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1 Introduction

Imagine that the players in a Bayesian game receive less precise private signals and consequently

become more uncertain about their environment. In an arms race with incomplete information,

for example, countries may be uncertain about arms’ effectiveness and opponents’ intentions —

and the degree of uncertainty is likely to change over time. How will such changes in exogenous

distributions affect the Bayesian equilibria, including the mean actions and the actions’ variances?

In the arms race, will increased uncertainty lead to an escalation or de-escalation in the accumu-

lation of arms?

The objective of this paper is to develop the tools needed to address such questions. Distri-

butional comparative statics (henceforth, DCS) is the study of how changes in exogenous distri-

butions affect endogenous distributions in models with optimizing agents. Apart from the effect

on equilibrium quantities following increased uncertainty in Bayesian games; the methods devel-

oped here are able to address a number of DCS questions from different areas of economics.

• Consider an income allocation model where the population of consumers have different

incomes. A macroeconomist might wish to know under what conditions on fundamentals

a Lorenz dominating increase in inequality will lead to an increase in per-capita savings, or

reduce the variance of savings across the population.

• In a model of international trade characterized by firms with heterogenous productivities,

a trade theorist might wish to know if increased dispersion of productivities increases total

output, or increases the variance in output across the firms.

• In a model of an investment decision, a financial economist might wish to know if a mean-

preserving spread to the random return increases or reduces the investment.

In the income allocation setting it has been known at least since Atkinson (1970) that dominat-

ing shifts in the Lorenz curve reduce or increase aggregate savings according to whether the sav-

ings function is concave or convex. More generally, concavity or convexity of the function which

maps exogenous variables into endogenous ones (the policy function) is the key to answering DCS

questions about mean-preserving spreads, second-order stochastic dominance, Lorenz or gener-

alized Lorenz shifts.1

To make progress, therefore, we need conditions on the primitives of a decision problem under

which the policy function is concave or convex. The main technical contribution of this paper is a

theorem that provides precisely that.2 The result turns out to be intuitive: Consider for a moment

the concepts of risk aversion and risk love which may be distinguished by whether more “mixed”

outcomes reduce or increase an agent’s total payoff (this corresponds, respectively, to concavity

and convexity of the Bernoulli utility function). In a similar manner, concavity and convexity of

1See Section 2 for further discussion of the relationship between DCS and convexity/concavity of policy functions.
2Currently, the only way to do this would be by repeated use of the implicit function theorem (IFT) in an attempt to

pin down the policy function’s second partial derivative. Section 2 explains why that approach will not work in many
situations. In addition, it is always inferior to the tools developed in this paper: even if an IFT approach is feasible, it
will be substantially easier to use the theorem described here.
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policy functions can be distinguished by whether more “mixed” outcomes reduce or increase the

marginal payoff. Indeed, from the definition of concavity/convexity and the conditions describing

an optimum, it follows almost immediately that these conditions on the marginal payoff lead to

concavity and convexity, respectively, of the policy function (Section 3). These conditions have

exact mathematical expressions captured by intuitive conditions I call quasi-concave differences

and quasi-convex differences, which can also be characterized explicitly via derivatives when the

functions involved are sufficiently smooth. Operationally this puts the conditions on an equal

footing with, say, concavity or supermodularity/increasing differences which can be established,

respectively, via the Hessian criterion and the cross-partial derivatives test of Topkis (1978). Thus

we arrive at a fully tractable theory on par with existing comparative statics methods such as the

implicit function theorem and monotone methods (Topkis (1978), Milgrom and Shannon (1994),

Quah (2007)).3

The paper begins in Section 2 by further motivating and exemplifying the distributional com-

parative statics agenda. It then turns to quasi-concave differences, discusses the intuitive content

of the definition, and shows — first in the simplest possible setting (Section 3.1), then under more

general conditions (Section 3.2)— that quasi-concave differences implies concavity of the policy

function in an optimization problem. An appendix treats the issue under yet more general condi-

tions where the decision vector is allowed to live in an arbitrary topological vector lattice (Appendix

III). Section 3.3 contains a practitioner’s guide to the results and several fully worked through ex-

amples. Section 4 tackles the Bayesian DCS question posed at the beginning of this introduction.

Section 5 derives general conditions for concavity of policy functions in stochastic dynamic pro-

gramming problems; and as a concrete application extends a contribution by Carroll and Kimball

(1996) to a setting with borrowing constraints (Aiyagari (1994)). Such results play an important

role for various distributional comparative statics questions in macroeconomics (Huggett (2004),

Acemoglu and Jensen (2015)) and also drive the analysis of inequality (Section 2.2).

2 Motivation

This section discusses the significance of convex and concave policy functions in two leading dis-

tributional comparative statics problems. In each case it is also explained why existing methods

based on the implicit function theorem are not well suited to dealing with the technical issues

raised.

2.1 Decisions under Uncertainty

Consider a decision maker (henceforth, DM) with objective u (x , z ) where z ∈ Z ⊆ R is private

information and x ∈ X ⊆ R the decision variable. An outsider is affected by the DM’s action and

has beliefs over z represented by a probability measure µ on Z . With independent private values

3Note that these methods are not particularly helpful for DCS: even if exogenous distributions are parameterized so
that the implicit function theorem or monotone methods apply; the conclusion will be about the direction of change in
a deterministic decision variable and not in its distribution. This observation also applies to the results of Athey (2002)
although there it is not necessary to parameterize the exogenous distribution. See also Section 2.1.
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(or an outsider whose only source of risk is the DM’s action), the DM’s strategy and the outsider’s

beliefs about z are relevant to the outsider only through the distribution over the DM’s actions that

they induce. This distribution is given by

µx (A) =µ{z ∈ Z : g (z ) ∈ A},(1)

where A is any Borel set in X and g : Z → X is the policy function

g (z ) = arg max
x∈X

u (x , z ).(2)

Consider now a shift in the outsider’s beliefs µ. For example, the outsider might become more

uncertain about z (a mean-preserving spread to µ), or the outsider’s beliefs could be subjected to

first- or second-order stochastic dominance shifts. For the reader’s convenience, the formal defi-

nitions follow (see also Shaked and Shanthikumar (2007) for an in-depth treatment of stochastic

orders):

Definition 1 (Stochastic Orders) Let µ and µ̃ be two distributions on the same probability space

(Z ,B (Z )). Then:

• µ̃ first-order stochastically dominatesµ if
∫

f (z )µ̃(d z )≥
∫

f (z )µ(d z ) for any increasing func-

tion f : Z →R such that the integrals are well-defined.

• µ̃ is a mean-preserving spread of µ if
∫

f (z )µ̃(d z ) ≥
∫

f (z )µ(d z ) for any convex function f :

Z →R such that the integrals are well-defined.

• µ̃ is a mean-preserving contraction ofµ if
∫

f (z )µ̃(d z )≥
∫

f (z )µ(d z ) for any concave function

f : Z →R such that the integrals are well-defined.4

• µ̃ second-order stochastically dominates µ if
∫

f (z )µ̃(d z )≥
∫

f (z )µ(d z ) for any concave and

increasing function f : Z →R such that the integrals are well-defined.

• µ̃ dominates µ in the convex-increasing order if
∫

f (z )µ̃(d z ) ≥
∫

f (z )µ(d z ) for any convex

and increasing function f : Z →R such that the integrals are well-defined.

When µ shifts (to µ̃) in accordance with one of these stochastic orders, the natural question

is how the distribution of the DM’s actions µx is affected. The following observations provide the

answers.5

1. If g is increasing, any first-order stochastic dominance increase inµwill lead to a first-order

stochastic dominance increase in µx .

4Note that µ̃ is a mean-preserving contraction of µ if and only if µ is a mean-preserving spread of µ̃.
5The observations follow directly the definitions (a detailed proof is provided in Appendix I). The statement that “µ

increases” is a compact way of stating that µ is replaced with a distribution µ̃ that dominates µ in the given stochastic
order. Similarly, “µ decreases” means that µ is replaced with a distribution µ̃ that is dominated by µ in the stochastic
order.
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2. If g is concave, any mean-preserving spread toµwill lead to a second-order stochastic dom-

inance decrease in µx .

3. If g concave and increasing, any second-order stochastic dominance increase in µwill lead

to a second-order stochastic dominance increase in µx .

4. If g is convex, any mean-preserving spread to µ will lead to a convex-increasing order in-

crease in µx .

5. If g is convex and increasing, any convex-increasing order increase inµwill lead to a convex-

increasing order increase in µx .

To establish the condition of Observation 1 we can use the implicit function theorem or mono-

tone methods to prove that g is increasing. Existing results therefore fully enable us to deal with

first-order stochastic dominance shifts inµ. But in all of the other cases, we need to show that g is

either concave or convex to determine how the distribution of the DM’s actions changes. Consider

the special case where,

u (x , z ) =

∫

U (x , z̄ , z )η(z̄ ),(3)

which is the payoff function of a player in a Bayesian game when η is the distribution of the oppo-

nents’ actions, and z the private signal which has distribution µ. This paper’s results allow us to

conclude that if U is differentiable with Dx U (x , z̄ , z ) concave in (x , z ) for almost every z̄ ∈ Z then

the policy function — and more generally, the policy correspondence — will be concave whether

or not the objective is concave, or even quasi-concave (see Section 3.3). Simple and intuitive con-

ditions are also available when the objective fails to be differentiable. By Observation 2 on the

previous page we can therefore conclude, for example, that if the player becomes more uncer-

tain (a mean-preserving spread to µ), then the distribution of his actions ηx will decrease in the

sense of second-order stochastic dominance. In particular, his mean action will decrease and the

variance of his action will increase. In Section 4, we shall see how such results pave the way for a

satisfactory treatment of distributional comparative statics in Bayesian games.

