i = 1, 2, ..., n. (25)

Proof of Proposition 7: (a) Substituting qj from (23) into (18) gives

πi (qi,Pi (.|qi)) =

{
A− ci − a

∑
j 6=i

[
q∗j + λij (qi − q∗i )

]}
qi − aq2i , i = 1, 2, ..., n, (26)

which, after simplification, gives

πi (qi,Pi (.|qi)) =

(
A− ci + aq∗i

∑
j 6=i

λij − a
∑
j 6=i

q∗j

)
qi − a

(
1 +

∑
j 6=i

λij

)
q2i , i = 1, 2, ..., n.

(27)
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(27) shows how a player who uses the heuristic of evidential reasoning translates an essen-
tially strategic problem into a decision theoretic problem. Maximizing (27) with respect
to qi gives the optimal (pure) strategy for firm i (Definition 11), given his social projection
function (23):

qi =
A− ci + aq∗i

∑
j 6=i λij − a

∑
j 6=i q

∗
j

2a
(

1 +
∑

j 6=i λij

) , i = 1, 2, ..., n. (28)

Setting qi = q∗i , i = 1, 2, ..., n and simplifying gives the following set of simultaneous linear
algebraic equations,(

2 +
∑
j 6=i

λij

)
q∗i +

∑
j 6=i

q∗j =
A− ci
a

, i = 1, 2, ..., n, (29)

which can be written in the matrix form (24).
(b) From (23) we see that Pij (qj|q∗i ) = 1 ⇔ qj = q∗j . In effect, when firm i produces the
output q∗i it believes that firm j will produce q∗j . Ex-post firm i finds that firm j indeed
did produce an output level q∗j , thus, vindicating its ex-ante belief. Hence, q

∗ is a mutually
consistent vector of strategies and, hence, a consistent evidential equilibrium.
(c) Rewrite (29) in the form∑

j 6=i

λij =
A− ci
aq∗i

− 2− 1

q∗i

∑
j 6=i

q∗j , i = 1, 2, ..., n. (30)

(30) has many solutions, for example (25). �
We now show how one may obtain the market outcomes under causal reasoning (Propo-

sition 6) also under evidential reasoning by choosing suitable values for λij, j 6= i, in (25)
of Proposition 7.

Corollary 8 :
(a) Setting c1 = c2 = ... = cn and λij = − 1

n−1 , for all i, j and i 6= j gives the perfectly
competitive output levels,

∑n
i=1 q

∗
i = Q∗ = A−c1

a
(Proposition 6(a)). Here each firm regards

every other firm as an ingroup member and the set of firms forms an ingroup (Definition
7). We may call this a competitive ingroup and the resulting social projection functions
competitive social projection functions. This is in line with the ideas considered in subsec-
tion 2.3 and, in particular, is an illustration of the contrast effect.
(b) Setting c1 = c2 = ... = cn and λij = 1, for all i, j and i 6= j gives q∗i = A−c

2na
,

i = 1, 2, ..., n. Hence, the total output equals the monopoly level
∑n

i=1 q
∗
i = Q∗ = A−c1

2a

(Proposition 6(b)). In this case, the social projection functions for the producers are iden-
tity social projection functions on the set of all producers (Definition 6). Thus, each firm
believes that the other firms are like-minded.
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(c) Setting λij = 0, for all i, j and i 6= j gives the Cournot output levels q∗i =
A+

∑
j 6=i cj−nci
(n+1)a

,
i = 1, 2, ..., n (Proposition 6(c)). Here each firm regards the other as an outgroup member
(Definition 7), hence, every firm uses causal reasoning (Definition 4).
(d) Setting λ12 = −1

2
and λ21 = 0 gives, respectively, the leader output and the follower

output in the leader-follower Stackelberg duopoly (Proposition 6(d)). The social projection
functions for the follower (firm 2) is constant, hence the follower uses causal reasoning
(Definition 4), λ21 = 0. The follower regards the leader as an outgroup member. The
leader regards the follower as an ingroup member (Definition 7), λ12 = −1

2
. We may

say that the leader behaves competitively towards the follower (the contrast effect, recall
subsection 2.3).

