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ABSTRACT 

 

The paper introduces the concept of conditional inflation forecast uncertainty. It is proposed 

that the joint and conditional distributions of the bivariate forecast uncertainty can be derived 

from estimation unconditional distributions of these uncertainties and applying appropriate 

copula function. Empirical results have been obtained for Canada and US. Term structure has 

been evaluated in the form of unconditional and conditional probabilities of hitting the 

inflation range of ±1% around the Canadian inflation target. The paper suggests a new 

measure of inflation forecast uncertainty that accounts for possible inter-country dependence. 

It is shown that evaluation of targeting precision can be effectively improved with the use of 

ex-ante formulated conditional and unconditional probabilities of inflation being within the 

pre-defined band around the target. 

 

 



 

1. INTRODUCTION 

Stimulated by the current uncertain economic climate, there has been an increasing interest in 

the measurement and evaluation of macroeconomic uncertainty. The research has 

predominantly focused on the development of the univariate conditional measures of 

uncertainty, describing it either for particular macroeconomic indicators (usually inflation or 

output, see e.g. Clements, 2014; Charemza Díaz and Makarova, 2015; Lahiri and Sheng, 

2010; Lahiri, Pend and Sheng, 2014; and others), or the aggregated macroeconomic, policy or 

behavioural uncertainty (Jurado, Ludvigson and Ng, 2015; Tuckett et al., 2014; Baker, 

Bloom and Davis, 2013). These three types of measures are usually significantly correlated 

among themselves, especially the indicators’ measures and the aggregated measures, as the 

former are often incorporated within the latter. However, this correlation is, in some cases, 

disappearing, and the inflation and macroeconomic uncertainties become, on the surface, 

unrelated. 

This paper claims that such lack of correlation might result from interrelations between 

inflation forecast uncertainty for different countries. Section 2 provides motivation for the 

research by presenting rather puzzling result of a lack of correlation between inflation 

forecast uncertainty and economic policy uncertainty for Canada. It is claimed that this was 

the result of conditioning inflation uncertainty in Canada on that in the US. Section 3 

introduces measures and indicators of the bivariate, unconditional and conditional 

uncertainty. Section 4 gives the results of the estimation of the univariate (unconditional) 

uncertainties. Section 5 discusses main results for Canada and shows that the probabilities of 

inflation in Canada being within ±1% band around the target increases, especially for short 

forecast horizons, if conditioned on the US inflation being within similar bands. It shows that 

evaluation of targeting precision can be effectively improved with the use of ex-ante 

formulated conditional and unconditional probabilities of inflation being within the pre-

defined band around the target. It also suggests a new measure of inflation forecast 

uncertainty that is that is less affected by external inflation than the measures based solely on 

forecast errors. Section 6 concludes. 

2. MOTIVATION: WHAT HAPPENED TO CORRELATION BETWEEN THE 

UNCERTAINTIES? 

The motivation for this research has been provided by puzzling results of correlations 

between a rudimentary measure of inflation forecast uncertainty and economic policy 

uncertainty. Inflation uncertainty is evaluated simply by the squares of forecast errors made 

from a univariate ARMA-GARCH model. Table 1 contains Spearman’s rank correlation 

coefficients of the logarithms of such squares of forecast errors for the forecast horizons from 

1 to 12 months with the logarithms of economic policy uncertainty index (EPU), developed 

by Baker, Bloom and Davis (2013) and available at http://www.policyuncertainty.com/ for 

selected countries. The EPU is a three-component index, based on (a) the frequency of the 

use of world ‘uncertainty’ in leading newspapers, (b) tax code provisions and (c) 

disagreement between the forecasters (so-called uncertainty by disagreement).
1
 For US, we 

have additionally included Spearman’s rank correlation coefficients of the forecast errors 

with the Jurado, Ludvigson and Ng (2015) measure of macroeconomic uncertainty, denoted 

as JLN, with data described in Jurado, Ludvigson and Ng, (2014). The period for which the 

correlations are computed is from January 1997 until December 2012, where the last data on 

the JLN index is available. P-values of the correlation coefficients have been computed by 

simple bootstrap. They are not reported here, but that correlation coefficient that are not 

significant at 10% level are boldfaced. 