Without this paper’s results, repeated “brute force” use of the implicit function theorem (IFT)

provides the only existing way to address the concavity of g in this situation. It is instructive to

follow this line of reasoning for a moment. If u (x , z ) is sufficiently smooth, concavity of u is as-

sumed, and the solution is interior for all z ∈ Z , the following first-order condition is necessary

and sufficient for an optimum

(Dx u (x , z ) =)

∫

z̄∈Z̄

Dx U (x , z̄ , z )η(z̄ ) = 0.(4)

Assume in addition that the second derivative never equals zero (strict concavity). The IFT

then determines x as a function of z , x = g (z )where

g ′(z ) =−
�∫

z̄∈Z̄

D 2
x x U (g (z ), z̄ , z )η(z̄ )

�−1∫

z̄∈Z̄

D 2
x z U (g (z ), z̄ , z )η(z̄ ).
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To determine g ′′ we would then need to differentiate the right-hand-side expression with respect

to z and substitute in for g ′(z ). Evidently, this is a daunting task even in the relatively simple

case we are looking at here. And it may or may not lead to any useful conditions.6 Furthermore,

it imposes a host of unnecessary technical assumptions — so even when sufficient conditions

for concavity of g can be found, these will not be the most general conditions. When u is not

strictly concave, or when it is not differentiable, such brute force is inapplicable (see the examples

in Section 3.3 as well as section 2.2 below). Varying constraint sets (Section 3.2) similarly confound

the IFT’s usefulness.

2.2 Income Allocation Models and Inequality

Standard deterministic income allocation models with HARA period utility functions satisfy the

conditions of Gorman (1953) and the consumption function will consequently be linear in in-

come (Pollak (1971)).7 However, introducing uncertainty changes the outcome (Carroll and Kim-

ball (1996)). Consider the stochastic income allocation model with Bellman equation

v (r x +w z ) =maxy ∈Γ (x ,z ) u
�

r x +w z − y
�

+β
∫

v (r y +w z ′)η(d z ′).(5)

Here v is the value function and Γ (x , z ) = {y ∈R : −b ≤ y ≤ r x +w z } is admissible savings given

past savings x and labor productivity z which follows an i.i.d. process with distribution η. As

usual r denotes the interest factor, and w the wage rate. When b < +∞, we have a model with

a borrowing constraint in the spirit of workhorse incomplete market models (see e.g., Aiyagari

(1994) and Acemoglu and Jensen (2015)).

Let g (r x +w z ) = arg maxy ∈Γ (x ,z ) u
�

r x +w z − y
�

+β
∫

v (y , z ′)η(d z ′) denote the savings func-

tion, and c (r x +w z ) = r x +w z − g (r x +w z ) the consumption function (assuming here with-

out further elaboration that these are well-defined). Clearly, the savings function is convex if and

only if the consumption function is concave. Carroll and Kimball (1996) prove that if u belongs

to the HARA class, then the consumption function is concave if there is no borrowing constraint

(b =+∞) and if the period utility function has a positive third derivative (precautionary savings).

Technically, the proof of Carroll and Kimball (1996) relies on Euler equations and repeated appli-

cation of the implicit function theorem (brute force), and so requires at least thrice differentiability

of the value function v . The proof well illustrates how difficult brute force is to apply in practice,

requiring ingenious guesses (e.g., the class of HARA utility functions), and highly sophisticated

manipulations throughout the argument (witness the proof found in their paper).

With a borrowing constraint (b <+∞), the value function will not be smooth, and there sim-

ply are no existing tools capable of dealing with this situation in general.8 Using this paper’s re-

6This statement is true even with one-dimensional decision variables. With multi-dimensional decision variables
as explored in Appendix III, brute force becomes excessively complicated and is rarely useful.

7In the income allocation setting, the period utility function u exhibits Hyperbolic Absolute Risk Aversion (HARA) if
u ′′′u ′

(u ′′)2 = k for a constant k ∈R (see Carroll and Kimball (1996)).
8Due to the importance of borrowing/liquidity constraints for much applied work, the same authors (Carroll and

Kimball (2001)) as well as Huggett (2004) address the concavity question in a framework with borrowing constraints
and establish concavity of the consumption function for three special cases of the general HARA class (CRRA, CARA,
and quadratic utility, respectively).
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sults, a simple and direct proof of the concavity of the consumption function becomes feasible

relying only upon concavity of the value function. From this follows straight-forwardly that the

consumption function will be concave for the general HARA class with or without borrowing con-

straints (Section 5). Also, the HARA class “pops out” endogenously from our general conditions

— there is no guesswork involved, and no ingenuity is required. In fact, the general results of this

paper are so effective in the stochastic dynamic programming setting that little additional effort

is required to prove a result on the convexity/concavity of policy functions for stochastic dynamic

programming problems at the level of generality of the text book treatment of Stokey and Lucas

(1989). Thus we are able to address not just the previous income allocation problem but nearly

any stochastic dynamic model one can think of applying in macroeconomics. This is the topic of

Section 5.

Let us finish this section with a brief look at the importance of the previous results for the study

of inequality. Let Wi = r xi +w zi denote income of agent i at a given moment in time and consider

a continuum of agents i ∈ [0, 1] with identical preferences but possibly different incomes. Let ηW

denote the (frequency) distribution of income. Mean consumption/per-capita consumption is

then given by

∫

c (Wi )ηW (d Wi ).

From Atkinson (1970) we know that mean-preserving spreads toηW are equivalent to increases

in inequality in the sense of Lorenz dominance. Thus with or without borrowing constraints, any

Lorenz increase in inequality will lead to lower mean consumption if u is in the HARA class. Notice,

however, that Observations 2-4 on page 3 allow us to go considerably further. Since the consump-

tion function c is also increasing under standard conditions, the previous statement extends to

generalized Lorenz dominance by Observation 3 on page 3.9 Of more novelty, we can go beyond

considerations of the mean. For example, by Observation 2, a Lorenz increase in inequality will

lead to a second-order stochastic dominance decrease in the distribution of consumption when

c is concave and increasing. So we can conclude not only that the mean will decrease, but also

that the variance will increase. Since the variance is a measure of the inequality of outcomes as

opposed to the inequality of opportunities embodied in the distribution of income, such conclu-

sions are obviously interesting. More generally, the approach developed in this paper opens up a

simple and effective way of analysing the role of inequality in a variety of economic models.

3 Concavity of Policy Functions

Motivated by the previous section, we now present the paper’s main results on the concavity and

convexity of policy functions. The first subsection considers the simplest case with a single de-

cision variable, a fixed constraint set, and a strictly quasi-concave objective. In the second sub-

section, all of these restrictions are relaxed except for the dimensionality of the decision variable

9The generalized Lorenz curve is constructed by scaling up the Lorenz curve by the distribution’s mean and is equiv-
alent to second-order stochastic dominance shifts, see e.g. Dorfman (1979).
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which is treated in Appendix III. The last subsection contains a user’s guide to the results as well

as examples.

3.1 The Simplest Case

Let u : X ×Z → R be a payoff function where x ∈ X ⊆ R is a decision variable and z ∈ Z a vector

of parameters. It is assumed throughout that X is a convex set and that Z is a convex subset of a

vector space. When the associated decision problem maxx∈X u (x , z ) has a unique solution for all

z ∈ Z , we can define the policy function

g (z ) = arg max
x∈X

u (x , z ).(6)

We know from Topkis (1978) that g : Z → X will be increasing if u exhibits increasing differ-

ences, i.e., if u (x +δ, z )−u (x , z ) is coordinatewise increasing in z for all x ∈ X and δ > 0 such that

x +δ ∈ X . The purpose of this section is to show that concavity of g is ensured by a closely related

condition called quasi-concave differences.

Definition 2 (Quasi-Concave Differences) A function u : X ×Z → R exhibits quasi-concave dif-

ferences if u (x +δ, z )−u (x , z ) is quasi-concave on X ×Z for all δ > 0 in a neighborhood of 0.

If in this definition u (x+δ, z )−u (x , z ) is instead required to be quasi-convex, u exhibits quasi-

convex differences, and this condition will be shown to instead imply that g is convex. Conve-

niently, u exhibits quasi-convex differences if and only if −u exhibits quasi-concave differences,

hence there is no reason to distinguish between the two cases in the following discussion. As the

following lemma shows, quasi-concavity is easy to verify for sufficiently smooth functions.

Lemma 1 (Differentiability Criterion) Assume that u : X ×T →R is differentiable in x ∈ X ⊆R.

Then u exhibits quasi-concave differences if and only if the partial derivative Dx u (x , z ) is quasi-

concave in (x , z ) ∈ X ×Z .

Proof. Appendix II.

Since quasi-concavity of Dx u (x , z ) is a fully tractable condition, so is quasi-concave differ-

ences. The reader is referred to the “user’s guide” in Section 3.3 for analytical examples and further

details on how to establish quasi-concave differences in applications. Here we turn instead to the

interpretation and the relationship with concave policy functions.

Increasing differences says that the larger is z , the larger is the agent’s incremental payoff from

choosing a larger x . Quasi-concave differences is a complementarity condition much in the same

spirit, only now the action x must not be complementary with z , but with convex combinations

of (x , z ). To be precise, consider two points (x1, z1) and (x2, z2) and a convex combination of the

two (xλ, zλ) = (λx1+(1−λ)x2,λz1+(1−λ)z2), λ ∈ (0, 1). Now add an incrementδ > 0 to the decision

variable of all three bringing us to (x1+δ, z1), (x2+δ, z2), and (xλ+δ, zλ). Quasi-concave differences

then says that the incremental payoffs at the end-points are complementary with the incremental

payoff at the convex combination:
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u (xλ+δ, zλ)−u (xλ, zλ)≥min{u (x1+δ, z1)−u (x1, z1), u (x2+δ, z2)−u (x2, z2)}.(7)

It is intuitive that this type of complementarity implies a concave policy function. To see this

pick λ ∈ (0, 1), z1, z2 ∈ Z , and let g (z1) and g (z2) denote the associated optimal decisions. Con-

sider points at a distance δ > 0 below these optimal decisions, i.e., consider x1 = g (z1)− δ and

x2 = g (z2)−δ. See Figure 1 where zλ and xλ are the convex combinations defined in the previous

paragraph (in particular, xλ =λg (z1) + (1−λ)g (z2)−δ and xλ+δ=λg (z1) + (1−λ)g (z2)).

Figure 1: Quasi-concave Differences: complementarity between x and convex combinations of
(x , z ) implies that the arrows must point upwards at zλ when the arrows point upwards at z1 and
z2.