Remark 7 : Recall that the Stackelberg game in Proposition 6(d) under causal reasoning
is a two-stage game, where the leader moves first, correctly anticipating the reaction of the
follower. The follower then chooses its output having observed the output of the leader. By
contrast, the version under evidential reasoning (Corollary 8(d)) is a single-stage game.
The empirical evidence that we present below does show that in single-stage duopoly games,
players often choose outputs similar to the Stackelberg output levels. This appears to be
confirmation of evidential reasoning in oligopoly games.

8.3 The Nash bargaining solution for oligopoly games

Here we investigate the consequences of treating the oligopoly problem as a Nash bargain-
ing problem (see section 7, above, for the two-player case and Osborne and Rubinstein,
1990, p.23, for the n-player case). We show that the oligopoly model (16)-(18) has a
unique Nash bargaining solution. We show that this solution specifies equal output levels
for the firms. However, due to different costs, the firms’profits are different. We give
social projection functions that implement this Nash bargaining solution.

Proposition 9 : For the oligopoly model (16)-(18) the unique Nash bargaining solution
is given by

q∗i =
1∑n

k=1
a

A−ck−aQ∗
, i = 1, 2, ..., n,

where Q∗ is the unique solution to

n

Q∗
=

n∑
k=1

1
A−ck
a
−Q∗

.

Social projection functions that implement this solution are

Pij (qj|qi) = 1⇔ qj − q∗j = λi (qi − q∗i ) , j 6= i,
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where
λi =

A− ci
(n− 1) aq∗i

− 2

n− 1
− 1

(n− 1) q∗i

∑
j 6=i

q∗j , i = 1, 2, ..., n.

Proof of Proposition 9: A firm can guarantee itself a zero profit by exiting the market.
So we take the disagreement point to be 0. Maximizing the Nash product

Π = ×ni=1πi (qi,q−i) = ×ni=1
[(
A− ci − a

∑
j 6=i

qj

)
qi − aq2i

]
gives the first order conditions

A− ci − a
∑

j 6=i qj − 2aqi(
A− ci − a

∑
j 6=i qj

)
qi − aq2i

= a

n∑
k 6=i

qk(
A− ck − a

∑
j 6=k qj

)
qk − aq2k

, i = 1, 2, ..., n,

which can be re-written as

1 = qi

n∑
k=1

a

A− ck − aQ
, i = 1, 2, ..., n, (31)

where

Q =
n∑
j=1

qj. (32)

Summing (31) from 1 to n, using (32), then rearranging, we get

n

Q
=

n∑
k=1

1
A−ck
a
−Q

. (33)

We shall argue that (33) has a unique solution,

Q∗ ∈
(

0,
A− cn
a

)
. (34)

Consider the functions f (Q) = n
Q
, g (Q) =

∑n
k=1

1
A−ck
a
−Q
, 0 < Q < A−cn

a
. Note that f

and g are continuous with lim
Q→0

f (Q) = ∞ >
∑n

k=1
a

A−ck = lim
Q→0

g (Q) and lim
Q→A−cn

a

f (Q) =

na
A−cn <∞ = lim

Q→A−cn
a

g (Q). Hence, f (Q∗) = g (Q∗), for a some Q∗ ∈
(
0, A−cn

a

)
. Since f is

strictly decreasing and g is strictly increasing, it follows that Q∗ is unique. From (31) it
follows that the unique Nash bargaining solution for the oligopoly model (16)-(18) is given
by

q∗i =
1∑n

k=1
a

A−ck−aQ∗
, i = 1, 2, ..., n, (35)

From (23) and Proposition 7 (c), it follows that social projection functions that implement
(35) are
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Pij (qj|qi) = 1⇔ qj − q∗j = λi (qi − q∗i ) , j 6= i,

where
λi =

A− ci
(n− 1) aq∗i

− 2

n− 1
− 1

(n− 1) q∗i

∑
j 6=i

q∗j , i = 1, 2, ..., n. �

8.4 Empirical evidence from oligopoly games

In our theoretical model we showed how alternative values of λ in (23) were able to
produce, in a static game, the output levels under alternative market forms such as perfect
competition, monopoly, Cournot and the Stackelberg leader-follower game. We now argue
that these results are consistent with the empirical findings.
The early experiments on Cournot markets were conducted by Fouraker and Siegel

