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ABSTRACT 

The paper discusses the consequences of possible misspecification in fitting skew normal 

distributions to empirical data. It is shown, through numerical experiments, that it is easy 

to choose a distribution which is different from that which generated the sample, if the 

minimum distance criterion is used. The distributions compared are the two-piece normal, 

weighted skew normal and the generalized Balakrishnan skew normal distribution which 

covers a variety of other skew normal distributions, including the Azzalini distribution. 

The estimation method applied is the simulated minimum distance estimation with the 

Hellinger distance. It is suggested that, in case of similarity in values of distance measures 

obtained for different distributions, the choice should be made on the grounds of 

parameters’ interpretation rather than the goodness of fit. For monetary policy analysis, 

this suggests application of the weighted skew normal distribution, which parameters are 

directly interpretable as signals and outcomes of monetary decisions. This is supported by 

empirical evidence of fitting different skew normal distributions to the ex-post monthly 

inflation forecast errors for Poland, Russia, Ukraine and U.S.A., where estimations do not 

allow for clear distinction between the fitted distributions for Poland and U.S.A.  

 

 



1. INTRODUCTION  

During the last decade a substantial development of the theory and applications of skew 

normal distributions, which contain normal distribution as their special symmetric case, can 

be observed. The first distribution of this kind applied in empirical macroeconomics was 

probably the so-called two-piece normal (or split normal) distribution, TPN, originated by 

John (1982) and developed further by Kimber (1985). It gained substantial popularity among 

the practitioners; in particular it has been widely used by economic forecasters for 

constructing probabilistic forecasts of inflation (see e.g. seminal paper by Wallis, 1999). 

Further breakthrough was made by Azzalini (1985, 1986), who developed a theory of 

univariate, and then multivariate, skew normal distributions. These distributions have been 

recently subject of substantial generalisations. Most notably, the Balakrishnan skew normal 

distribution has been proposed by Sharafi and Behboodian (2008), generalized Balakrishnan 

skew normal distribution, GBSN, by Yagedari, Gerami and Khaledi (2007), and developed 

further by Hasanalipour and Sharafi (2012), Fujisawa and Abe (2012), Mameli and Musio 

(2013), and others. 

Such plethora of distributions to choose from provides a practitioner with a dilemma of which 

one to choose. Most intuitively, the distribution to be selected is the one with the best fit to the 

data. But what if the distributions considered fits to the data equally good (or equally bad), so 

that they are statistically undistinguishable? Leaving aside the numerical problems which 

might affect our decision (for their discussion see e.g. Pewsey, 2000, Monti, 2003, and Castro, 

San Martín and Arellano-Valle 2008 and Franceschini and Loperfido, 2014) we argue that in 

selecting appropriate skew normal distribution the secondary criterion of choice, in case there 

the selection cannot be clearly decided on the statistical grounds, it should be done on the 

basis of interpretation of the parameters of the skew normal distributions. In some cases, the 

customised distributions can be derived, with parameters directly related to the particular 

theory or the phenomenon described. In particular, Charemza, Díaz and Makarova (2014) 

proposed a skew normal distribution, called weighted skew normal distribution, WSN, which, 

if applied for modelling macroeconomic uncertainty, has parameters directly interpretable in 

the context monetary policy.  

In order to tackle the problems formulated above, we have decided to put the WSN, TPN and 

GBSN distributions to a goodness of fit contest. These distributions are described in a greater 

detail in Section 2. Section 3 explains general settings and estimation procedure. Section 4 

presents the results of a Monte Carlo study evaluating the probabilities of choosing a wrongly 

specified skew normal distribution on the basis of its fit. It concludes that it might be indeed 

difficult to distinguish between the WSN, TPN and GBSN distributions on the grounds of 

their fit. Section 5 shows empirical results of estimation of skew normal distributions for the 

four-step ahead inflation forecast uncertainty for Poland, Russia, Ukraine and U.S.A.. Indeed, 

for Poland and U.S.A., where all distributions fit well, it is not practically possible to decide 

which distribution is the right one. This, however, can be decided by choosing the distribution 

with economically interpretable parameters which, in this case, is WSN. Section 6 concludes. 