Since g (z1) is optimal given z1, u (·, z1)weakly increases between x1 and x1+δ. Similarly u (·, z2)
weakly increases between x2 and x2+δ. In the Figure this is illustrated by arrows pointing in the

direction of weakly increasing payoffs. Since upward pointing arrows at the endpoints z1 and z2

means that the right-hand side of (7) is the minimum of non-negative numbers, quasi-concave

differences immediately implies that u (xλ + δ, zλ) ≥ u (xλ, zλ). So the arrows must also point

upwards between between xλ and xλ + δ at the convex combination zλ. Now, g is concave if

g (zλ) ≥ λg (z1) + (1 − λ)g (z2) = xλ + δ. So graphically speaking, g (zλ) must lie above xλ + δ on

the vertical grid through zλ. When u is quasi-concave in x , this follows immediately from the di-

rection of the arrows at xλ +δ (a quasi-concave function is always first non-decreasing and then

non-increasing). It is clear now why complementarity between x and convex combinations of

(x , z )— i.e., quasi-concave differences — leads directly to a concave policy function. It does so

by forcing u (·, zλ) to be locally non-decreasing at λg (z1) + (1−λ)g (z2), thereby ensuring that any

optimizer at zλ is greater than or equal to λg (z1) + (1−λ)g (z2).
The proof below is essentially just a formalization of the previous graphical argument. There

is, however, one complication related to solutions g (z ) touching the lower boundary of X , i.e.,

solutions such that g (z ′) = inf X for some z ′ ∈ Z . In fact, such solutions will ruin any hope of

obtaining a concave policy function for reasons that are easily seen graphically.

In Figure 2, we see a policy function which at z’ touches the lower boundary inf X = 0 of the

constraint set X =R+, and stays at this lower boundary point as z is further increased. It is evident

that the resulting policy function will not be concave, even if it is concave for z ≤ z’. As discussed

at length in the working paper version of this paper (Jensen (2012)), this observation is quite gen-

eral: concave policy functions and lower boundary optimizers cannot coexist save for some very

8



Figure 2: Concavity is destroyed when the policy function touches the lower boundary inf X = 0.

pathological cases. Of course, there is no problem if the optimization problem is unconstrained

below, i.e., if inf X = −∞. Nor is there a problem if attention is restricted to interior optimizers

(witness Figure 2 where we do have concavity when z is below z’).

Theorem 1 (Concavity of the Policy Function) Let Z be a convex subset of a vector space, and

X ⊆ R a convex subset of the reals. Assume that u : X ×Z → R is strictly quasi-concave in x and

that g (z ) = arg maxx∈X u (x , z ) 6= ; for all z ∈ Z . Then the policy function g : Z → X is concave if

u : X ×Z →R exhibits quasi-concave differences and g (z )> inf X for all z ∈ Z .

Proof. Pick z1, z2 ∈ Z and let x1 = g (z1)and x2 = g (z2)be the optimal decisions. Since x1, x2 > inf X ,

there exists δ > 0 such that u (x1 − δ, z1)− u (x1, z1) ≤ 0 and u (x2 − δ, z2)− u (x2, z2) ≤ 0. Letting

x̃q = xq − δ where q = 1, 2, this can also be written u (x̃1, z1) − u (x̃1 + δ, z1) ≤ 0 and u (x̃2, z2) −
u (x̃2 +δ, z2) ≤ 0. For λ ∈ [0, 1] set x̃λ = λx̃1 + (1−λ)x̃2 and zλ = λz1 + (1−λ)z2. By quasi-concave

differences, u (x̃λ + δ, zλ)− u (x̃λ, zλ) ≥ min{u (x̃1 + δ, z1)− u (x̃1, z1), u (x̃2 + δ, z2)− u (x̃2, z2)} ≥ 0.

Hence u (x̃λ + δ, zλ)− u (x̃λ, zλ) = u (xλ, zλ)− u (xλ − δ, zλ) ≥ 0 where xλ = λx1 + (1− λ)x2. From

strict quasi-concavity of u in x then follows that u (·, zλ)must be non-decreasing on the interval

[inf X , xλ] and therefore that g (zλ)≥ xλ =λg (z1) + (1−λ)g (z2).

Corollary 1 (Convexity of the Policy Function) If in Theorem 1 instead of the last two conditions,

it is assumed that u : X × Z → R exhibits quasi-convex differences and that g (z ) < sup X for all

z ∈ Z , then the policy function g is convex.

Proof. Apply Theorem 1 to the optimization problem maxx̃∈−X u (−x̃ , z ) and use that the policy

function of this problem is concave if and only if g is convex.

3.2 Extensions

In situations such as the dynamic programming problems of Section 5, it is too restrictive to as-

sume that the constraint set X is fixed. Further, one may face decision problems with multiple

solutions possibly because the objective function is not quasi-concave in x . In such cases, we

face the general decision problem

G (z ) = arg max
x∈Γ (z )

u (x , z ).(8)
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Here Γ : Z → 2X is the constraint correspondence and G : Z → 2X is the policy correspondence. A

policy function is now a selection from G , i.e., a function g : Z → X with g (z ) ∈G (z ) for all z ∈ Z .

For this problem, the result of Topkis (1978) tells us that if u exhibits increasing differences

and Γ is ascending then G is ascending. Conveniently, the conclusion of Theorem 1 generalizes in

a very similar manner if we either maintain quasi-concavity of u (·, z ) or else replace the definition

of quasi-concave differences with the following global version:

Definition 3 (Global Quasi-Concave Differences) A function u : X ×Z →R exhibits global quasi-

concave differences if u (x +δ, z )−u (x , z ) is quasi-concave on X ×Z for all δ > 0.

A function u : X ×Z → R exhibits global quasi-convex differences if −u exhibits global quasi-

concave differences. The next lemma gives sufficient conditions for a function to exhibit global

quasi-concave differences.

Lemma 2 (Global Differentiability Criterion) Assume that u : X ×T →R is continuously differ-

entiable in x ∈ X ⊆ R. Then u exhibits global quasi-concave differences if the partial derivative

Dx u (x , z ) is concave in (x , z ) ∈ X ×Z .

Proof. By the fundamental theorem of calculus u (x +δ, z )−u (x , z ) =
∫ δ

0
Dx u (x +τ, z ) dτ. Since

concavity is preserved under affine maps, Dx (x +τ, z ) is concave for all τ ∈ R when Dx u (x , z ) is

concave. Since concavity is also preserved under integration, it follows that u (x +δ, z )−u (x , z ) is
concave in (x , z ) for all δ > 0.

Obviously, the constraint correspondence must also satisfy appropriate conditions. For this,

consider the following:

Definition 4 (Concave Correspondences) A correspondence Γ : Z → 2X is concave if for all z1, z2 ∈
Z , x1 ∈ Γ (z1), x2 ∈ Γ (z2), and λ ∈ [0, 1], there exists x ∈ Γ (λz1+ (1−λ)z2)with x ≥λx1+ (1−λ)x2.

By definition, Γ : Z → 2X is said to be convex if −Γ : Z → 2−X is concave. Convexity of corre-

spondences was defined in Kuroiwa (1996) who also offers an extensive discussion of set-valued

convexity. Concavity or convexity of Γ is not to be confused with either convexity of its values or

convexity of its graph. A correspondence Γ : Z → 2X is convex-valued if Γ (z ) is a convex subset of

X for all z ∈ Z , and it has a convex graph if {(x , z ) ∈ X ×Z : x ∈ Γ (z )} is a convex subset of X ×Z .

Neither concavity or convexity implies convex values (or vice versa). Meanwhile, convexity of a

correspondence’s graph is a much stronger requirement than convexity and concavity. In fact, a

correspondence with a convex graph is both convex, concave, and has convex values.10

For most applications, the following result is sufficient to establish that a given constraint cor-

respondence is concave or convex. Note that the result implies that in the frequently encountered

case of inequality constraints where Γ (z ) = {x ∈ X : γ(z )≤ x ≤ γ(z )}, Γ is concave if and only if γ is

concave; and Γ is convex if and only if γ is convex.

10That a correspondence with a convex graph has convex values is obvious. For the other claims, pick x = λx1 + (1−
λ)x2 ∈ Γ (λz1+ (1−λ)z2) in Definition 4.
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Lemma 3 (Extremum Selection Criteria) If Γ : Z → 2X admits a greatest selection, γ(z )≡ supΓ (z )
∈ Γ (z ) for all z ∈ Z , then Γ is concave if and only if γ : Z → X is a concave function. Likewise, if

Γ admits a least selection γ(z ) ≡ infΓ (z ) ∈ Γ (z ) all z ∈ Z , Γ is convex if and only if γ is a convex

function.

Proof. Only the concave case is proved. Since Γ is concave, we will for any z1, z2 ∈ Z , and λ ∈ [0, 1]
have an x ∈ Γ (λz1+(1−λ)z2)with x ≥λγ(z1)+(1−λ)γ(z2). Since γ(λz1+(1−λ)z2)≥ x , γ is concave.

To prove the converse, pick z1, z2 ∈ Z and x1 ∈ Γ (z1), x2 ∈ Γ (z2). Since the greatest selection is

concave, x = γ(λz1+(1−λ)z2)≥λγ(z1)+ (1−λ)γ(z2)≥λx1+(1−λ)x2. Since x ∈ Γ (λz1+(1−λ)z2),
Γ is concave.

Theorem 2 (Concavity of the Policy Correspondence) Let Z be a convex subset of a vector space,

and X ⊆ R a convex subset of the reals. Assume that G (z ) = arg maxx∈Γ (z ) u (x , z ) 6= ;, that x >

infΓ (z ) whenever x ∈ G (z ), and that Γ is a concave correspondence with convex values. Then G

is a concave correspondence if either (1) u : X ×Z →R is quasi-concave in x and exhibits quasi-

concave differences, or (2) u : X ×Z →R exhibits global quasi-concave differences.

Proof. Pick any z1, z2 ∈ Z , x1 ∈G (z1), and x2 ∈G (z2). Setting xλ =λx1+(1−λ)x2, and zλ =λz1+(1−
λ)z2, we must show that there exists an x ∈G (zλ)with x ≥ xλ. Precisely as in the proof of Theorem

1, we conclude that u (xλ, zλ)−u (xλ−δ, zλ)≥ 0 for some δ > 0 under the first of the two alternative

conditions, while under the second condition we may conclude that u (xλ, zλ)− u (xλ −δ, zλ) ≥ 0

and for all δ > 0 with xλ + δ ∈ X . We are clearly done if there does not exist any x ∈ Γ (zλ) with

x < xλ. Assuming therefore that such an x exists, we can conclude from concavity and convex-

values of Γ that xλ ∈ Γ (zλ) (by convex values [x , x̃ ]⊆ Γ (zλ)where x̃ ≥ xλ is in Γ (zλ)by concavity of Γ ).