(1963). They, and many later experiments, gave a profit table (PT) to the subjects. The
PT listed the outputs of each firm on the two margins while individual cells of the table
contained the corresponding profits of both firms. The PT was often supplemented by a
profit calculator (PC) which allowed each experimental subject in their role as a firm to
calculate the profit for a given pair of quantities chosen by both firms. In recent years,
several experiments also gave subjects a best response option (BRO) which tells them their
profit maximizing quantity for any quantity chosen by the other player.
The extra information provided (PT, PC, BRO) arguably primes subjects to follow an

optimization based solution. Requate andWaichman (2011) find that there is substantially
more collusion (corresponding to λ = 1 in (23)) in PT and PC treatments as compared
to BRO. They find, in a static duopoly experiment, that the collusive outcome is reached
at least once in the 20 rounds, in 62%, 78% and 29% of the markets, respectively, in the
PT, PC and BRO treatments. The theoretical outcome of the Cournot-Nash equilibrium
is, therefore, not confirmed in many cases.
Several papers report the Cournot-Nash equilibrium under random matching of oppo-

nents while finding that there is greater collusion under fixed matching of players.19 For
instance, Huck et al. (1999) consider symmetric firms and linear demand curves. Output
choices vary between 3-15 and the Cournot-Nash outcome is for each firm to produce an
output of 8.20 The authors report data for round 9 of play under random matching, as the
most supportive of their hypothesis (see Table 5 in their paper); these results are given in
Table 5.
19The interested reader can consult the bibliography in Requate and Waichman (2011).
20Both firms are known to the experimental subjects to be symmetric, so they must know that the

solution lies on the diagonal of a relatively small matrix. Profits of each firm in the PT drop off sharply
for output levels equal to or higher than 10 or less than an output of 3. This leaves only seven levels of
output to choose from: 4,5,6,7,8,9.
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Output level 6 7 8 9 greater than 10
% of subjects choosing 12 21.5 35.5 14.5 14

Table 5: Distribution of output levels in Huck et al. (1999)

The mean quantity is close to the Cournot-Nash output level of 8. However, there is
substantial variation in the output levels and about 65% of individuals do not choose the
Cournot output level.
Rassenti et al. (2000) use an asymmetric Cournot game in which firms have different

marginal costs that are private information. Firms do not even know the underlying
probability distribution of types. Hence, there is true uncertainty, an area where evidential
reasoning would seem to have the most bite. The game is played over 75 rounds to allow
for substantial learning possibilities. The main finding is that while total output is above,
but close to, the Cournot-Nash solution, the individual levels of output chosen by the firms
are quite different from the Cournot-Nash solution. The results, in this sense, are similar
to those in Huck et al. (1999), however, the authors take this as a refutation rather than
a confirmation of the Cournot-Nash equilibrium.
Bosch-Domènech and Vriend (2003) report results from the last two rounds of a 22

round duopoly experiment in which, in each round, two firms simultaneously choose out-
puts. They find that the output levels are widely distributed over a range that includes
the monopoly output level and the perfectly competitive level. Table 6 summarizes infor-
mation that is extracted from their paper.
The three treatments, easy, hard and hardest, differ in terms of the time within which

firms had to choose their outputs and the level of information provided.21 The cells in Table
6 report the approximate percentage of the standard market outcomes in each treatment.
The Cournot output level is not particularly salient relative to the others. Further, the
wide distribution of output levels even in rounds 21 and 22 of the experiment suggest that
a flexible social projection function as in (23) is consistent with the evidence.

Monopoly Cournot Walrasian Others
Easy 38.89 33.33 0 27.78
Hard 11.11 16.67 11.11 61.11
Hardest 8.33 14.28 16.67 60.72

Table 6: Percentage of outputs corresponding to various market levels

Waichman et al. (2010) find that pre-play communication increases the degree of
collusion in the Cournot game. Between 91% and 100% of the markets achieve collusion
21For instance, in the easy treatment, a PT is provided but not in the other treatments. In the hardest

treatment, firms are not even told of the exact functional form of the linear demand curve (only that it is
downward sloping), whereas in the easy treatment, firms know the exact demand curve.
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in at least one round of the experiment when pre-play communication is allowed. This
also seems consistent with evidential reasoning. Pre-play communication may increase the
players’beliefs that they are dealing with like-minded players, hence, facilitating the use
of evidential reasoning.22