2. THREE SKEW NORMAL DISTRIBUTIONS  

There are three distributions which we consider in this paper: weighted skew normal, WSN 

(which we regard as the benchmark one), two-piece normal, TPN, and the Yagedari, Gerami 

and Khaledi (2007) generalized Balakrishnan skew normal distribution, GBSN.  

A special case of the random variable Z  with WSN distribution, as defined by Charemza, 

Díaz and Makarova, (2014), is: 
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Following Charemza, Díaz and Makarova (2014), if WSN is fitted to data expressing 

macroeconomic uncertainty (e.g. ex-post baseline forecast errors of inflation or output). It is 

assumed that the baseline forecast can be in turn improved by second stage forecast, given by 

Y. Under these settings the parameters of WSN have the following interpretation:  

(i)   and   represent the marginal effect of the stimulative and contractionary 

economic policies on uncertainty respectively; 

(ii) low  and up  represent the thresholds deciding about the relevance of the second 

stage forecast information for the policy decisions; 

(iii) 2  that is variance of X and Y, represent the uncertainty related to the second stage 

forecast information used for improving the baseline forecast outcome; 

(iv)  , that is the correlation coefficient between X and Y, describes the accuracy of the 

second stage forecasts.  

A random variable with TPN distribution is defined by its pdf: 
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where 
1

1 22 / ( )A       . Three parameters to be estimated are 1 2,    and  . 

It is often interpreted in the context of forecast uncertainty as a representation of the balance 

of risks the over-and underestimated forecasts (see Wallis, 2004). 

The third distribution considered here, the GBSN, is given by the following pdf: 
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of the standard normal distribution and the non-negative integers n and m and    are the 

parameters. The GSBN includes the Balakrishnan skew normal distribution for m = 0, and the 

original Azzalini skew normal distribution (with the probability density function 

SN ( ; ) 2 ( ) ( )f t t t    ) for n = 1 and m = 0). Azzalini distribution is also a special case of the 

WSN for, 2   , 0up    and 
2 1  . All three distributions can be reduced to a 

standard normal: WSN for 0    and 
2 1  ; TPN for 1 2 1    and 0  ; GBSN for 

1n   and 0m    or 0n m  . So far, the parameters of the GBSN distribution have not 

been given any particular interpretation. 
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Figure 1 compares the pdf’s of WSN, TPN and GBSN with approximately identical first three 

moments, namely with means equal to 0.78, variances equal to 0.39 and the coefficient of 

skewness equal to 0.85. For comparison, the normal distribution with mean equal to 0.78 and 

variance of 0.86 is plotted in the background. 

Figure 1: pdf’s of WSN, TPN and GBSN with identical first three moments 

mean= 0.78, variance=0.39, coef. of skewness=0.85. 

 

 

Figure 2 shows the Q-Q diagram, that is a scatter diagram of the quantiles of each of the 

distributions depicted at Figure 1 against the normal distribution. Figure 2a gives the Q-Q plot 

for the entire range of quantiles, from 0.01 to 0.99, and Figure 2a gives a close-up of Figure 

2a for the left tails of the distributions 

Figure 2: Q-Q plots of WSN, TPN and GBSN distributions 

Fig 2a: full range of quantiles Fig. 2b: a closeup of the left tails 

  

 

Figures 1-2 illustrate potential problems in distinguishing between the distributions. The 

GBSN and TPN have, in the case illustrated, nearly identical modes, with TPN having a 

slightly thicker right tail. The corresponding quintiles are nearly identical, with the exception 

of the left-hand side quantiles, where the GBSN are slightly lower than the other 

corresponding quantiles, relatively to the identical quantile of the normal distribution. 

Nevertheless, these differences are small, which suggest practical problems in discrimination 

between skew normal distributions.   