                                                 
1
 For some countries only first two components are applied. 

http://www.policyuncertainty.com/
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Table 1 indicates that, except for Canada, there is a significant positive correlation between 

the squares of forecast errors and uncertainty measures for most forecasts horizons. Such 

correlation is in fact expected, as inflation forecast errors constitute a substantial component 

of macroeconomic uncertainty. However, for Canada, the correlation is predominantly 

insignificant. Closer inspection of data suggests that such breakdown in correlation was 

mainly caused by an unpredictable (by a univariate autoregressive model) fall in inflation in 

the first half of 1990’s, where the decline in Canadian inflation was preceded by an earlier 

inflation drop in US and therefore foreseen by the Canadian media. As media information 

constitute a relevant component of the political uncertainty, it affected the EPU earlier, than 

the changes in inflation happen.  

 

Table 1: Spearman’s rank correlation between uncertainty measures and 

squares of inflation forecast errors 

 EPU  

US_JLN  Canada France India Italy Spain UK US 

1 0.05 0.02 0.10 0.13 0.23 0.31 0.09 0.34 

2 -0.03 0.14 0.10 0.13 0.25 0.30 0.17 0.37 

3 0.01 0.10 0.15 0.17 0.39 0.42 0.22 0.43 

4 0.06 0.10 0.21 0.12 0.39 0.47 0.25 0.45 

5 0.09 0.17 0.28 0.11 0.35 0.46 0.26 0.46 

6 0.06 0.21 0.30 0.15 0.28 0.47 0.25 0.47 

7 0.09 0.19 0.26 0.20 0.20 0.53 0.23 0.48 

8 0.14 0.15 0.26 0.18 0.14 0.53 0.27 0.48 

9 0.17 0.15 0.27 0.20 0.15 0.49 0.30 0.49 

10 0.16 0.18 0.34 0.23 0.18 0.42 0.32 0.49 

11 0.17 0.22 0.22 0.23 0.22 0.39 0.33 0.49 

12 0.20 0.24 0.25 0.20 0.22 0.36 0.33 0.47 

 

Ad-hoc reflection is that there might be an influence of the US inflation uncertainty on that of 

Canada. If the US inflation uncertainty affects, possibly with some lag, Canadian uncertainty, 

a natural way to proceed would be to model Canadian inflation jointly with the US inflation 

and analyse the Canadian inflation forecast uncertainty conditionally on that of the US. 

3. MEASURING THE DEPENDENCE BETWEEN UNCERTAINTIES 

We traditionally define the observations on the ex-post forecast uncertainty for the forecast 

horizon h made at time t h  as the rolling sequence of pseudo out-of-sample forecast errors 

(see e.g. Stock and Watson, 2007). These forecasts are usually obtained from a time series 

econometric model and possibly adjusted for variance predictability. Under the assumptions 

of stationarity and ergodicity of these errors, we assume that they stand for realisations of a 

random variable, denoted by ,

i

t hU , where i represents the i-th country. Univariate distributions 

of this random variable are discussed in Charemza, Díaz and Makarova (2015).  

We consider the bivariate ex-post forecast uncertainty for countries 1 and 2, 

 
'

(1) (2)

, , ,,t h t h t hU U U  given by: 

1/2 1/2

, , | |( )t h t h t t h t t t hU  

     ,      (1) 

 



3 

 

where 
t  is the bivariate vector containing the inflation in both countries in period t, |t t h   is 

the vector containing the corresponding forecasts made at time t-h for the period t, ,t h  is the 

unconditional covariance matrix of the h step ahead forecast errors at time t and |t t h  is the 

conditional covariance matrix made at time t-h for time t. The variable ,t hU  is, then, net of all 

information available at the time of making the forecast regarding its first two moments. The 

bivariate density of ,t hU  is denoted as ,(0, )t hD  . The unconditional distributions of 
(1)

,t hU  and 

(2)

,t hU  can be approximated by a variety of statistical distributions, starting from the seminal 

two-piece normal distribution, TPN (see e.g. Tay and Wallis, 2000, Wallis, 2004), to the 

generalized beta distribution (Clements, 2014) and weighted skew normal distribution, WSN 

(Charemza, Díaz and Makarova, 2015). Unfortunately, the analytical forms of the bivariate 

distributions mentioned above might not be of much use here (even if they were known). 

Firstly, the dependence between forecast uncertainties might be different for lower and upper 

tails of their distributions and, for the policy analysis, asymmetric dependences of 

macroeconomic indicators might be of particular interest.  