Hence u (x , zλ)≥ u (xλ, zλ)when x ∈G (zλ). In the case of the condition (2), it follows immediately

that there must exist an x ∈G (zλ)with x ≥ xλ. In the case of condition (1), the conclusion follows

from quasi-concavity precisely as in the proof of Theorem 1.

Corollary 2 (Convexity of the Policy Correspondence) If in Theorem 2 it is instead assumed that Γ

is a convex correspondence, that x < supΓ (z )whenever x ∈G (z ), and that u exhibits quasi-convex

differences in (1) and global quasi-convex differences in (2), the conclusion becomes instead that

G is a convex correspondence.

Proof. Apply Theorem 2 to the optimization problem maxx̃∈−Γ (z ) u (−x̃ , z ) and use that the policy

correspondence of this problem is concave if and only if G is convex.

If the conditions of Theorem 2 hold and the policy correspondence is single-valued G = {g },
then g must be a concave function by Lemma 3. Hence Theorem 1 is a special case of Theorem 2.

From Lemma 3 also follows that when u is continuous so that G has compact values, and therefore

admits a greatest selection, this greatest selection must be concave.11 Finally, note that under the

second alternative in Theorem 2, payoff functions need not be quasi-concave.

11Note that it is unreasonable to expect the least selection to be concave also. In fact, this would not characterize any
reasonable concavity-type condition for a correspondence (in the case of a correspondence with a convex graph, for
example, the greatest selection is concave and the least selection is convex).
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3.3 A User’s Guide and Some Examples

This subsection provides a practitioners’ guide to Theorems 1 and 2. Focus will be on simple appli-

cations. For more involved applications, the reader is referred to the next two sections. We begin

with a straight-forward consequence of Lemmas 1 and 2.

Lemma 4 (Quasi-Concave Differences for Thrice Differentiable Functions) A thrice differentiable

function u : X ×Z →Rwhere X , Z ⊆R exhibits

• quasi-concave differences if and only if

2D 2
x x u (x , z )D 2

x z u (x , z )D 3
x x z u (x , z )≥ [D 2

x x u (x , z )]2D 3
x z z u (x , z ) + [D 2

x z u (x , z )]2D 3
x x x u (x , z ).(9)

• global quasi-concave differences if

D 3
x x x u (x , z )≤ 0 , and D 3

x x x u (x , z )D 3
x z z u (x , z )− [D 3

x x z u (x , z )]2 ≥ 0.(10)

Proof. (9) is the non-negative bordered Hessian criterion for quasi-concavity of Dx u (x , z ) (see

e.g. Mas-Colell et al (1995), pp.938-939). By Lemma 1, this is equivalent to u (x , z ) exhibiting quasi-

concave differences. (10) are the conditions for Dx u (x , z ) to have a negative semi-definite Hessian

matrix. By Lemma 2, this implies global quasi-concave differences.

The previous Lemma makes it easy to apply Theorem 1 or Theorem 2 in many situations.

Heterogenous Firms in International Trade Models. Consider the model of Melitz (2003). Each

firm in a continuum [0, 1] chooses output x ≥ 0 in order to maximize profits. A firm with cost

parameter z > 0, can produce x units of the output by employing l = z x + f workers where f > 0

is a fixed overhead (Melitz (2003), p.1699).12 The frequency distribution of the cost parameter z

across the firms is ηz . With revenue function R , a firm with cost parameter z will choose x ≥ 0 in

order to maximize

u (x , z ) =R (x )− z x − f .(11)

Let G (z ) = arg maxx≥0[R (x ) − z x − f ] denote the optimal output(s) given z . To show that G is

concave or convex, we may apply Theorem 1 or the more general Theorem 2. For Theorem 1,

R (x )− z x − f must be strictly quasi-concave so that G (z ) = {g (z )} where g is the policy function.

If (9) then holds, u exhibits quasi-concave differences and g is concave on z ∈ {z ∈ Z : g (z ) > 0},
i.e., when attention is restricted to the set of active firms. As the reader can easily verify, (9) holds

if and only if

R ′′′ ≤ 0.(12)

So if the revenue function has a non-positive third derivative, the policy function is concave. It

follows that average/aggregate output decreases when firms become more diverse (a mean pre-

serving spread to the distribution ηz ). Intuitively, this may be though of as “decreasing returns to

diversity”. If u exhibits quasi-convex differences (reverse the inequality (9) yielding the condition

12In terms of Melitz’ notation, z is the inverse of the firm’s productivity level ϕ.
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R ′′′ ≥ 0), we instead get a convex policy function by Corollary 1 and so there is “increasing returns

to diversity”. By appealing to Observations 1-5 on page 3 one can further go on to predict how

the distribution of the firms’ outputs changes when ηz is subjected to mean-preserving spreads

or other stochastic order changes. For example, by Observation 2, the distribution of the outputs

of a more diverse set of firms will be second-order stochastically dominated by the distribution of

outputs of a less diverse set of firms when (12) holds.

The limitations of Theorem 1 are evident in the current situation since monopolistically com-

petitive firms’ objectives will often not be strictly quasi-concave or even quasi-concave. One can

then instead use Theorem 2. If R (x ) − z x − f is quasi-concave in x , (1) of Theorem 2 implies

that G is a concave correspondence (Definition 4) under condition (12). If R (x )− z x is not quasi-

concave, (2) of Theorem 2 may be used and we then need to verify (10). The second condition in

(10) is always satisfied since the Hessian matrix of R ′(x )− z is degenerate. The first condition in

(10) holds if and only if (12) holds.13 So by assuming only that solutions exist (so that G is well-

defined) — and in particular with no quasi-concavity assumptions — we can conclude that G is a

concave correspondence when the revenue function R has a non-positive third derivative. Hence

the greatest selection from the policy correspondence will be a concave function (Lemma 3), and

so the maximum aggregate output decreases with a mean-preserving spread in ηz .

If R is assumed to be strictly concave so that R ′′ < 0, we might alternatively have applied the

implicit function theorem (IFT) to the first-order condition R ′(x )− z = 0. This yields x = g (z )
where Dz g = R ′′. The IFT is particularly easy to use in this case, and we immediately see that

(12) once again ensures concavity of g (this is because Dz g decreasing precisely means that g is

concave). Note, however, that Theorem 2 (and also Theorem 1) applies to many situations that

the IFT approach is unable to address.

Decisions Under Uncertainty. Recall from Section 2.1 the agents’ individual decision problem in

a Bayesian game. We found there that the marginal payoff is Dx u (x , z ) =
∫

z̄∈Z̄
Dx U (x , z̄ , z )η(z̄ ).

Since integration preserves concavity, we immediately see from Lemma 2 that u exhibits global

quasi-concave differences if Dx U (x , z̄ , z ) is concave in (x , z ) for a.e. z̄ . With sufficiently smooth U ,

this in turn holds if and only if U satisfies (10) for a.e. z̄ . This simple condition implies, then, that

the policy correspondence is concave by Theorem 2 (if u is strictly quasi-concave in x this con-

clusion also follows from Theorem 1 since global quasi-concave differences implies quasi-concave

differences).14 See Section 2.1 for a discussion of the difficulties involved in applying the implicit

function theorem in this example.

Investments with Random Returns and Ambiguity. As a final example, consider an agent who

makes an investment x ≥ 0 in a project whose expected return depends on a known signal z as well

as a draw by nature among the possible states z̄1, . . . , z̄l . The expected return is evaluated according

to a Choquet/non-additive expected utility criterion with state payoff U (z̄k , z ) and capacities ν.

13Note that global quasi-concave differences is stronger than quasi-concave differences, and as shown the latter is
equivalent to (12). Thus (12) is in fact both necessary and sufficient for u to exhibit global quasi-concave differences.

14See Lemma 5 in the next section for the non-differentiable version of the sufficient conditions for concavity of the
policy function.
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The cost c (x , z ) is assumed to be strictly convex and differentiable in x . The policy function is

thus,

g (z ) = arg max
x
[x min
µ̄∈C (ν)

l
∑

k=1

µ̄kU (z̄k , z )− c (x , z )] ,

where C (ν) denotes the core of ν.

If U is concave in z and Dx c (x , z ) is convex, then minµ̄∈C (ν)
∑l

k=1 µ̄kU (z̄k , z )−Dx c (x , z ) is con-

cave in (x , z ) (the first term is concave in z because the minimum of a family of concave functions

is concave). By Lemma 1, it follows that the objective exhibits quasi-concave differences and by

Theorem 1, g : Z → X is consequently concave. Since the first-order condition of this problem

is not differentiable in z , the IFT cannot be used to reach this conclusion. In the dynamic pro-

gramming set-up discussed in Section 2.2 and returned to in Section 5, the IFT cannot be used for

similar reasons.

4 Distributional Comparative Statics in Bayesian Games

Consider a Bayesian game with a finite set of players I = {1, . . . , I }. Player i ∈I receives a private

signal zi ∈ Zi ⊆R drawn from a distribution µzi
on (Zi ,B (Zi )) whereB (·) denotes the Borel sets.

With Bayesian equilibria defined as usual (see below), how will the set of equilibria be affected if

one or more signal distributions µzi
are subjected to mean-preserving spreads or second-order

stochastic dominance shifts? The purpose of this section is to use Theorem 1 to deal with this

question and illustrate by means of a specific example (an arms race).

Assuming that private signals are independently distributed, an optimal strategy is a measur-

able mapping g i : Zi → X i such that for almost every zi ∈ Zi ,

g i (zi ) ∈ arg max
xi∈X i

∫

z−i∈Z−i

ui (xi , g−i (z−i ), zi )µz−i
(d z−i ) .(13)

Here X i ⊆ R is agent i ’s action set and g−i = (g j ) j 6=i are the strategies of the opponents. A

Bayesian equilibrium is a strategy profile g ∗ = (g ∗1 , . . . , g ∗I ) such that for each player i , g ∗i : Zi → X i

is an optimal strategy given the opponents’ strategies g ∗−i : Z−i → X−i . Obviously, g i : Zi → X i is

a policy function when it satisfies (13) for all zi ∈ Zi . The optimal distribution of an agent i is the

measure on (X i ,B (X i )) given by:

µxi
(A) =µzi

{zi ∈ Zi : g i (zi ) ∈ A} , A ∈B (X i )(14)

We begin by assuming continuity and risk aversion so that the policy functions and optimal

distributions are uniquely determined:

Assumption 1 For every i : X i is compact and ui (xi , x−i , zi ) is strictly concave in xi and continuous

in (xi , x−i , zi ).