3. ESTIMATION AND GENERAL SETTINGS 

Estimation of WSN, TPN and GBSN distributions by the maximum likelihood or the 

generalized method of moments is numerically awkward. This problem is particularly well 

discussed for the Azzalini distribution (see e.g. Azzalini and Capitanio, 1999, Sartori, 2006, 

Franceschini and Loperfido, 2014), and is evident also for all three families of distributions 
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considered here. For this reason we have resorted to simulation-based estimation methods. 

These methods are particularly attractive as it is straightforward to derive random number 

generators for all three distributions. For WSN given by (1) it is described in Charemza, Díaz 

and Makarova (2014), for TPN in Nakatsuma (2003) and for GBSN in Yagedari, Gerami and 

Khaledi (2007). With the use of these generators and inspired by Greco (2011) we have 

applied the simulated minimum distance estimators method (SMDE, see Charemza et al., 

2012), which consists of fitting the approximated by simulation density function to empirical 

histograms of data and applying a minimum distance criterion. 

The version of SMDE applied here can be defined as: 
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where ,tf   is the approximation of the pdf , f , of a random variable obtained by generating  

t = 1,…,T replications (drawings) from a distribution with parameters   ( k ), ng  

denotes the density of empirical sample of size n, w  is an operator based on T replications, 

which deals with the problem of the ‘noisy’ criterion function (median, in this case), and 

( , )d    is the distance measure. The minimum distance measures, MD, applied here are that of 

the Cressie and Read (1984) power divergence disparities family given by: 
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where m denotes the number of cells in which data are organized. For 1CR   formula (2) 

gives the Pearson 
2  measure, for 1/ 2CR    the (twice squared) Hellinger distance (HD) 

and for 2CR    the Neyman 
2  measure. For 0CR   and 1CR   the continuous limits 

of the right-hand side expression in (2) are respectively the likelihood disparity (LD) and the 

Kullback-Leibler divergence statistics. Cressie and Read (1984) advocate optimal setting 

3 / 2CR  .
1
 More details and the properties of the MSD are discussed in Charemza et al 

(2012). 

4. FIT OF TRUE AND FALSE MODELS 

As the initial objective of this paper is to check whether using the best fit criterion for 

selecting the best type of a skew normal distribution might lead to choosing a false one, we 

have set up three data generating processes (DGP’s, or ‘true models’) and fitted all three 

distributions to the generated data.   

The DGP’s are: 

DGP 1: WSN with 2.0   , 0.5   , 
2 1   , 1up low     and 0.75  .   

DGP 2:  TPN with 1 1.5   , 2 0.5   , 0.4  . 

DGP 3:  GBSN with n = 2, k = 1 and 0.3   . 

All three DGP’s have similar first three moments, as given in Table 1:
2
 

 

                                                 
1
  For a complex discussion and alternatives see Basu, Shioya and Park (2011). 

2
  Computing moments of GBSN requires numerical integration over an infinite interval. The algorithms applied 

here are that of Sikorski and Stenger (1984), named inthp1and inthp2 in GAUSS 13 and later versions. 
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Table 1: Mean, st. deviation and skewness of DGP’s 

 Mean st. dev. Skewness 

DGP 1 -0.363 1.069 -0.628 

DGP 2 -0.398 1.113 -0.695 

DGP 3 -0.207 0.925 -0.687 

 

For each DGP, and for sample sizes of 100, 150, 200, 250, 300, 350, 400, 450 and 500, there 

have been generated Nrepl = 1,000 replications. For each simulated sample we have fitted all 

three distributions using the SMDE method outlined in Section 3. Problem in comparison 

arises due to the fact that WSN is a 5-parameters distribution and TPN and GBSN have 3 

parameters each. In order to allow for a fair comparison, we have decided to keep the   

parameter constant (that is, 0.75  ). Also, we are keeping the threshold parameters, up  and 

low  constant in estimation, albeit in two different variations. In the first variation, denoted by 

WSN(0), we keep the thresholds fixed as in the DGP 1, that is 1up low    . In the second 

variation, we made the thresholds dependent on  in such way that up   and low up   . 