Duersch et al. (2010) document systematic departures from a Cournot-Nash equilib-
rium. They consider a linear-demand, linear-cost Cournot game with the Cournot-Nash
quantity, q∗i = 36. Computers play one of several well known strategies including best
response against human subjects who are not aware of the computers’strategy over 40
rounds. Again, by creating uncertainty about what others will do, this situation is quite
relevant to the domain of evidential reasoning.
Mean quantities chosen by computers (34.39) are always lower than mean quantities

chosen by humans (47.95). Human subjects choose quantities that are much greater than
the Cournot-Nash levels and, in some cases, approach the Stackelberg leader output of 54.
In particular, when computers are programmed to play a best response with some small
noise, in three different treatments, subjects choose the output levels 51.99, 48.67, and
49.18, while computers choose 32.05, 35.02, 31.67. Thus, human subjects show systematic
(upward) departures from the Cournot-Nash level, even approaching the Stackelberg levels.
Thus, one observes a wide and rich range of behaviors that are often collusive and

range all the way up to the choice of quantities in the Stackelberg case. The results are
consistent with a range of social projection functions used (corresponding to alternative
values of λ in (23)) by experimental subjects who use evidential reasoning. The collusive
outcome is played by a significant percentage of experimental subjects, which is consistent
with the identity social projection function.

9 Can causal reasoning explain cooperation in the
prisoners’dilemma game?

Here, we examine several theories to see if they can explain cooperation in the one-shot
prisoners’dilemma game under causal reasoning.
First, in subsection 9.1, we show that cooperation in the prisoners’dilemma game can-

not be explained by reputation, correlated equilibria, level-k models, Stackelberg reasoning
or evolutionary stable equilibria.
Although the prisoners’dilemma game is presented to experimental subjects as a non-

cooperative game played once against an anonymous opponent, subjects may in fact inter-
pret it as some form of cooperative game. We outline three such theories in subsections 9.2,

22Recall from the discussion of the work by Darai and Grätz (2010) above that in the prisoners’dilemma
game with pre-play communication and handshakes, the cooperation levels are also similarly enhanced.
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9.3 and 9.4. In subsection 9.5 we argue that the empirical evidence rejects these theories.
Before starting, however, the reader might find the following example useful.

Example 6 (High-low game)23: Consider the following game between two players. If both
choose high (H), then each gets 2. If both choose low (L), then each gets 1. If one chooses
H (high) and the other chooses L (low), then each gets 0. These payoffs are summarized
by the following matrix.

H L
H 2, 2 0, 0
L 0, 0 1, 1

Table 7: A High-Low Game

This game has two pure-strategy Nash equilibria: (H,H) and (L,L). The problem is
which Nash equilibrium will be played? We use this example to illustrate several heuristics
that solve this problem Schelling (1960) argued that, because of its high payoff, (H,H) is
salient. So it becomes a focal point and is chosen by both players. Harsanyi and Selten
(1988) argued that (H,H) payoff dominates (L,L) and, hence, will be selected by both
players. These are examples of what we called conservative heuristics in the introduction.
They involve no violation or relaxation of any of the standard assumptions of game theory
but they do add extra conditions that cannot be derived from standard game theory but are
consistent with them.
As an example of what we called a radical heuristic, consider team reasoning (Bacharach,
2006). Here the players replace individual rationality (each seeking to maximise her own
payoff, as in standard game theory) with collective rationality (each aims to maximise the
payoff to the team). Since (H,H) gives the highest payoff to the team, it chosen.
Another example of a radical heuristic is Stackelberg reasoning (Colman and Bacharach,
1997; Colman et al., 2014). Note that high-low is a static game of complete but imperfect
information. In particular, when a player makes her move, she does not know the move
that her rival has taken or will take. Both players are aware of this. A player solves this
problem by carrying out the following thought experiment. She says to herself “suppose
this were a game of perfect information where I move first and my rival moves second,
after having observed my move. What move would she take? From the payoff matrix, it is
obvious to me that her best reply to me choosing H is for her to also choose H; and the
best reply for her to me choosing L is for her to also choose L. Since (H,H) is better for
me than (L,L), I will choose H”. The other player also reasons in the same way. The