Note that for given opponents’ strategies this situation coincides with the decision under un-

certainty example studied in Section 2.1. In particular, we know from that section how various
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stochastic order changes inµzi
affect the optimal distribution of the playerµxi

when g i is concave

or convex (see 1-5 on page 3). Combining with Theorem 1 we immediately get:

Lemma 5 Consider a player i ∈I and let Assumption 1 be satisfied.

1. If
∫

z−i∈Z−i
ui (xi , g−i (z−i ), zi )µz−i

(d z−i ) exhibits quasi-concave differences in xi and zi , and

no element on the lower boundary of X i (inf X i ) is optimal, then a mean-preserving spread

toµzi
will lead to a second-order stochastic dominance decrease in the optimal distribution

µxi
.

2. If
∫

z−i∈Z−i
ui (xi , g−i (z−i ), zi )µz−i

(d z−i ) exhibits quasi-convex differences in xi and zi , and no

element on the upper boundary of X i (sup X i ) is optimal, then a mean-preserving spread to

µzi
will lead to a convex-increasing order increase in the optimal distribution µxi

.

Lemma 5 tells us that less precise private signals (increased uncertainty) leads to higher vari-

ance of any affected player’s optimal distribution. Whether the mean actions increase or decrease,

however, depends on whether the payoff function exhibits quasi-convex or quasi-concave differ-

ences. The story clearly does not end there: the increase in uncertainty will transmit to other

players and make everybody’s game environments more uncertain. To deal with this, we need the

following straightforward generalization of a result found in Rothschild and Stiglitz (1971).15

Lemma 6 Let Assumption 1 be satisfied and let g i (zi ,µx−i
) = arg maxxi∈X i

∫

ui (xi , x−i , zi )µx−i
(d x−i ).

Then for j 6= i :

1. If ui (x̃i , x−i , zi )−ui (xi , x−i , zi ) is concave in x j for all x̃i ≥ xi , then g i (zi ,µx−i ,− j
, µ̃x j
)≤ g i (zi ,µx−i

)
whenever µ̃x j

is a mean-preserving spread of µx j
.

2. If ui (x̃i , x−i , zi )−ui (xi , x−i , zi ) is concave and increasing in x j for all x̃i ≥ xi , then g i (zi ,µx−i
)≤

g i (zi ,µx−i ,− j
, µ̃x j
)whenever µ̃x j

second-order stochastically dominates µx j
.

If in these statements concavity in x j is replaced with convexity, the first conclusion changes to:

g i (zi ,µx−i ,− j
, µ̃x j
) ≥ g i (zi ,µx−i

) whenever µ̃ j is a mean-preserving spread of µx j
; and the second

conclusion changes to g i (zi ,µx−i
) ≤ g i (zi ,µx−i ,− j

, µ̃x j
) whenever µ̃x j

dominates µx j
in the convex-

increasing order.

Proof. Statement 1 is a direct application of Topkis’ theorem (Topkis (1978)) which in the situa-

tion with a one-dimensional decision variable and unique optimizers says that the optimal de-

cision will be non-decreasing [non-increasing] in parameters if the objective exhibits increasing

differences [decreasing differences]. The conclusion thus follows from the fact that
∫

ui (xi , x−i , zi )
µx−i
(d x−i ) exhibits decreasing differences in xi (with the usual order) and µx j

(with the mean-

preserving spread order �c x ) if and only if the assumption of the statement holds. Also by Top-

kis’ theorem, if ui (x̃i , x−i , zi )− ui (xi , x−i , zi ) is increasing in x j for j 6= i and for all x̃i ≥ xi , then

15Rothschild and Stiglitz (1971) consider mean-preserving spreads in the differentiable case. If u is differentiable in x ,
the main condition of Lemma 6 is equivalent to the concavity of Dx u (x , ·)which exactly is the assumption of Rothschild
and Stiglitz (1971).
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µ̃x j
�s t µx j

⇒ g i (zi ,µx−i ,− j
, µ̃x j
) ≥ g i (zi ,µx−i

) (here �s t denotes the first-order stochastic domi-

nance order). From this and Statement 1 follows Statement 2 because it is always possible to split

a second order stochastic dominance increase �c v i into a mean preserving contraction �c v fol-

lowed by a first order stochastic dominance increase (Formally, if µ̃x j
�c v i µx j

, then there exists a

distribution µ̂x j
such that µ̃x j

�s t µ̂x j
�c v µx j

). The convex case is proved by a similar argument

and is omitted.

For given distributions of private signals µz = (µz1
, . . . ,µzI

) let Φ(µz ) denote the set of equilib-

rium distributions, i.e., the set of optimal distributions (14) where (g ∗1 , . . . , g ∗I ) is one of the (possi-

bly many) Bayesian equilibria. Fix a given stochastic order � on the probability space of optimal

distributions and consider a shift in the distribution of private signals from µz to µ̃z . In the Theo-

rem below,�will be either the second-order stochastic dominance order or the convex-increasing

order; and the shift from µz til µ̃z will be a mean-preserving spread. The set of equilibrium distri-

butions then increases in the order � if

∀µx ∈Φ(µz ) ∃µ̃x ∈Φ(µ̃z )with µ̃x �µx and ∀µ̃x ∈Φ(µ̃z ) ∃µx ∈Φ(µz )with µ̃x �µx(15)

If the order � is reversed in (15), the set of equilibrium distributions decreases. If Φ(µz ) and

Φ(µ̃z ) have least and greatest elements, then (15) implies that the least element of Φ(µz ) will be

smaller than the least element of Φ(µ̃z ) and the greatest element of Φ(µz ) will be smaller than the

least element of Φ(µ̃z ) (Smithson (1971), Theorem 1.7). In particular, if the equilibria are unique

and we therefore have a functionφ such that Φ(µz ) = {φ(µx )} and Φ(µ̃z ) = {φ(µ̃x )}, we getφ(µz )�
φ(µ̃z ) (so the functionφ is increasing).

Theorem 3 (Mean Preserving Spreads in Bayesian Games) Consider a Bayesian game as described

above and let µz = (µzi
)i∈I and µ̃z = (µ̃zi

)i∈I be two distributions of private signals.16

1. Suppose all assumptions of Lemma 5.1 are satisfied and ui (x̃i , x−i , zi )− ui (xi , x−i , zi ) is in-

creasing and concave in x−i for all x̃i ≥ xi . If µ̃zi
is a mean-preserving spread of µzi

for

any subset of the players, then the set of equilibrium distributions decreases in the second-

order stochastic dominance order (in particular the agents’ mean actions will decrease, and

the actions’ variance will increase).

2. Suppose all assumptions of Lemma 5.2 are satisfied and ui (x̃i , x−i , zi )− ui (xi , x−i , zi ) is in-

creasing and convex in x−i for all x̃i ≥ xi . If µ̃zi
is a mean-preserving spread of µzi

for

any subset of the players, then the set of equilibrium distributions increases in the convex-

increasing order (in particular the agents’ mean actions will increase, and again the actions’

variance will increase).

If ui is differentiable in xi , all of these assumptions are satisfied if Dxi
ui (xi , x−i , zi ) is increasing

in x−i and either concave in (xi , zi ) and x−i [case 1] or convex in (xi , zi ) and x−i [case 2].

16In the following statements, it is to be understood that any distribution µzi
that is not replaced with a mean-

preserving spread µ̃zi
is kept fixed.
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Proof. As in previous proofs, let �c v i denote the concave-increasing (second-order stochastic

dominance) order and �s t denote the first-order stochastic dominance order. Recast the game in

terms of optimal distributions: Agent i ’s problem is to find a measurable function g i which for a.e.

zi ∈ Zi maximizes
∫

x−i∈X−i
ui (xi , x−i , zi )µx−i

(d x−i ). The policy function xi = g i (zi ,µx−i
)determines

µxi
(A) =µzi

{zi ∈ Zi : g i (zi ,µx−i
) ∈ A} (A ∈B (X i )). An equilibrium is a vectorµ∗x = (µ

∗
x1

, . . . ,µ∗xI
) such

that for all i ∈ I : µ∗xi
(A) = µzi

{zi ∈ Zi : g i (zi ,µ∗x−i
) ∈ A} , all A ∈B (X i ). Letting fi (µx−i

,µzi
) denote

agent i ’s optimal distribution given µx−i
and µzi

, an equilibrium is a fixed point of f = ( f1, . . . , fI ).
By 2 of Lemma 6 and Observation 1 on page 3, µ̃x j

�c v i µx j
⇒ fi (µx−i ,− j

, µ̃x j
,µzi
) �s t fi (µx−i

,µzi
)

for all j 6= i . Since first-order stochastic dominance implies second-order stochastic dominance,

fi (µx−i ,− j
, µ̃x j

,µzi
) �s t fi (µx−i

,µzi
)⇒ fi (µx−i ,− j

, µ̃x j
,µzi
) �c v i fi (µx−i

,µzi
). It follows that the map-

ping f is monotone when µx ’s underlying probability space is equipped with the product order

�I
c v i . Again with the order �c v i on optimal distributions, it follows from Lemma 5 that each fi is

decreasing in µzi
with the convex (mean-preserving spread) order on µzi

’s underlying probability

space. f will also be continuous (it is a composition of continuous functions) and so the theo-

rem’s conclusions follow directly from Theorem 3 in Acemoglu and Jensen (2015) (the conditions

of that Theorem are immediately satisfied when f is viewed as a correspondence). For the sec-

ond statement of the theorem the argument is precisely the same except that one now equips the

set of optimal distributions with the convex-increasing order and notes that fi is monotone when

the private distributions µzi
’s underlying probability spaces are equipped with the mean preserv-

ing spread order. The differentiability conditions presented at the end of the theorem follow from

Lemma 1.

Note that under the assumptions of Theorem 3, the game is supermodular. Under the addi-

tional conditions of the following corollary, the game is monotone (Van Zandt and Vives (2007)).

The proof follows along the same lines as the proof of Theorem 3 and is omitted.

Corollary 3 (Second-Order Stochastic Dominance Changes) If in addition to the assumptions of

Theorem 3, it is assumed that ui (x̃i , x−i , zi )− ui (xi , x−i , zi ) is increasing in zi , then if µ̃zi
second-

order stochastically dominates µzi
for any subset of the players, the set of equilibria decreases in

the second-order stochastic dominance order in case 1. In case 2., the set of equilibria increases in

the convex-increasing order when µ̃zi
dominatesµzi

in the convex-increasing order for any subset

of the players.