We denote this as WSN(1). Hence we are left with three parameters to estimate: , β, and  . 

In such settings the skewness in WSN is induced only through the differences between the 

parameters   and  . Such settings are close to that applied in the empirical models analysed 

in Section 5.  

As a simple, naïve, misspecification measure, we use the frequency of cases when 

0 1( ) ( )i id d  , where d0 denotes the minimum distance measure computed for the estimated 

properly specified distribution in the i
th

 replication 
i , and d1 denotes the minimum distance 

measure computed for one of the misspecified distribution estimated using the same generated 

data. That is, we do the comparison in pairs, comparing the properly specified distribution 

with the falsely specified one. By the properly specified distribution we understand the 

distribution of the same type as used for generating the sample. The distance criterion used 

here is the twice squared Hellinger distance, HD (results for other criteria are available on 

request; they do not differ much from these presented in this paper).  

Another misspecification measure is based on bootstrapping the ratios distance measures for 

two alternative distributions fitted to the same sample. We have used methodologies 

developed originally for comparing variances: simple bootstrap and Efron bootstrap (see e.g. 

Sun, Chernick and LaBudde, 2011). 

The algorithm for the simple bootstrap is the following: 

Step 1: Draw M pairs of 0 0{ ( ), ( )}k jd d  , k,j = 1,…, 1,000, k  j. M should be large, e.g. 

10,000; 

Step 2: Compute the ratio of distance measures 0
0

0

( )

( )

k
h

j

d
r

d




    ,   h = 1,2,…,M; 

Step 3: Compute the 95
th

 quantile of the distribution of 0

hr  denoted as 0.95q  ;  

Step 4: Check the simulated bootstrap criterion for the case where 0 1( ) ( )i id d   as: 

1
0.95

0

( )

( )

i

i

d
q

d




   .   

The frequency of cases where the above inequality is fulfilled tells about the probability of 

undertaking the right decisions regarding the distribution by rejecting the wrong one. It 
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approximates the probability of rejecting the null hypothesis that the distance measures for the 

true and false distributions are identical with the implicit alternative that the distribution on 

which 1( )id   is based is false. Consequently, the higher is this ratio, the false distribution is 

chosen less often. Efron bootstrap is similar, except that in Step 1 drawing of pairs is made 

from a set of all 0( )kd  , 1( )kd   rather than from 0( )kd   alone. Results in this case are more 

robust, as the equality of the distance measures is explicit under the null. 

Tables 2, 3 and 4 present respectively the naïve misspecification measure and also those based 

on the simple and Efron bootstraps and for twice squared Hellinger minimum distance 

criterion. Results for other criteria and different sample sizes are available on request. 

Table 2 Frequency of cases where 0 1( ) ( )i id d   

Sample 
size 

DGP 1 (WSN) DGP 2: (TPN) DGP 3: (GBSN) 

TPN GBSN WSN (1) WSN (0) GBSN WSN (1) WSN (0) TPN 

100 0.380 0.479 0.504 0.507 0.396 0.314 0.287 0.269 

250 0.261 0.229 0.37 0.442 0.091 0.304 0.299 0.228 

500 0.258 0.06 0.186 0.341 0.005 0.377 0.353 0.233 

Table 3 Simple simulated bootstrap power 

Sample 

size 

DGP 1 (WSN) DGP 2: (TPN) DGP 3: (GBSN) 

TPN GBSN WSN(1) WSN(0) GBSN WSN(1) WSN(0) TPN 

100 0.088 0.045 0.047 0.046 0.026 0.186 0.207 0.219 

250 0.135 0.099 0.073 0.046 0.049 0.201 0.191 0.267 

500 0.148 0.216 0.137 0.071 0.183 0.152 0.168 0.254 

Table 4 Efron simulated bootstrap power 

Sample 

size 

DGP 1 (WSN) DGP 2: (TPN) DGP 3: (GBSN) 