Secondly, due to, for instance, different monetary policies pursued by countries 1 and 2, types 

of the unconditional distributions might be different. For instance, country 1, which 

implements inflation targeting successfully, might have the distribution of inflation forecast 

errors well described by the WSN distribution, while country 2, which pursue a different 

policy, might have the empirical distribution of forecast errors better described by the TPN 

distribution. 

In the light of these difficulties, we propose to evaluate the bivariate density of ,t hU  defined 

by (1) by approximating the unconditional densities using a univariate parametric density and 

then modelling the dependency using copulas. Let 1F  and 2F  be the unconditional 

cumulative distribution functions (cdf’s) of the uncertainties in both countries and 1f  and 2f  

the corresponding probability density functions (pdf’s). We can obtain the joint cdf as 

   12 1 2 1 2;, ,F x x C u u  ,      (2) 

where  1 1iu F x ,  2 2ju F x  with 1 2,x x R  and 2:[0,1] [0,1]C   is a copula function 

which depends on parameter  . Sklar’s (1959) Theorem shows that if both unconditional 

cdf’s are continuous then, the copula is unique, so that ( , )C    can be considered a cdf itself 

(we limit our interest here to one-parameter copulas). Also, if the copula is twice 

differentiable, we can define   2

1 2 1 2 1 2, | ( , | ) /c u u C u u u u      as the density function of 

the copula and, differentiating (2), we can express the joint density of (1) as  

 12 1 2 1 2 2211;( ,   (, )) ) (f x x c u u f x f x   .    (3) 

Although the copula parameter   can be estimated jointly with the parameters of the 

unconditional distributions by the maximum likelihood directly from (3), this can be 

numerically awkward if the unconditional distributions are difficult to estimate. Because of 

that we use the Inference Function for Margins (IFM) approach described in Joe and Xu 

(1996). This is a two-steps estimation method which consists of: 

1. estimating the parameters of the density functions of the unconditional distributions; 
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2. estimating the copula parameter by the maximum likelihood by plugging in the 

probability integral transforms (pit’s) of the marginals into the copula density (3). For 

the details of the algorithms see Durrelman, Nikeghbali and Roncalli (2000). 

Finally, developing from the joint density of uncertainties (3), we can evaluate the density of 

inflation uncertainty in country 1 conditional on inflation in country 2 being in a certain range 

[a, b] around its point forecast as 

    
12 1 2 2

1|2 1 2

2 2 2

( , )

|

( )

b

a

b

a

f x x dx

f x a x b

f x dx

  




  .     (4) 

Knowledge of (4) can be of a relevant practical importance. In particular, policy makers in 

country 1 can assess the probabilities related to changes in monetary policy in country 2, for 

instance, the probability of hitting the inflation target band. More generally, they can evaluate 

the conditional term structure of inflation, which is changes in uncertainty with the changes 

in forecast horizon (see Patton and Timmermann, 2011).  

4. ESTIMATING UNIVARIATE FORECAST UNCERTAINTIES 

Motivated by the puzzling lack of correlation between inflationary forecast errors and the 

EPU index for Canada, discussed in Section 2, we focus on the interrelations between the 

Canadian and US forecast uncertainties. The raw data we used are monthly data on annual 

CPI inflation in Canada and US from January 1985 until October 2014. As the Canadian 

inflation targeting is often discussed in terms of the core rather than headline inflation, we 

have also applied data on the core inflation for Canada
2
. Inflation in both countries has been 

found to be I(1); therefore the model has been estimated in first differences, using 358 

observations in total. The first recursion is made with 80 observations, which gives 278 one 

step ahead forecast errors, 257 two-step ahead errors, etc.. In each recursion, for the time 

period until t h , in order to account for second order predictability, the two-equation VAR-

BEKK-GARCH(1,1) model for the Canadian and US inflation with seasonal dummies in its 

deterministic part has been estimated (for the discussion of the assumptions and properties of 

the BEKK-GARCH model and its comparison with other multivariate GARCH models see 

e.g. Silvennoinen and Teräsvirta, 2009). The autoregressive order of the model had been 

chosen as the minimal for which the residuals’ autocorrelation is not significant at 5% 

significance level. In order to avoid spurious dependence between the corresponding h-step-

ahead forecast errors for 1h  , forecasts have been made from the moving average rather 

than autoregressive form of the model (see e.g. Lütkepohl, 2007, p. 94). Forecasting gives h-

step ahead forecast errors |t t he  , up to h=24 months. The conditional and unconditional 

variance-covariance matrices of |t t he  , denoted in (1) as |t t h  and ,t h , have been estimated 

using variance-covariance matrices obtained for the estimated VAR-BEKK-GARCH(1,1) 

model. Then, using a rolling window of the length of 120, we have estimated 158 

distributions of one-step-ahead forecasts for both countries, 157 of two-step-ahead forecasts 

and so on. 