23We are grateful to Andrew Colman for drawing our attention to this example.
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outcome is (H,H). It is important to note that there is no breakdown of causality, nor do
the payers believe so. In particular, player 1 does not believe that by choosing H (or L)
she causes player 2 to choose H (or L).
We now illustrate evidential reasoning. Player 1 (say) reasons as follows. “(H,H) is
clearly better for both of us. If only I could meet with player 2, I would put to her the
proposal that we both play H. I am sure she would agree. But player 2 is probably thinking
the same. So, actually, we do not have to meet because we both know that if we were to
meet then we would agree on (H,H)”. Let p, q be the probabilities with which players 1 and
2 play H, respectively. The players’reasoning can be formalized using the identity social
projection functions:

P12 (H|p) = p, P21 (H|q) = q.

The resulting expected payoff to player 1 is

u1 (p) = π1 (p, P12 (H|p)) = 2p2 + (1− p)2 = 3

(
p− 1

3

)2
+

2

3
.

Since
(
p− 1

3

)2
attains a unique global maximum on [0, 1] at p = 1, it follows that the same

holds for u1 (p). Hence, player 1 chooses H with probability 1 and, similarly, player 2
chooses H with probability 1. (H,H) is a consistent evidential equilibrium (Definition 14).
We stress, again, that there is no breakdown of causality, nor do the payers believe so. In
particular, player 1 does not believe that by choosing H she causes player 2 to choose H.
She merely takes her preference for H as evidence that player 2 will also choose H.

9.1 Reputation, correlated equilibria, level-k models, Stackel-
berg reasoning and evolutionary stable equilibria

In the finitely repeated prisoners’dilemma game under incomplete information, a player
may believe, possibly mistakenly, that his rival will respond to cooperation with cooper-
ation and defection with defection (Kreps et al., 1982). Under these conditions a player
may wish to play cooperate until late in the game so as to establish a reputation for co-
operation. However, because defect is a dominant strategy, such a player will defect in
the final period. This contradicts the observation of significant amounts of cooperation in
the final period (Cooper et al., 1996). In particular, reputation (on its own) is unable to
explain cooperation in the static (one-shot) prisoners’dilemma game.
Since ‘cooperate’is a dominated strategy it is not rationalizable and cannot be sup-

ported in a correlated equilibrium either. In Level-k models, any player with level k, k ≥ 1

will never play a dominated strategy. Cooperation in a prisoners’dilemma game cannot be
explained in evolutionary games either. The reason is that the set of evolutionary stable
equilibria is a subset of the set of Nash equilibria of the game.
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Stackelberg reasoning cannot explain cooperation in the prisoners’dilemma either. To
see this, consider the payoff matrix in Table 4. According to Stackelberg reasoning, if
player 1, say, chooses C, then D is the best response for player 2, giving player 1 the
payoff 0; and if player 1 chooses D then, again, D is the best response for player 2, giving
player 1 the payoff 4 > 0. Hence, according to Stackelberg reasoning, player 1 will always
choose D. And similarly for player 2. So cooperation will never be the outcome of the
prisoners’dilemma game under Stackelberg reasoning.

9.2 Team reasoning

Several elements are key to team reasoning (Bacharach, 2006):

1. The team agrees on a common objective.

2. The task for each member of the team is agreed by all members.

3. The way the surplus is divided among the members of the team is agreed by all
members.

The team is consolidated if all members carry out their tasks. But serious failure of a
significant number of members is liable to cause the team to breakup.
As an illustration, consider the two player game whose payoffmatrix is given by Table

8, below. This, clearly, has the structure of a prisoners’dilemma game.