There are many interesting applications of Theorem 3, ranging from auction theory to the Di-

amond search model. Here we will study a Bayesian version of the classical arms race game from

the field of conflict resolution (see e.g. Milgrom and Roberts (1990), p.1272), and ask whether

increased uncertainty about arms’ effectiveness and opponents’ intentions leads to an intensifi-

cation of the arms race or not.

Consider two countries, i = 1, 2, with identical state payoff functions ui (xi , x−i , zi ) = B (xi −
x−i − zi )− c xi . B is a strictly concave function and c > 0 a constant cost parameter. zi is a ran-

dom variable that reflects the relative effectiveness of the arms — real or imagined (for example
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a domestic media frenzy might correspond to a mean-preserving spread to zi ).17 Assuming that

B is sufficiently smooth, we can use the conditions at the end of Theorem 3. By strict concavity,

Dxi
u (xi , x−i , zi ) = B ′(xi − x−i + zi )− c is increasing in x−i , and the question is therefore whether it

is also either convex or concave in (xi , zi ) and in x−i . Obviously, this depends entirely on whether

B ′ is convex or concave, i.e., on whether the third derivative of B is positive or negative. In the

convex case (positive third derivative), the countries’ policy functions are convex. Hence greater

uncertainty will increase the affected country’s (or countries’) expected stock of arms as well as

the variance (Lemma 5, which specifically says that given the other country’s strategy, greater un-

certainty will lead to a convex-increasing shift in the arms strategy). This will transmit to a more

uncertain environment for the other country and make it accumulate more arms (Lemma 6). This

escalation continues until an equilibrium is reached with higher mean stocks of arms and greater

uncertainty about the exact size of the arsenals (Theorem 3).18 Note that a positive third derivative

means that the countries are “prudent” (Kimball (1990)) — a well-understood behavioral trait that

also plays a key role in other settings such as in income allocation problems (Carroll and Kimball

(1996)). Of course, prudence, which in the words of Kimball (1990) (p.54) is “the propensity to

prepare and forearm oneself in the face of uncertainty”, has rather more beneficial consequences

in income allocation models than it does in arms races. It is therefore not uniformly good news

that experimental evidence seems to suggest that most people are prudent (Nussair et al (2011)).

But of course, prudence may be situation-dependent or imprudent politicians may be elected. In

this case B will have a negative third derivative, and the countries’ policy functions will be con-

cave so that greater uncertainty lowers the mean stock of arms in equilibrium. Note however, that

according to Theorem 3, the variance will still increase, so whether decision makers are prudent

or not, the risk of exceptionally high stocks of arms and the negative consequences in case of war

still increases when the environment becomes more uncertain.

5 Stochastic Dynamic Programming: Convexity and Concavity of the
Policy Function

This section uses Theorem 2 to study the concavity/convexity of policy functions in an infinite

horizon stochastic setting. The issue is important for a variety of distributional comparative stat-

ics questions. Thus the relationship between earning risk and wealth accumulation is guided by

whether the consumption function is concave or convex (Huggett (2004)). In dynamic stochastic

general equilibrium models, it more generally determines the effect of increased individual un-

certainty on aggregate market outcomes (Acemoglu and Jensen (2015)).

The treatment and notation follows Chapter 9 of Stokey and Lucas (1989). The dynamic pro-

gramming problem is,

17A myriad of other specifications would of course be possible, for example costs could instead be random. This
section’s results may be applied for any such specification.

18Note that since the conditions of Corollary 3 are satisfied, these conclusions are valid not just for mean-preserving
spreads but for second-order stochastic dominance decreases more generally.
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max E0[
∑∞

t=0β
t u (xt , xt+1, zt )]

s.t.

�

xt+1 ∈ Γ (xt , zt ) , t = 0, 1, 2, . . .
where (x0, z0)� 0 are given.

(16)

In comparison with Stokey and Lucas (1989), two structural restrictions are made to simplify

the exposition (but the results easily generalize, see Remarks 1-2 at the end of this section): first,

the zt ’s are assumed to be i.i.d. with distribution µz ; second, only the one-dimensional case is

considered, i.e., it is assumed that xt ∈ X ⊆ R and zt ∈ Z ⊆ R. Aside from these restrictions,

everything is completely parallel to Stokey and Lucas (1989). Both X and Z are assumed to be

convex sets equipped with their Borel σ-algebras.19 The value function v : X ×Z →R associated

with the above problem is determined by the functional equation,

v (x , z ) = sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v (y , z ′)µz (d z ′)

�

.(17)

The following standard assumptions are imposed (see Stokey and Lucas (1989), Chapter 9).

Assumption 2 Γ : X ×Z → 2X is non-empty, compact-valued, continuous, and has a convex graph,

i.e., for all x , x̃ ∈ X , z ∈ Z , and all λ ∈ [0, 1]: λy +(1−λ) ỹ ∈ Γ (λx +(1−λ)x̃ , z )whenever y ∈ Γ (x , z )
and ỹ ∈ Γ (x̃ , z ).

Assumption 3 u : X ×X ×Z →R is bounded and continuous, andβ ∈ (0, 1). Furthermore, u (x , y , z )
is concave in (x , y ) and strictly concave in y .

Note that Assumption 2 in particular requires Γ to have a convex graph. As discussed in the first

paragraph after Definition 4, this implies that Γ is a concave as well as a convex correspondence (cf.

the conditions of Theorem 2). Under Assumptions 2-3, the value function v = v (x , z ) is uniquely

determined, continuous, and concave in x . Furthermore, the policy function g : X ×Z → X is a

well-defined and continuous function:

g (x , z ) = arg sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v (y , z ′)µz (d z ′)

�

.(18)

Theorem 4 (Convex Policy Functions in Dynamic Stochastic Programming Problems) Consider

the stochastic dynamic programming problem (16) under Assumptions 2-3 and let g : X ×Z → X

denote the policy function (18). Assume that u (x , y , z ) is differentiable and satisfies the follow-

ing upper boundary condition: limy n↑supΓ (x ,z )Dy u (x , y n , z ) = −∞ (or in some other way ensure

that supΓ (x , z ) will never be optimal given (x , z )). Then the policy function g is convex in x if

Dx u (x , y , z ) is non-decreasing in y and there exists a k ≥ 0 such that 1
1−k [−Dy u (x , y , z )]1−k is con-

cave in (x , y ) and 1
1−k [Dx u (x , y , z )]1−k is convex in (x , y ).20 If in addition Γ (x , ·) is a convex corre-

spondence and 1
1−k [−Dy u (x , y , z )]1−k is concave in (y , z ), then the policy function g will also be

convex in z .
19For our result on the policy function g (x , z )’s convexity in x , it may alternatively be assumed that Z is a countable

set equipped with theσ-algebra consisting of all subsets of Z (see Stokey and Lucas (1989), Assumption 9.5.a.).
20In the limit case k = 1, 1

1−k [ f (x )]
1−k is by convention equal to log( f (x )).
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Proof. See Section 5.1.

Theorem 4 has a host of applications in macroeconomics. For example, it is applied in Ace-

moglu and Jensen (2015) to study how increased uncertainty affects the equilibria in large dy-

namic economies. As a concrete example, consider the income allocation problem discussed in

Section 2.2. Let r > 0 and w > 0 denote, respectively, the factor of interest and wage rate. Let

Γ (x , z ) = {y ∈ [−b , b ] : y ≤ r x +w z }, and let ũ be a strictly concave and strictly increasing period

utility function. The income allocation problem can then be written as a dynamic programming

problem:
max E0[

∑∞
t=0β

t ũ (r xt +w zt − xt+1)]

s.t.

�

xt+1 ∈ Γ (xt , zt ) , t = 0, 1, 2, . . .
where (x0, z0)� 0 are given.

(19)

Note that this formulation explicitly incorporates borrowing limits in the spirit of Aiyagari

(1994). Note also that xt is savings at date t , so the policy function g (x , z ) is the savings func-

tion and the consumption function is c (x , z ) = r x +w z − g (x , z ).21 As seen, c is concave in x

(“concavity of the consumption function”) if and only if g is convex in x (“convexity of the savings

function”). In terms of this section’s general notation we have u (x , y , z ) = ũ
�

r x +w z − y
�

. It is

easy to verify (and well known) that Assumptions 2-3 are satisfied. Under a standard boundary

condition on ũ , we will never have g (x , z ) = supΓ (x , z ), i.e., the consumer will not choose zero

consumption at any date.

We have Dy u (x , y , z ) =−ũ ′(r x+w z−y ) and Dx u (x , y , z ) = r ũ ′(r x+w z−y ). Dx u is strictly in-

creasing in y since ũ is strictly concave. By Theorem 4, the consumption function is consequently

concave if 1
1−k [ũ

′(r x +w z − y )]1−k is concave and 1
1−k [r ũ ′(r x +w z − y )]1−k is convex in (x , y ).

Assuming that ũ is thrice differentiable, the relationship with the result of Carroll and Kimball

(1996) is explicit. Since the Hessian determinants of Dx u and Dy u equal zero, it is straightforward

to verify that this will hold if and only if

ũ ′ũ ′′′

(ũ ′′)2
= k ≥ 0.(20)

Thus we precisely find the condition that ũ must be of the HARA-form, as is assumed by Carroll

and Kimball (1996) in their proof of concavity of the consumption function. One easily verifies that

the condition for convexity in z is also satisfied when ũ is of the HARA-form. Thus we have gen-

eralized the result of Carroll and Kimball (1996) to the incomplete markets setting with borrowing

constraints.

5.1 Proof of Theorem 4

The value and policy functions will equal the pointwise limits of the sequences (v n )∞n=0 and (g n )∞n=0

determined by:

v n+1(x , z ) = sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v n (y , z ′)µz (d z ′)

�

, and(21)

21Note that if we let W = r x +w z (income), we will always have that g and c are functions of W . See Section 2.2
where this was made explicit.
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g n (x , z ) = arg sup
y ∈Γ (x ,z )

�

u
�

x , y , z
�

+β

∫

v n (y , z ′)µz (d z ′)

�

.(22)

Under the Theorem’s conditions, v n is concave in x for all n . Since a concave function is ab-

solutely continuous, v n will be absolutely continuous in x for all n . The following result presents

conditions under which an absolutely continuous function is quasi-concave. It generalizes the

sufficiency part of Lemma 1.