As the first step of the IFM estimation method is to evaluate the parameters of the 

unconditional distributions, we start with choosing the most appropriate distribution of the 

                                                 
2
 Data on US CPI are from the Bureau of Labor Statistics at http://www.bls.gov/cpi/ . Canadian price data are 

from CANSIM (http://www5.statcan.gc.ca/cansim/home-accueil?lang=eng ). Data for core inflation for Canada, 

are under header CANSIM-V41693242. 

http://www.bls.gov/cpi/
http://www5.statcan.gc.ca/cansim/home-accueil?lang=eng
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marginals. As this is somewhat arbitrary, we have decided to choose from two distributions 

used for modelling forecast uncertainties, namely the two-piece normal (TPN) distribution, 

see e.g. Tay and Wallis (2000), and Wallis (2004), and the weighted skew normal (WSN) 

distribution; see Charemza, Díaz and Makarova, (2015). Parameters of both distributions can 

be interpreted in the context of policy effects. The TPN has the density function with three 

parameters and is defined by 

 

 

2 2

1

1 2 2 2

2

exp ( ) / 2 if
( ; , , )

exp ( ) / 2 if
TPN

A t t
f t

A t t

  
  

  

   
 

  

, 

where  
1

1 22 ( ) / 2A   


  . If 
2 2

1 2   it becomes normal and the deviations from 

normality (that is the differences between the estimates of 1  and 2 ) are interpreted as the 

effects of the balance of risks given by over-and underestimated forecasts (see Wallis, 2004). 

WSN is the 5-parameters’ distribution, with the density function given, after normalization 

/U U   , where   is the standard deviation of U , as: 

1 2 2

2 2

1 1
( ; , , , , )

(1 ) (1 )

( )
1 1

WSN

B t kAB t mAt t
f t m k

A A A AA A

m t k t
t

  

    

    
 

 


 

       
        

             

     
       

         

 , 

 

where  and  denote the density and cumulative distribution functions of the standard 

normal distribution respectively, 
21 2A     , and B    . If 0   , WSN 

reduces to normal distribution. In the general case, parameters 0   and 0   can be 

interpreted as the effects of the anti- and pro-inflationary policy respectively in reducing 

inflation uncertainty, m  and k  represent the tolerance level to the nuisance (not strong 

enough) forecast signals coming from outside of the model and (0,1)  describes the 

degree of accuracy of these forecast signals (see Charemza, Díaz and Makarova, 2015).  

It is shown that the maximum likelihood estimation of skew normal distributions can be 

subject to bias and convergence problems (see e.g. Pewsey, 2000, Monti, 2003). Therefore, 

the estimation procedure applied here is the Simulated Minimum Distance Estimator (SMDE) 

method of Charemza et. al. (2012). The SMDE is defined as 

  , 1
ˆ arg min ( ,

RSMDE

n n r r
HD d f 



 




    , 

where k , ,rf   is the Monte Carlo approximation of the theoretical probabilities of 

the estimated distribution obtained from R replications for each combination of parameters 

within the admissible area, nd  denotes the density of empirical sample of size n, HD is the 

distance measure and   is an aggregation operator. This method, albeit relatively slow and 

not very precise (as it relies on the accuracy of the grid search algorithm applied), does not, 

however, suffer from convergence problems. The distance measure chosen here is the 

Hellinger distance (see e.g. Basu, Shioya and Park, 2011) which is known to be robust to 

outliers. To make results comparable, three parameters have been estimated for each 
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distribution: 
2

1  , 
2

2  and  for the TPN and , β and , with three remaining parameters 

fixed as  = 0.75 and 1m k   .  