C D
C 5, 5 2, 6
D 6, 2 4, 4

Table 8: A Prisoner’s Dilemma Game

The interpretation of the payoffs in Table 8 is as follows. If a player works on her own,
she gets the payoff of 4. If both work as a team then the joint payoff is 10 which is shared
equally to give each a payoff of 5. However, if one player defects (shirks) she gets 6. This
is because she gets 4 for herself from working on her own. The other player (who has not
defected) generates a payoff of 4 for the team by working on her own. By the sharing rule
this payoff is shared equally giving the defector a total payoff of 6 and the non-defector a
payoff of 2. D is the strictly dominant strategy for each player. Hence, this game has the
unique Nash equilibrium, (D,D), which gives each player the payoff 4. However, if both
players internalize the objective of the team, to maximise joint payoff, then each gets 5.
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9.3 Other-regarding preferences

Consider, for example, other-regarding preferences in the model of Fehr and Schmidt
(1999). Suppose that we have n players with incomes: y1 ≤ y2 ≤ ... ≤ yn. We concentrate
on the linear version, which has had considerable empirical support. The Fehr-Schmidt
utility function of an individual with income yj ∈ Y is given by

U (yj) = yj −
β

n− 1

j−1∑
i=1

(yj − yi)−
α

n− 1

n∑
k=j+1

(yk − yj) , α ≥ 0, 0 ≤ β < 1. (36)

Individual j cares for his own payoff, yj, as under selfish preferences. But he also suffers
disutility from being ahead of others (altruism) and from being behind others (envy).
β ≥ 0 and α ≥ 0 are sometimes known as the parameters of, respectively, advantageous
and disadvantageous inequity. When α = β = 0 we have purely selfish preferences.
Evidence indicates that disadvantageous inequity is more important than advantageous
inequity (α > β) and one never benefits by throwing away one’s own income (β < 1).
Let us apply FS preferences, with β = 0.3, to the prisoners’dilemma game (n = 2) whose
payoff matrix is given by Table 4, above. It can then be easily seen that C is a strict
best reply to C and D is a strict best reply to D. Hence, other-regarding preferences
can, potentially, explain cooperation in the prisoners’dilemma game. We return to this in
subsection 9.5, below.

9.4 Altruism

Cooper et al. (1996) give an explanation of cooperation in the prisoners’dilemma game
based on altruism. They consider three types of players.24 Egoists who always defect;
dominant strategy altruists who always cooperate; and best response altruists who respond
to cooperate with cooperate and to defect with defect.
To rationalize the behaviour of these types Cooper et al. (1996) assume that player i

enjoys an extra amount of utility (warm glow), δi ≥ 0, from playing cooperate (irrespective
of the action played by his rival). If δi is suffi ciently small then player i behaves as an
egoist, i.e., defect is a dominant action for him. If δi is suffi ciently large, then player i
behaves as a dominant strategy altruist, i.e., cooperate is a dominant strategy for him.
Finally, for δi in the intermediate range player i behaves as a best response altruist, i.e.,

24Because there are three types of players, and because when a player takes his action he does not know
the type of his opponent, this is a (static) game of incomplete information. The relevant solution concept
(under causal reasoning) is the Bayesian Nash equilibrium. Each type of each player chooses his strategy
so as to maximize his expected payoff, given the strategies of all the types of all the other players. The
joint probability of all types is common knowledge. Each type of each player uses this, and his knowledge
of his own type, to update his belief about the types of his rivals using Bayes’Law. See, for example,
Fudenberg and Tirole (1991), part III.
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for him cooperate is a best response to cooperate and defect is a best response to defect.
As an illustration assume that, in addition to the payoffs in Table 4, player i enjoys warm
glow, δi, from cooperation. The modified payoff matrix is now:

C D
C 8 + δ1, 8 + δ2 δ1, 10
D 10, δ2 4, 4

Table 9: A Prisoner’s Dilemma Game in the Presence of Warm Glow

The following is easy to check.

1. If δi < 2 then defect is a strictly dominant action for player i. In this case player i
behaves as an egoist.

2. If δi > 4 then cooperate is a strictly dominant action for player i. In this case player
i behaves as a dominant strategy altruist.

3. If 2 < δi < 4 (e.g., δi = 3) then cooperate is a strict best response for player i to
player j, j 6= i, playing cooperate. Defect is a strict best response for player i to
player j, j 6= i, playing defect. Player i behaves as a best response altruist.