Lemma 7 Assume that u : X ×Z →R is absolutely continuous in x ∈ X , i.e., assume that u (x , z ) =
α(a , z ) +

∫ x

a
p (τ, z ) dτ for a Lebesgue integrable function p : X ×Z → R (here a = inf X and α is

a function that does not depend on x ). Then u exhibits quasi-convex differences [quasi-concave

differences] if p (x , z ) is quasi-convex [quasi-concave].

Proof. The statement can be verified by going through the proof of Lemma 1 and everywhere

replace u ’s derivative with p .

Next we need a result on how to ensure that the sum of two functions exhibits quasi-concave

or quasi-convex differences.

Lemma 8 Let u be of the form u (x , z ) = f (x , z ) + h (−x , z ) where f , h : X × Z → R are differen-

tiable with Dx f (x , z ) = f ′x (x , z )≥ 0 and Dx h (x , z ) =−h ′x (−x , z )≤ 0. Then u exhibits quasi-convex

differences on the subset {(x , z ) ∈ X ×Z : Dx u (x , z )≤ 0} if there exists a k ≥ 0 such that 1
1−k [ f

′
x ]

1−k

is convex and 1
1−k [h

′
x ]

1−k is concave.22 If instead 1
1−k [ f

′
x ]

1−k is concave and 1
1−k [h

′
x ]

1−k is convex,

then u exhibits quasi-concave differences on the subset {(x , z ) ∈ X ×Z : Dx u (x , z )≥ 0}.

Proof. In the online appendix (Jensen (2015), Lemma 3).

From now on, call a function f : X → R k -convex [k -concave] if 1
1−k [ f (x )]

1−k is convex [con-

cave] where, as previously mentioned, the case k = 1 is taken to mean log-convex [log-concave]
by convention.23

Lemma 9 Given z , let a denote the least point at which v n (·, z ) is defined. Assume that

−Dy u (x , y , z ) is k -concave in (x , y ) [k -concave in (y , z )], and that v n (y , z ) =
∫ y

a
p n (τ, z ) dτwhere

p n (·, z ) is k -convex. Then g n (x , z ) is convex in x [convex in z ].

Proof. This is a direct application Theorem 2’s corollary (Corollary 2) to the optimization problem

in (22). We consider here only the convexity of g n in x (the exact same argument implies convex-

ity in z under the Lemma’s square-bracketed assumption). Except for quasi-convex differences

in (x , y ), all the assumptions of Corollary 2 are clearly satisfied (in particular, Γ is a convex corre-

spondence as mentioned immediately after Assumption 3). To see that quasi-convex differences

22In the limit case k = 1, 1
1−k [ f

′
x ]

1−k is by convention equal to log( f ′x ) (similarly for h ′x ).
23Quite a bit can be said about such functions, but since this is mainly a mathematical distraction from the point of

view of this paper, further investigation has been relegated to the online appendix.
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holds, we use Lemma 7 and must thus verify that,

Dy u (x , y , z ) +β

∫

p n (y , z ′)µz (d z ′),(23)

is quasi-convex in (x , y ) on the relevant set which, allowing for solutions at lower boundary points

is A ≡ {(x , y ) ∈ X 2 : Dy u (x , y , z ) + β
∫

Dy v n (y , z ′)µz (d z ′) ≤ 0}. To see that this holds, first use

that k -convexity is preserved under integration (Jensen (2015), Lemma 2) to conclude that when

p n (y , z ′) is k -convex in y , β
∫

p n (y , z ′)µz (d z ′) is k -convex in y . Then use Lemma 8.

To finish the proof we need just one last technical result.

Lemma 10 Assume that Dx u (x , y , z ) is k -convex in (x , y )and non-decreasing in y and that g n (x , z )
is convex in x . Then v n+1(x , z ) =

∫ x

a
p n+1(τ, z ) dτwhere p n+1(·, z ) is k -convex.

Proof. Since v n+1 is absolutely continuous, we can (abusing notation slightly) write it as: v n+1(x , z )
=
∫ x

a
Dx v n+1(τ, z ) dτ. In particular, Dx v n+1(x , z ) exists almost everywhere and when it exists

Dx v n+1(x , z ) = Dx u (x , g n (x , z ), z ) by the envelope theorem. k -convexity of p n+1(x , z ) ≡
Dx u (x , g n (x , z ), z ) in x now follows immediately from the fact that k -convexity is preserved under

convex, increasing transformations (Jensen (2015), Lemma 1).

To prove that g is convex, consider the value and policy function iterations (21)-(22). Start

with any value function v 0 such that v 0(y , z ) =
∫ y

a
p 0(τ, z ) dτ where p 0(·, z ) is k -convex. Then by

Lemma 9, g 0 is convex. Hence by Lemma 10, v 1(y , z ) =
∫ y

a
p 1(τ, z ) dτ where p 1(·, z ) is k -convex.

Repeating the argument, g 1 is convex and v 2(y , z ) =
∫ y

a
p 2(τ, z ) dτ where p 2(·, z ) is k -convex.

And so on ad infinitum. The pointwise limit of a sequence of convex function is convex, hence

g (·, z ) = limn→∞ g n (·, z ) is convex. The same argument applies for convexity in z , concluding the

proof of Theorem 4.

Remark 1 (General Markov Processes) The previous proof goes through without any modifica-

tions if zt is allowed to be a general Markov process, i.e., if the functional equation (17) is replaced

with:

v (x , z ) = sup
y ∈Γ (x ,z )

[u
�

x , y , z
�

+β

∫

v (y , z ′)Q (z , d z ′)] ,(24)

where Q is zt ’s transition function. Indeed, the previous proof goes through line-by-line if we

instead begin with the functional equation (24).

Remark 2 (Multidimensional Strategy Sets) The proof also easily extends to the case where X

and Z are multidimensional (a case treated in the Appendix). The only modification needed is

in the proof of Lemma 9 where now Theorem 5 in the appendix is needed to conclude that g n

is convex, in place of Theorem 2. Thus Theorem 4 extends to the multidimensional case if we

in addition assume that u is supermodular in y , that Γ ’s values are lower semi-lattices, and that

optimizers stay away from the upper boundary.24

24In particular, the objective function in (22) is supermodular in y when u is supermodular in y because supermod-
ularity/increasing differences is preserved under integration (Topkis (1998), Theorem 2.7.6.) and v n (y , z ′) is therefore
supermodular in y for all n .
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6 Conclusion

This paper contributes to distributional comparative statics (DCS), i.e., to the study of how changes

in exogenous distributions affect endogenous distributions in economic models. Most DCS ques-

tions can be answered if suitable policy functions are either concave or convex. In the main the-

oretical contribution of the paper (Theorem 1), it is shown that concavity of the policy function

hinges on an intuitive as well as easily verifiable condition on the primitives of a model, namely

quasi-concave differences. That observation parallels Topkis’ theorem (Topkis (1978)) which en-

sures that the policy function is increasing (strategic complementarity) when the objective func-

tion exhibits increasing differences. Theorem 2, as well as Theorem 5 in the Appendix, extends the

result to policy correspondences (multiple optimizers), objectives that may not be quasi-concave,

and multi-dimensional action sets.

Several areas of application were discussed including uncertainty comparative statics, inter-

national trade models of heterogenous firms (Melitz (2003)), the macroeconomic modeling of

inequality, and stochastic dynamic programming. In all of these, the concavity of suitably defined

policy functions turns out to drive the conclusions, ultimately owing to Observations 1-5 in Sec-

tion 2.1 (page 3) and the fact that Lorenz dominance is equivalent to mean-preserving spreads and

generalized Lorenz dominance is equivalent to decreases in second-order stochastic dominance

(see the discussion at the end of Section 2.2). As a concrete illustration of uncertainty comparative

statics, a Bayesian arms race is studied and it is found that “prudence” (Kimball (1990)) determines

whether mean stocks of arms increase or decrease when uncertainty goes up — but in all cases,

a more uncertain environment also leads to higher equilibrium variance and thus greater uncer-

tainty about the scale of destruction in the event of a war. The stochastic dynamic programming

results are illustrated by generalizing a result due to Carroll and Kimball (1996) to allow for bor-

rowing constraints. These results play a key role for distributional comparative statics in dynamic

stochastic general equilibrium (DSGE) models — a theme taken up in Acemoglu and Jensen (2015)

who study, for example, how increased uncertainty about future earnings prospects affects output

per worker in the Aiyagari (1994) model.

7 Appendices

Appendix I: Proof of Observations 1-5 in Section 2.1

The distribution µx is the image measure of µ under g . Hence
∫

f (x )µx (d x ) =
∫

f (g (z ))µ(d z )
for any function f : X → R such that the integrals are well-defined. Each claim thus amounts to

saying that for classes of functions F and Fx , if
∫

h (z )µ̃(d z ) ≥
∫

h (z )µ(d z ) for all h ∈ F , then
∫

f (g (z ))µ̃(d z )≥
∫

f (g (z ))µ(d z ) for all f ∈Fx . In the case of Observation 1,F andFx both equal

the class of increasing functions and the claim follows from the fact that f ◦ g is increasing when

both f and g are increasing. For Observation 2,F is the class of convex functions andFx the class

of decreasing, convex functions, and the claim follows because f ◦ g is convex when g is concave

and f is convex and decreasing. For Observation 3, both F and Fx equal the class of increas-

ing, concave functions and the conclusion follows because f ◦ g is increasing and concave when
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both f and g are increasing and concave. Observations 4-5 are proved by the same arguments as

Observations 2-3 and may be omitted.

Appendix II: Proof of Lemma 1

To facilitate the results on multi-dimensional strategy sets in Appendix III, the general case where

X ⊆Rn is considered. The statement to be provided is that if u is differentiable in x , it will exhibit

quasi-concave differences if and only if Dx j
u (x , z ) is quasi-concave in (x , z ) for all j = 1, . . . , n

(evidently, Lemma 1 is a special case of this statement).