TPN GBSN WSN(1) WSN(0) GBSN WSN(1) WSN(0) TPN 

100 0.085 0.069 0.045 0.038 0.074 0.071 0.093 0.086 

250 0.117 0.112 0.086 0.061 0.156 0.09 0.081 0.116 

500 0.131 0.161 0.124 0.103 0.174 0.076 0.082 0.113 

Tables 2-4 show that results of fitting WSN and TPN to data generated from GBSN behave 

differently to that fitted to data generated from WSN or TPN distributions. Let us first 

concentrate on evaluating the misspecification in case when data are generated by WSN and 

TPN; it is clearly difficult to distinguish between these two distributions. Using MD criterion 

for the small sample size it is practically haphazard to find out which statistic is smaller 

regardless of the data generating process. In particular, if data are generated from TPN, there 

is a virtually equal chance that WSN would fit better than the true TPN distribution. However, 

with the increase in sample size the frequencies of cases where the MD statistics for the ‘true’ 

distribution is smaller than for the ‘false’ one increase, suggesting the consistency of choice 

based on the MD criterion. This is confirmed by the bootstrap results. The empirical power of 

the tests based on the MD statistics is, in absolute terms, not high. Even for samples of size 

500 it is not reaching 20%. In another words, it is in practice problematic to distinguish 

between the WSN and TPN distributions.  

Nevertheless, some differences between the fits given by WSN and TPN can be observed 

here. Generally TPN is more often falsely well approximated by WSN, particularly in the case 

when up   that is for WSN, than WSN by TPN. Also, for middle-sized samples (250 

observations) chances for proper identification of WSN against TPN by rejecting the null of 

identical MD statistics are visibly higher than otherwise, albeit still small in absolute terms.  
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For data generated by WSN and TPN, the danger of misspecification by falsely fitting GBSN 

is visibly smaller. Except for small samples of data generated by WSN, MD statistics for 

GBSN are usually bigger than for two remaining distributions in this case than the 

corresponding WSN and TPN statistics, reducing the chance of distributional 

misspecification. Also, the empirical power of the MD ratio test rises relatively quickly with 

an increase in sample size exceeding, in some cases, 20% for large samples. 

In contrast to WSN and TPN, data generated by GBSN exhibit different patterns. In terms of 

power of the bootstrap tests, they can also be easily confused with two other distributions as 

the power of the MD ratio test is low. However, the power of the test is not visibly increasing 

with the increase of sample size, causing doubts regarding the consistency. On the positive 

side, the naïve misspecification benchmark based on the differences between the MD statistics 

for the true and false distributions is less often false than in the case of data generated from 

WSN and TPN.  

To sum up, one would expect the confusions in deciding which skew normal distribution is 

the best one o be relatively frequent, if the selection is based on the goodness of fit measures 

alone.  

5. EMPIRICAL RESULTS: DISTRIBUTIONS OF INFLATION FORECAST ERRORS 

FOR POLAND, RUSSIA, UKRAINE AND U.S.A. 

The distributions discussed above have been used for the evaluation of the probabilities of 

headline (CPI) inflation being within target bands for Poland, Russia, Ukraine and U.S.A. in 

the middle of 2013, with the use of data ending four months earlier, which is in February 

2013. Economies of these countries differ substantially between themselves, both in term of 

economic growth, average level of inflation and types of conducted monetary policy. Among 

these countries only Poland conducted a reasonably successful monetary policy since 1998, 

with a clearly defined inflation target set at 2.5%, with ±1% band, since 2004. Russia, 

although officially pursuing inflation stabilization, was, in fact, targeting exchange rate 

stabilisation, which resulted in inflation fuelled by a ‘dirty float’ (see Vdovichenko and 

Voronina, 2004). Since 2010, it has been implementing inflation targeting more efficiently. 