Reviewing the evidence, including the evidence from their own experiments, Cooper et
al. (1996) conclude that behaviour in the prisoners’dilemma game can best be explained
if players are either egoists (always defect) or best response altruists (respond to cooperate
with cooperate and to defect with defect). To illustrate this, take δi = 0 if payer i is an
egoist and δi = 3 if player i is a best response altruist. Consider the game between two
best response altruists. Putting δ1 = δ2 = 3 the payoff matrix 9 becomes:

C (q) D (1− q)
C (p) 11, 11 3, 10
D (1− p) 10, 3 4, 4

Table 10: A Prisoner’s Dilemma Game with Warm Glow

where player 1 plays C with probability p and player 2 plays C with probability q.
Let a ∈ (0, 1) be the probability of a payer being a best response altruist. We have

four cases to consider:
1. Suppose player 1 (a best response altruist) plays C.

1.1 Player 1 meets an egoist with probability 1 − a. An egoist always defects,
giving player 1 the payoff 3.
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1.2 Player 1 meets a best response altruist with probability a. If player 2 (a best
response altruist) plays C (probability q) then the payoff to player 1 is 11. If player 2

plays D (probability 1− q) then the payoff to player 1 is 3.
2. Suppose player 1 plays D.

2.1 If player 1 meets an egoist (probability 1 − a), who always defects, then the
payoff to player 1 will be 4.

2.2 Suppose player 1 meets a best response altruist (probability a). If player 2 (a
best response altruist) plays C (probability q) then the payoff to player 1 is 10. If player
2 plays D (probability 1− q) then the payoff of player 1 is 4.
Hence, the expected utility of player 1 is,

U1 (p, q) = p {3 (1− a) + a [11q + 3 (1− q)]}+ (1− p) {4 (1− a) + a [10q + 4 (1− q)]} ,
(37)

which simplifies to

U1 (p, q) = 4 + 6aq − p+ 2apq, (38)

from which we get
∂U1 (p, q)

∂p
= 2aq − 1, (39)

and, hence,

q >
1

2a
⇒ ∂U1 (p, q)

∂p
> 0,

q <
1

2a
⇒ ∂U1 (p, q)

∂p
< 0.

To simplify the discussion, let us concentrate on the pure strategy Bayesian Nash
equilibria in a population with a fraction, a ∈ (0, 1), of best response altruists and a
fraction, 1− a, of egoists.25

If a < 1
2
then we have one pure strategy Bayesian Nash equilibrium, where all players

defect.
If a ≥ 1

2
then we have two pure strategy Bayesian Nash equilibria. One equilibrium in

which (as before) all payers defect. In the second equilibrium all best response altruists
cooperate and all egoists defect.
Hence, for the particular payoffs in Table 10, cooperation can be sustained as a Bayesian

Nash equilibrium in the one-shot prisoners’dilemma game if the percentage of best re-
sponse altruists is ≥ 50%.

25See Cooper et al. (1996) for a more extensive analysis, including mixed strategies and repeated
prisoners’dilemma games.
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9.5 Can team reasoning, altruism or other-regarding preferences
explain cooperation in the prisoners’dilemma game?

Shafir and Tversky (1992) presented experimental subjects with the usual one-shot pris-
oners’dilemma game. They then considered the following two variants.
1. A player whose competitor had defected was informed of this and offered the chance

to revise her decision.
2. A player whose competitor had cooperated was informed of this and offered the

chance to revise her decision.
Shafir and Tversky (1992) found that when a player did not know what the opponent

had chosen, then the player defected in 63% of games. If the player was informed that
the opponent had defected (case 1, above) then in 97% of the games, the player defected.
Thus defection increased. on the other hand, if the player was informed that the opponent
cooperated (case 2, above) then in 84% of the games the player defected. Thus defection,
again, increased. These results were replicated and extended by Croson (1999), Li and
Taplin (2002), Busemeyer et al. (2006) and Histrova and Grinberg (2008).
We shall argue that these results are consistent with evidential reasoning but not with

team reasoning, altruism or other regarding preferences.
First, consider case 1, above. Here all four theories predict an increase in defection