Detailed estimation results, for all forecast horizons and all rolling windows, are available at 

http://pramu.ac.uk . Selection of unconditional distributions has been made using the forecast 

accuracy tests, also available at http://pramu.ac.uk. The tests applied are: (1) the Cramer-von 

Mises test of uniformity of the probability integral transforms (pit’s), Jarque-Bera test of 

normality of pit’s transformed to normality (see Berkowitz, 2001) and, (3) the Amisano and 

Giacomini (2007) test for direct comparison of the distributions. Results of all these tests 

almost universally support the superiority of WSN over TPN for both Canada and US. 

Consequently, we base a further investigation on using WSN as the unconditional 

distributions for both countries. 

5. COPULA ESTIMATION AND CONDITIONAL FORECASTING 

Once the unconditional distributions of uncertainties are decided, we model the joint density 

as in (3). We have experimented with a number of different copula functions, and we have 

finally decided to use Frank’s copula as it is capable of modelling strong asymmetric 

dependence between non normal skewed distributions, without favouring neither the upper 

nor lower tail (for some discussion of the properties of Frank’s copula see e.g. Assunção, 

2004, Lin and Wu, 2015). The expressions of this copula and its density are, respectively  

  1 21

1 2, log([ (1 )(1 )] / );
u uC u u e e            , 

     1 2 1 2 2

1 2, / [ (1 )(1 )];
u u u u

c u u e e e
   
   

       ,   (5) 

where the copula parameter [0, )    and 1   . Following the IFM procedure, we 

estimate the copula parameter by maximizing  1 21
g ;lo ,

T

t tt
c u u 

 . The conditional density 

can be then evaluated using (4) for the pairs of observations on uncertainties separately for 

each forecast horizon. . As the natural and easily interpretable condition we set the bands of 

inflation in the US as 2%±1%, that is around the 2% of US inflation target. The 2% target for 

inflation has been officially set in January 2012, but in practice was used earlier in the form 

of the ‘desired inflation’. In Canada, the 2% inflation target was established in late 1995. 

Figure 1 shows inflation in Canada and US with the ±1% bands indicated. 

Figure 1: CPI Inflation in Canada and US, January 1992-October 2014 

  

  

 

Usually, the term structure of inflation forecast is expressed by the sequence of standard 

deviations of uncertainty for each forecast horizon (see Clements, 2014). However, we have 

http://pramu.ac.uk/
http://pramu.ac.uk/
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decided to express it by the average (across rolling windows) probabilities of the Canadian 

inflation being within the target bands. In the context of inflation targeting this seems to be a 

natural and more easily interpretable measure.  

Let us denote by 
( )ˆ

( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ( ) ( ; , , , ,0.75)WSNf t f t


   

       the estimated WSN density 

function where 
( ) ( ) ( )ˆˆ ˆ, ,      are the SMD estimates of the WSN parameters for Canada  

( 1  ) and U.S. ( 2  ). The corresponding cdf’s are denoted by F̂ . The unconditional 

probabilities of the Canadian inflation being within the [a,b] range, where 1a    and 3b  , 

are: 

1 1 1
ˆ ( )

b

a

f x dx  ,  

The (conditional) probabilities of the Canadian inflation being within the [a,b] range, where 

1a   and 3b  , given that the US inflation be within the [1%,3%] are, following (3) and (5), 

given by: 

   

 1 1 2 2 1 1 2 2 1 2

2 2 2

ˆ ˆˆˆ ˆ( ), ( ); ( ) ( )

ˆ ( )

b b

a a
b

a

c F x F x f x f x dx dx

f x dx

 



    ,  

where ̂  is the estimated parameter of the Frank’s copula.
3
 

Table 2 gives, in columns (1) and (5), the averaged unconditional probabilities of inflation 

being within the [1%,3%] interval, and, in columns (2) and (6), conditional probabilities for 

selected forecast horizons, for the headline and core inflation in Canada respectively. 

Standard errors are reported in brackets below the averages. In columns (3), (4), (7) and (8) 

the corresponding rudimentary sharpness measures of forecasts are given (see Gneiting, 

Balabdaoui and Raftery, 2007; and Mitchell and Wallis, 2011). The idea of sharpness 

measures is such that the density forecast should be concentrated around the realized value 

(observed ex-post) if the model forecasts accurately. The measure used here is the average 

(unconditional or conditional) probability of the Canadian inflation being within the [1%,3%] 

band computed for the cases where inflation (ex-post forecast realization) actually was within 

this band. For a ’sharp’ forecast, such measure should be higher than the corresponding 

unconditional and conditional probabilities. 