“⇒”: Since Dx j
u (x , z ) = limδ→0

u (x+δε j ,z )−u (x ,z )
δ where ε j denotes the j ’th unit vector, and

quasi-convexity is preserved under pointwise limits (Johansen (1972)), each partial derivative

Dx j
u (x , z ) is quasi-convex at (x , z ) when u exhibits quasi-convex differences at (x , z ). “⇐”: This

direction is not easy. The idea is to prove the contrapositive by contradiction (note that since

quasi-convexity is not preserved under integration, we cannot use the fundamental theorem of

calculus). So we assume that u does not exhibit quasi-convex differences, that each partial deriva-

tive Dx j
u (x , z ) is quasi-convex, and then derive a contradiction. Forα ∈ [0, 1] set xα ≡αx0+(1−α)x1

and zα = αz0 + (1− α)z1. Say that u exhibits quasi-convex differences in the direction η > 0 at

(x0, z0,α) if for all δn > 0 in some neighborhood of 0:

u (xα+δnη, zα)−u (xα, zα)≤max{u (x0+δnη, z0)−u (x0, z0), u (x1+δnη, z1)−u (x1, z1)}(25)

It is easy to see that if u exhibits quasi-convex differences (on all of X ×Z ), then it exhibits quasi-

convex differences in all directions η > 0 at all (x , z ,α) ∈ X × Y × [0, 1]. Let ε j denote the j ’th

unit vector (a vector with 1 in the j ’th coordinate and zeroes everywhere else). Since a function is

quasi-convex in all directions if and only if it is quasi-convex in all unit/coordinate directions ε j ,

we may (as always) restrict attention to the directions of the coordinates in the previous statement.

Hence if u does not exhibit quasi-convex differences, there will exist a coordinate direction ε j ,

(x0, z0), (x1, z1) ∈ X ×Y , α̂ ∈ [0, 1] and a sequence δn ↓ 0 such that for all n :

u (xα̂+δnε j , zα̂)−u (xα̂, zα̂)>max{u (x0+δnε j , z0)−u (x0, z0), u (x1+δnε j , z1)−u (x1, z1)}(26)

Note that we necessarily have α̂ ∈ (0, 1) when the previous inequality holds. Intuitively, the

inequality says that there exists a point (xα, zα) on the line segment between (x0, z0) and (x1, z1) at

which u (·+δnε j , ·)− u (·, ·) takes a strictly higher value than at any of the endpoints. Now, divide

through (26) with δn and take limits:

Dx j
u (xα̂, zα̂)≥max{Dx j

u (x0, z0), Dx j
u (x1, z1)}

Since Dx j
u (·, ·) is quasi-convex, it follows that: Dx j

u (xα̂, zα̂) =max{Dx j
u (x0, z0), Dx j

u (x1, z1)}.
Assume without loss of generality that Dx j

u (x0, z0) ≥ Dx j
u (x1, z1). Since Dx j

u (x0, z0) is quasi-

convex and 0 < α̂ < 1, it follows that either (i) Dx j
u (x0, z0) = Dx j

u (xα, zα) for all α ∈ [0, α̂] or (ii)

24



Dx j
u (x1, z1) = Dx j

u (xα, zα) for all α ∈ [α̂, 1] (or both).25 Consider case (i) (the proof in case (ii)

is similar). When (i) holds, u ’s restriction to the line segment between (x0, z0) and (xα̂, zα̂) must

necessarily be of the form: u (x , z ) = c x j + g (x− j , z ) where cn = Dxn
u (x0, z0) (a constant) and x− j

denotes all coordinates of x except for the j ’th one (remember that j is the positive coordinate of

e j ). But then u (xα̂+δnε j , zα̂)−u (xα̂, zα̂) = u (x0+δnε j , z0)−u (x0, z0) = cδnε j which implies that:

u (xα̂+δnε j , zα̂)−u (xα̂, zα̂)≤max{u (x0+δnε j , z0)−u (x0, z0), u (x1+δnε j , z1)−u (x1, z1)}(27)

Comparing (27) with (26) we have a contradiction, and the proof is complete.

Appendix III: Multi-dimensional Decision Variables

This appendix treats concavity of the policy correspondence in the case where the decision vector

is allowed to live in an arbitrary ordered topological vector lattice V , x ∈ X ⊆ V . Note that in this

setting, the order mentioned in Definition 4 is the order inherited from V . So if V =RN with the

usual Euclidean order, the theorem below implies that each coordinate correspondence Gn : Z →
2X n ⊆ 2R is concave in the sense discussed in detail in Section 3.2.

The multi-dimensional setting forces us to make some additional assumptions. In comparison

with Theorem 2, X must be a lattice, u must be supermodular in the decision vector, and Γ must

be upper semi-lattice valued. Finally, Γ ’s values must be order convex rather than merely convex.26

Finally, the boundary conditions must be suitably generalized as we turn to first. It should be noted

that all of these assumptions automatically are satisfied when X is one-dimensional. Hence the

result to follow encompasses Theorem 2 (focus is below on the quasi-concave case but one easily

establishes a parallel to (2) of Theorem 2).

First, the basic definitions. Say that a point x ∈ Γ (z ) lies on the upper [lower] boundary of Γ (z )
if there does not exist an x ′ ∈ Γ (z )with x ′� x (x ′� x ). The upper boundary is denoted by B(Γ (z ))
and the lower boundary is denoted by B(Γ (z )). What we are going to require in the theorem below

is precisely as in Theorem 2 except that the infimum is replaced with the lower boundary.

Next, X must be a lattice, i.e., if x and x ′ lie in X so do their infimum x ∧x ′ and supremum x ∨
x ′. If X ⊆Rn with the usual Euclidean/coordinatewise order, the infimum (supremum) is simply

the coordinatewise minimum (maximum). Assuming that X is a lattice is actually a very weak

additional requirement in the present framework because it is the constraint correspondence Γ

that determines the feasible set. It is the next assumption that really has “bite”. A lower semi-lattice

[upper semi-lattice] is a subset A ⊂ X with the property that if x , x ′ ∈ A then the infimum x ∧ x ′

25A quasi-convex function’s restriction to a convex segment as the one considered here can always be split into two
segments, one which is non-increasing and one which is non-decreasing (and in the present situation, there must first
be non-increasing segment since the function’s value weakly decreases between the endpoints). On the convex line
segment between (x0, z0) and (x1, z1) we have in the present situation that the function begins at Dx j

u (x0, z0), again
takes the value Dx j

u (x0, z0) at (xα, zα) and then moves to a weakly lower value Dx j
u (x1, z1) at the end-point (x1, z1). It

follows that if Dx j
u (·, ·) is not constant on the first interval (corresponding toα ∈ [0,α]) it must strictly decrease and then

strictly increase on this interval, which implies that Dx j
u (·, ·) is constant on the second of the two intervals.

26Note that this once again precisely parallels monotone comparative statics. In that setting supermodularity and
lattice-type assumptions are also unnecessary/trivially satisfied in the one-dimensional case but must be imposed in
multiple dimensions.
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[supremum x ∨x ′] also lies in A. Either is of course weaker than being a lattice. The lower or upper

semi-lattice is order-convex if a , b ∈ A, and a ≤ a ′ ≤ b imply a ′ ∈ A (in words, if the set contains

an ordered pair of elements, it contains the entire order interval marked by these elements). Note

that order-convexity is stronger than convexity in general, although the two coincide in the one-

dimensional case. A budget set is an order-convex lower semi-lattice (it is not a lattice), and a firm’s

input requirement set is an order-convex upper semi-lattice (but again not a lattice). As these

examples indicate, the fact that we avoid assuming that Γ ’s values are lattices greatly expands the

scope of the theorem below.

Finally, u must be supermodular in the choice variables. The well-known definition is as fol-

lows.

Definition 5 (Topkis (1978)) The objective function u : X ×Z → R is supermodular in x if u (x ∨
x ′, z ) +u (x ∧ x ′, z )≥ u (x , z ) +u (x ′, z ) for all x , x ′ ∈ X and for all z ∈ Z . If u is twice differentiable

in x and X ⊆ Rn , it is supermodular in x if and only if the Hessian matrix D 2
x x u (x , z ) ∈ Rn×n has

non-negative off-diagonal elements (for all x and z ).

We are now ready to state and prove the main result with multi-dimensional action sets. Note

that as in theorems 1-2, the boundary condition is trivially satisfied if the optimization problem is

unrestricted or attention is restricted to interior solutions.

Theorem 5 (Concavity of the Policy Correspondence, Multidimensional Case) Let Z be a con-

vex subset of a vector space and X a convex lattice. Define the policy correspondence G (z ) =
arg supx∈Γ (z ) u (x , z ) where u : X ×Z →R is quasi-concave and supermodular in x and Γ : Z → 2X

has order-convex values. Assume that G (z ) is non-empty and compact for all z ∈ Z . Then:

1. The policy correspondence G is concave if u : X ×Z →R exhibits quasi-concave differences,

Γ is concave and upper semi-lattice valued, and x ∈G (z )⇒ x 6∈B(Γ (z )) for all z ∈ Z .

2. The policy correspondence G is convex if u : X ×Z →R exhibits quasi-convex differences,

Γ is convex and lower semi-lattice valued, and x ∈G (z )⇒ x 6∈B(Γ (z )) for all z ∈ Z .

Proof of Theorem 5. The convex case 2. is proved (the proof of the concave case is similar).

Pick z1, z2 ∈ Z , x1 ∈G (z1), and x2 ∈G (z2). Exactly as in the proof of Theorem 1, we can use quasi-

convex differences to conclude that for someδ� 0, u (xα, zα)≥ u (xα+δ, zα) for allα ∈ [0, 1]. Hence

by quasi-concavity of u in x , u (x , zα) is non-increasing for x ≥ xα. We wish to show that for all α

there exists x̂ ∈G (zα)with x̂ ≤ xα. Pick any x ∈G (zα). I am first going to prove that,

x ∧ xα ∈ Γ (zα)(28)

Since Γ has convex values, there exists some x̃ ∈ Γ (zα) with x̃ ≤ xα. We have x ∈ Γ (zα) (since

x ∈ G (zα)) and so since Γ ’s values are lower semi-lattices, x ∧ x̃ ∈ Γ (zα). But x ∧ x̃ ≤ x ∧ xα ≤ x ,

hence x ∧ xα ∈ Γ (zα) because Γ has order-convex values. That was what we wanted to show. Next

use supermodularity of u (·, t ) and the fact that u (·, zα) is non-increasing for x ≥ xα (implies that

u (xα, zα)≥ u (x ∨ xα, zα)) to conclude that:
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u (x , zα)−u (x ∧ xα, zα)≤ u (x ∨ xα, zα)−u (xα, zα)≤ 0(29)

(28)-(29) imply that x ∧ xα ∈G (zα). But since clearly x ∧ xα ≤ xα this completes the proof.

As mentioned above, one easily establishes a version similar to (2) of Theorem 2 that dispenses

with quasi-concavity in the decision vector. Since the argument is identical to the one presented

in Section 3.2, it is omitted.
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