For 2013, the year of the forecast, official inflation target was 5%-6%. Nevertheless, in order 

to allow for a comparison with other countries, we have evaluated the probability of inflation 

being within the ±1% band around its upper limit, that of around 6%. Ukraine monetary 

policy was the least transparent. It first had implemented the exchange rate targeting which 

was followed, since 2000, by the exchange rate pegging. In 2013 it announced transition to 

inflation targeting, with indications that a likely target will be 5%. Consequently, we have 

assumed for Ukraine the target band of ±1% around 5%. For the analysis of the development 

of monetary policy in these three countries see e.g. Égert and MacDonald (2008). In the 

U.S.A., the nominal target of 2% has been announced by the Federal Open Market Committee 

in early 2012. Before that, the unofficial target was within the range of 1.7%-2%. In line with 

the assumptions made for other countries, for U.S.A. we are assuming the target of 2%, with 

the band of ±1%. Figure 3 shows the inflation data for all four countries with the inflation 

target bands depicted. It depicts the differences in inflation dynamics in the analysed countries 

and also the differences in the frequencies the inflation target bands for 2013 were crossed in 

the past. 

We have computed the probabilities of inflation being within the bands using the distributions 

of 4-step ahead forecast errors obtained for forecasts made prior to February 2013, 

approximated by the skew normal distributions discussed above, that is WSN, TPN and 

GBSN. The practice of using past forecast errors for approximating forecast uncertainties has 

often been used before, especially by the central banks’ practitioners (see e.g. Kowalczyk, 
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2013). Even if not used directly, there is a practice of comparing the distributions of point 

forecast errors with the distributions used in probabilistic forecasting (Hall and Mitchell, 

2007, Dowd, 2008). The alternative would be to apply the distributions derived from the 

surveys of professional forecasters (see Clements, 2014; Lahiri and Sheng, 2010; Lahiri, Peng 

and Sheng, 2014). However, systematic data for forecasts’ surveys are available only for 

Poland and U.S.A., and their reliability for producing probabilistic is yet to be proven (see 

Bowles et al., 2007, Andrade and Bihan, 2013). 

Figure 3: Annual inflation in Poland, Russia, Ukraine and U.S.A., 2000-2013, and the assumed target bands for 

2013 

Poland Russia  

 
 

Ukraine U.S.A. 

  

 

After checking for the order of seasonal and non-seasonal integration by the Taylor (2003) 

test which takes into account the possibility of the presence of unit roots at frequencies other 

than tested, we have estimated the seasonal ARIMA (SARIMA) model for inflation data yt: 

   ( ) ( ) ( ) ( )s D s

t tL L y L L u       , 

where L is the lag operator,   is the order of integration of the regular part of yt, (1 )L     

is the regular difference operator of order  , (1 )D s DL    is the seasonal difference 

operator of order s for a seasonal I(D) process and ut is the error term. Polynomials  ,   ,   

and   are based on regular ( L ) and seasonal ( sL ) lag operators correspondingly. Their 

orders have been obtained using the Gómez and Maravall (1998) procedure which is based on 

an automatic lag selection criterion which leads to a minimum of Ljung-Box the 

autocorrelation statistic. The entire data span, for the annual inflation recorded monthly in 

percentages, is from August 1994 (September 1994 for Russia) to February 2012.
3
 Due to 

data availability, for Ukraine we have used a slightly shorter data span, from January 1995 to 

February 2012. Out of sample forecasts has been computed recursively, starting from the 

                                                 
3
 Data are from the official statistical agencies of each country, available at http://www.tradingeconomics.com   

http://www.tradingeconomics.com/
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initial period and updating the sample by one observation in each recursion. Initial (for first 

recursion) period for estimation has been defined as a maximum of the first 80 observations of 

the series. Basic descriptive statistics of the recursive forecast errors are given in Table 5. 

Table 5: Basic characteristics of 4-step ahead forecast errors 

 
Poland Russia Ukraine U.S.A. 