All probabilities in Table 2 decline monotonously with the increase in the forecast horizon, 

indicating a typical forecast term structure (or fan chart) pattern, where the uncertainty 

increases with the increase in the forecast horizon. The conditional probabilities are, as 

expected, higher than the corresponding unconditional ones. The differences diminish with 

the increase in the forecast horizon, indicating some convergence of the unconditional and 

conditional distributions. This is also illustrated in Figure 1, where the probabilities are 

plotted for all forecast horizons up to 24. The sharpness measure is, in most cases greater than 

the corresponding probabilities. Standard deviations for all probabilities are relatively high, 

particularly for shorter forecast horizons. This might indicate changes in parameters of the 

estimated distributions over time. 

                                                 
3
 Programming have been made in GAUSS 12 and computations performed on the high powered parallel 

computer HPC ALICE at the University of Leicester. Computational details and codes are available from the 

authors. 
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The probabilities obtained for core inflation uncertainty are markedly higher than that for the 

headline inflation uncertainty. Also, the differences in the conditional and unconditional 

probabilities are greater for core rather than headline inflation, particularly for shorter 

forecast horizons. On the one hand, it confirms that the core rather than headline inflation has 

been efficiently targeted. On the other hand, however, it indicates that the effects of the U.S. 

inflation uncertainty onto the Canadian core inflation uncertainty is greater than that on the 

headline. As the U.S. inflation is outside the reach of the Canadian monetary policy, it 

suggest a possible way of improvement in setting up an effective inflation indicator for 

Canada, which should be net of the U.S. inflation effects. High probabilities of hitting the 

band close to the inflation target, both unconditional and conditional, confirms the rationale 

of the way Bank of Canada constructs its core inflation measure.  

 

Table 2: Average probabilities of inflation in Canada being  

in the interval [1%,3%] 

 

for. 

hor 

headline inflation core inflation 

uncond. 

prob. 

cond. 

prob. 

sharpn. 

uncond. 

prob. 

sharpn. 

cond. 

prob. 

uncond. 

prob. 

cond. 

prob. 

sharpn. 

uncond 

prob. 

sharpn. 

cond. 

prob. 

(1) (2) (3) (4) (5) (6) (7) (8) 

3 
0.69 

(0.32) 

0.73 

(0.33) 

0.72 

(0.30) 

0.79 

(0.30) 

0.79 

(0.40) 

0.96 

(0.16) 

0.79 

(0.39) 

0.97 

(0.14) 

6 
0.62 

 (0.26) 

0.67 

(0.27) 

0.61 

(0.27) 

0.70 

(0.27) 

0.89 

(0.29) 

0.96 

(0.15) 

0.88 

(0.30) 

0.96 

(0.15) 

9 
0.58 

(0.22) 

0.62 

(0.22) 

0.56 

(0.23) 

0.61 

(0.23) 

0.87 

(0.31) 

0.96 

(0.16) 

0.87 

(0.33) 

0.95 

(0.16) 

12 
0.53 

(0.20) 

0.58 

(0.19) 

0.54 

(0.19) 

0.57 

(0.19) 

0.88 

(0.28) 

0.95 

(0.16) 

0.90 

(0.28) 

0.95 

(0.17) 

15 
0.50 

(0.17) 

0.52 

(0.17) 

0.51 

(0.18) 

0.52 

(0.18) 

0.93 

(0.21) 

0.94 

(0.17) 

0.93 

(0.20) 

0.94 

(0.17) 

18 
0.48 

(0.16) 

0.49 

(0.17) 

0.49 

(0.15) 

0.48 

(0.16) 

0.92 

(0.21) 

0.94 

(0.18) 

0.92 

(0.21) 

0.93 

(0.18) 

21 
0.45 

(0.15) 

0.46 

(0.15) 

0.47 

(0.14) 

0.47 

(0.13) 

0.92 

(0.20) 

0.93 

(0.17) 

0.93 

(0.20) 

0.93 

(0.17) 

24 
0.43 

(0.14) 

0.44 

(0.14) 

0.42 

 (0.15) 

0.45 

(0.13) 

0.92 

(0.20) 

0.94 

(0.15) 

0.99 

(0.20) 

0.94 

(0.15) 

 

Figure 2: Average conditional and unconditional probabilities of hitting 

the [1% - 3%] inflation band in Canada 
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With the use of the conditional and unconditional probabilities of inflation being within the 

[a,b] range it is possible to forecast effectively the inflation targeting precision. Figure 3 

shows plots of such conditional probabilities for Canada for forecast horizons 2 and 7 plotted 

alongside the simple measure of precision of inflation targeting, defined as the absolute value 

of the difference between the headline inflation and target inflation (that is, 2%). Forecast has 

been shifted backwards by one horizon, so that the two-steps ahead probabilities are plotted 

against inflation observed in time 1t h  , that is, are treated as one-step ahead forecasts. 