following a player being told that her rival has defected, in line with the evidence. But
the reasons are different. Once a player has been told the move of her rival uncertainty
is resolved. She no more needs recourse to evidential reasoning. Since she continues to
play selfishly, and since defect is a strictly dominant strategy, she defects. An observation
of defection is liable to destroy team spirit (subsection 9.2). Hence, team reasoning is
consistent with the observation of an increase in defection. According to other-regarding
preferences, as in subsection 9.3 above, a player who originally chose D will continue to
choose D after she has been told that her rival had defected. However, a player who had
originally chosen C will change to D after being told that her rival had defected. Hence,
the other-regarding preferences model will predict an increase in defection, in line with the
evidence. Finally, consider altruism, as in subsection 9.4 above. The egoists will not change
their behaviour, they will continue to defect. Likewise, the dominant strategy altruists will
not change their behaviour, they will continue to cooperate. The best response altruists
who chose to defect will continue to choose defect after being informed that their rival
has defected. However, each best response altruist who had chosen cooperation will now
switch to defection. Hence, the amount of defection will increase in line with the evidence.
Second, consider case 2 above. Here evidential reasoning predicts an increase in defec-

tion, in line with the evidence. The reason is that uncertainty is resolved once a player
has been told the move of her rival. She no longer needs recourse to evidential reason-
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ing. If she had defected she will choose defect again. If she had cooperated, she will now
defect. However, the other three theories predict a decline in defection, contrary to the
evidence. For team-reasoning, the team spirit is strengthened once a player is told that her
rival has cooperated. Hence a player who had cooperated continues to cooperate. A team
member who had initially chosen to defect may now change to cooperate. According other-
regarding preferences, as in subsection 9.3, a player who originally chose C will continue to
choose C after she has been told that her rival had cooperated. However, a player who had
originally chosen D will change to C after being told that her rival had cooperated. Hence
the other-regarding preferences model will predict a reduction in defection, contrary to the
evidence. Finally, consider altruism, as in subsection 9.4. The egoists will not change their
behaviour, they will continue to defect. Likewise, the dominant strategy altruists will not
change their behaviour, they will continue to cooperate. The best response altruists who
chose to cooperate will continue to cooperate. However, each best response altruist who
had chosen defect will now find it in their best interest to cooperate. Hence, the extent of
defection will decrease, contrary to the evidence.

10 Conclusions

A large number of experimental subjects do not play a Nash equilibrium in well-known
games such as prisoners’dilemma, the hawk-dove game, voting games, public goods games
and oligopoly games.26 It would seem that this constitutes strong grounds for game theory
to be open to alternative equilibrium concepts in static games.
In static games players are uncertain about which actions the other players will take

(or have taken). A great deal of evidence suggests that in resolving uncertainty about
what other players will do (or have done), players assign diagnostic significance to their
own actions. Such reasoning is described as evidential reasoning. Players using evidential
reasoning do not believe that their actions cause the action of others; it merely informs their
belief about the actions taken by others. However, players who use evidential reasoning
can violate standard rationality assumptions, such as Savage’s sure thing principle. Thus,
evidential reasoning is best viewed as a heuristic rather than a sound rational principle.
The aim of our paper is to explore the significance of evidential reasoning for the class

of static games of complete information. We define evidential games in which some players
use evidential reasoning. We also propose the relevant solution concepts for such games:
Evidential equilibrium and consistent evidential equilibrium.
The evidence shows that the cooperative outcome in the prisoners’ dilemma game

26Aumann and Brandenburger (1995) gave epistemic conditions under which the play of a game would
result in a Nash equilibrium. A violation of Nash equilibrium is also a violation of the epistemic conditions
that imply it.
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occurs more than 50% of the time, despite cooperation being strictly dominated by defec-
tion. Other-regarding preferences and altruism under causal reasoning can both explain
this. However, neither team-reasoning, other-regarding preferences nor altruism can ex-
plain why the amount of defection increases when players are told that their rivals have, in
fact, cooperated. We find that the evidence can best be explained by a mixture of players,
some who use evidential reasoning and others who use causal reasoning.
Our proposal of an identity social projection function appears adequate for symmetric

games. However, our general notion of a social projection functions appears too general
(Proposition 3). We illustrated how the Nash bargaining axioms restrict social projections
functions suffi ciently to get unique outcomes in the Nash demand game (Example 5) and
oligopoly games (Proposition 9).
Our framework can naturally be extended to incomplete information games and dy-

namic games, but we lack a body of evidence that could underpin such extensions. Hence,
we leave such developments for future research as more evidence accumulates.
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