Full data span 
 

07-1994 
02-2013 

08-1994 
02-2013 

01-1995 
02-2013 

07-1994 
02-2013 

total no. of observation in 
sample.  222 221 217 222 

no. of obs. for estimation of 
the densities 138 137 133 138 

mean. -0129 -0.187 0.106 0.034 

std. dev. 1.037 1.977 3.560 1.379 

skewness 0.211 0.793 0.106 0.533 

 

All three skew normal distributions discussed here, which is WSN, TPN and GBSN, have 

been fitted to the forecast errors data. As in Section 4, we have estimated three parameters of 

WSN: , β, and , keeping 0.75  , up   and low up   .  

Table 6 presents the results of estimation of the parameters of the density functions. As in the 

previous section, for each distribution three parameters have been estimated by the SMDE. As 

parameters m and n of the GBSN distribution are integers, their standard errors have not been 

computed. For the non-integer parameters standard errors are given in brackets below the 

estimates. 

Table 6: Results of empirical estimation of different skew normal distributions  

 
Parameters Poland Russia Ukraine U.S.A. 

 

WSN 
 -1.817 

(0.1803) 
-2.281 

(0.1303) 
-3.320 

(0.1262) 
-1.887 

(0.1051) 

β -1.223 
(0.1792) 

-2.358 
(0.6400) 

-3.478 
(0.372) 

-2.241 
(0.0042) 

 1.000 
(0.001) 

0.999 
(0.0.002) 

0.999 
(0.004) 

0.851 
(0.0290) 

MD 2.629 21.05 47.42 1.19 

 

TPN 
1 1.169 

(0.1101) 
1.400 

(0.617) 
1.995 

(0.0144) 
0.902 

(0.0533) 

2 0.8422 
(0.367) 

2.000 
(0.001) 

2.000 
(0.001) 

1.306 
(0.0712) 

 0.088 
(0.482) 

-0.7222 
(0.4990) 

-0.153 
(0.275) 

-0.336 
(0.303) 

MD 3.10 1.11 51.52 6.26 

 

GBSN 
n 5 5 5 5 

m 2 1 5 2 

  -0.061 
(0.0510) 

-0.084 
(0.0110) 

0.000 
(0.09800) 

-0.976009 
(0.0229) 

MD 4.71 72.80 251.7 8.90 

The distance measure criterion suggests the choice of different distributions for particular 

countries. For Poland the best fit is that of TPN, followed closely by WSN, and for U.S.A the 

best fit is that by WSN. As concluded in Section 4, there is high chance of distributional 

misspecification between WSN and TPN. With this is mind and taking into account that, for 



 10 

Polish data, differences in MD’s in fitting WSN and TPN are not negligible, we can interpret 

parameters of WSN in the light of monetary policy outcomes. For Poland, the positive 

difference between the absolute values of the estimates of  and β in WSN indicates 

footprints of the prevalence of anti-inflationary policy over the output-stimulating policy. For 

U.S.A., however, where such difference is negative, there is some evidence of signs of output-

stimulating policy. For Russia, TPN gives the best fit, and for Ukraine all minimum distance 

statistics are rather large, suggesting poor fit of all the distributions considered.  

In order to discriminate between the distributions further, we have tested which of these 

distributions fits better to the observed data with the use of the probability integral transform 

(pit) test (see Diebold, Gunther and Tai, 1998; for application to evaluation of inflation 

probabilistic forecast see Clemens, 2004, and Galbraith and van Norden, 2012); for other 

similar approaches and applications to inflation modelling see Mitchell and Hall (2005). The 

probability integral transform is defined as the probability of observing values of a random 

variable not greater than its realized value. If the forecasted density is close enough to the true 

but unknown density, pit’s will be uniform on the interval from zero to one. If several pit’s 

(that is, for different forecasts) are available, one can test their accuracy by checking whether 

their values are uniformly distributed using well known ‘goodness-of-fit’ tests. Figure 4 give 

the scatter diagram of pit’s for all three distributions and countries analysed and Table 7 gives 

the results of the Cramer-von Mises test for uniformity of pit’s.
4
 

Figure 3: pit’s for fitted skew normal distributions 

Poland Russia 

  

Ukraine U.S.A. 