Analogously, the seven-steps ahead probabilities are treated as six-steps ahead forecasts. For 

the sake of plot clarity, we have plotted the complements of the conditional probabilities to 

one, that is the probabilities that inflation is outside the [1%,3%,] range rather than inside. 

 

Figure 3: Inflation targeting precision in Canada and the conditional 

probabilities of inflation being outside the [1%,3%] range, January 2003-

December 2013 

2h   7h   

  

 

The plots show reasonable accuracy in explaining deviations of inflation from target, even of 

the reasonably large horizon. The probabilities that the short-term forecast has not missed the 

target band follow closely the inflation targeting precision, relevant large deviations and the 

longer-term forecast, with probabilities approaching unity for January-March 2003 and May-

September 2008. The main peaks in inflation targeting precision for the longer-term forecast 

also coincide with the conditional probabilities approaching unity. 

On the basis of the probabilities discussed above we can construct an uncertainty measure 

that, unlike the squares of the ARMA-GARCH forecast errors (see Table 1) correlates with 

the EPU index. It can be formulated as a squared forecast error scaled by the odds of the U.S. 
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inflation being outside the [1%,3%] zone, by the unconditional probabilities. Denoting such 

measure as ,t hum  we can write is as 

2

2 2 2

(1)

, ,

2 2 2

ˆ1 ( )

ˆ ( )

b

a
t h t h b

a

f x dx

um U

f x dx

 
 

  
 
 
 





  , where 1a   and 3b  . 

and, as before Canada and U.S are denoted by 1 and 2 respectively. The intuition here is such 

that and increased odds for uncertainty in U.S. being outside the range affects positively the 

Canadian uncertainty. As such information is might find its way to the media (but not to the 

VAR-BEKK-GARCH model directly), such correction should increase the correlation of the 

new uncertainty measure with the EPU index. Table 3 gives the Spearman’s rank correlation 

measures of ,t hum  with EPU for 1,2,...,12h  .  

Table 3: Spearman’s rank correlation coefficients between EPU and 
,t h

um   

f.hor 1 2 3 4 5 6 

 0.09 0.11 0.22 0.39 0.31 0.36 

f.hor 7 8 9 10 11 12 

 0.41 0.42 0.38 0.42 0.37 0.37 

Legend: coefficients not significant at the 10% significance level are 

boldfaced. P-values used for testing have been obtained by simple 

bootstrap. 

 

The rank correlation coefficients for forecast horizons of 1 and 2 remain insignificant, as they 

are for some other countries listed in Table 1. However, for longer forecast horizons, the 

coefficients become significant, which is in line with the results of correlation of EPU with 

inflation forecast uncertainty for other countries.  

6. CONCLUSIONS 

We managed to shed a new light on the puzzling absence of correlation of the inflation 

forecast uncertainty and the economic policy uncertainty index. We argue that the presence of 

dependence between such uncertainties between countries might cause such effect. For such 

cases we propose a new method for constructing an inflation term structure. The method is 

conceptually simple, albeit computationally awkward. Its application can lead to an 

improvement in foreseeing uncertainty related to inflation and enables computation of term 

structure relatively to the performance of another country, or economic alliance. It also 

suggests a potentially new way of computing uncertainty measures. We exemplify the 

concept by the analysis of the Canadian inflation forecast term structure, but our technique 

can also be applied, for instance, for evaluating the inflation forecast term structure for the 

European Union countries outside the Eurozone relatively to the policy of the European 

Central Bank. For Canada, the results look promising. It has been possible to forecast 

effectively the deviations of inflation from its target using conditional and unconditional ex-

ante probabilities of inflation being within a certain band around the target. The results also 

confirm the rationale for using core inflation in inflation targeting and suggest a way of 

eliminating the effect of external inflation uncertainty onto such measure. 
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