  

 

 

                                                 
4
 Another test often used for evaluating the uniformity of pit’s is that of Berkovitz (2001). Hovever, we have 

decided not to use it, as this test is proved to be biased in evaluation of multi-step forecasts (Dowd, 2007). 
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Table 7: Test statistic: Cramer-von Mises statistics for testing uniformity 

significant statistics are marked by * for 10% significance and ** for 5% significance 

 WSN TPN GBSN 

Poland 0.034 0.100 0.611** 

Russia 0.671** 0.328 2.492** 

Ukraine 0.739** 1.649** 2.633** 

U.S.A. 0.095 0.279 0.068 

 

Both Figure 3 and Table 7 confirms better fit of all distributions for the Poland and U.S.A. 

than for two remaining countries. In particular, the uniformity of GBSN estimates is 

questionable, with pit’s concentrated close to zero and one. 

Finally, Table 8 gives the probabilities that inflation, in July 2013, that is four month's periods 

after the end of the sample data, will be within the target intervals. They were obtained by 

computing numerical integrals of the respective estimated pdf’s over the target interval. It also 

presents pit’s of the realisations of headline inflation in July 2013 (for the interpretation of 

such pit’s in relation to forecast uncertainty see Rossi and Sekhposyan, 2014). They describe 

the probability of observing values of the random variable not greater than the observed 

headline inflation. 

Table 8: Probabilities of hitting inflation target bands, headline inflation in July 2013 and its p-values  

 Target 

interval, 

% 

Infl. 

in 

July 

2013 

WSN TPN GBSN 

 (1) (2) (1) (2) (1) (2) 

Poland 1.5 - 3.5 1.1 0.60 0.25 0.59 0.24 0.63 0.18 

Russia 5 - 7 6.5 0.43 0.38 0.79 0.56 0.43 0.26 

Ukraine 4 - 6 0.0 0.07 0.34 0.40 0.21 0.00 0.32 

U.S.A. 1 - 3 2.0 0.60 0.56 0.62 0.64 0.68 0.56 

Legend: (1): probabilities of inflation being within the target in June 2013 according to the particular 

distribution;  

 (2): pit’s of observed headline annual inflation in June 2013 according to the particular distribution. 

As expected, Table 1 does not show much difference between the estimated probabilities of 

hitting inflation target, especially for Poland and U.S.A., where all examined skew normal 

distributions fit well. More substantial differences can be noticed for Russia, where the results 

for TPN, which is the only distribution for which the null hypothesis of the uniformity of pit’s 

is not rejected, shows distinctively different probabilities of hitting inflation target and pit for 

the observed inflation. A positive conclusion which can be drawn here is that more than one 

skew normal distribution might fit well to the data, and it might not matter much which one is 

used. However, only the parameters of the estimated WSN distribution can be sensibly 

interpreted in the context of monetary policy. 
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6. CONCLUSIONS 

The general message from this paper is somewhat pessimistic. We showed that it might be 

difficult to tell one skew normal distribution from another on the basis of the best fit, 

especially if the sample size is not very large. As the number of potential skew normal 

candidates for fitting to data is substantial (especially in the light of the fact that there are 

other propositions in the literature not considered in this paper) it seems to be sensible to 

decide on the type of distribution not on the basis of the best fit but rather on the basis of 

interpretation of its parameters, especially if there is not much difference in the closeness of 

the fit of the competing distributions. For countries conducting consistent and reasonably tight 

monetary policy, the weighted skew normal distribution, WSN, seems to be a sensible choice.  

It is worth noting that the difficulty in deciding on the type of skew normal distribution is 

deepened by the fact that there are no operational statistics developed for testing the degree of 

disparities between distance measures (or other characteristics) of these distributions. The 

bootstrap procedure used in this paper suggests a way for further investigation.  
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