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ABSTRACT 

 

Empirical evaluation of macroeconomic uncertainties and their use for probabilistic 

forecasting are investigated. A new weighted skew normal distribution which parameters 

are interpretable in relation to monetary policy outcomes and actions is proposed. This 

distribution is fitted to recursively obtained forecast errors of monthly and annual 

inflation for 38 countries. It is found that this distribution fits inflation forecasts errors 

better than the two-piece normal distribution, which is often used for inflation forecasting. 

The new type of ‘fan charts’ net of the epistemic (potentially predictable) element is 

proposed and applied for UK and Poland.  

 



1. INTRODUCTION  

Although the concept of uncertainty has been widely used in macroeconomics, there is not 

much of consensus about its measurement. On the one hand, there is currently substantial 

development in measures of uncertainty understood in the Knightian sense, that is as 

unobservable ex-post phenomenon (see e.g. Bloom, 2009, Baker, Bloom and Davis, 2013, 

Jurado, Ludvigson and Ng, 2013). On the other hand, the concept of uncertainty has been 

also used in non-Knightian sense in relation to particular macroeconomic indicators of 

macroeconomics, like inflation and output growth, where the uncertainty can be checked ex-

post, by evaluation of point forecast errors (Clements, forthcoming). In Knight’s (1921) 

terminology this type of uncertainty should be called risk rather than uncertainty. However, 

following the tradition we call these Knightian risks inflation uncertainties, output 

uncertainties, etc.. 

In this paper we develop from Clements (forthcoming) classification of indicators’ forecast 

uncertainties (the Knightian risks). He distinguishes between ex-post forecast uncertainty, 

derived from differences between point forecasts of individual forecasters and corresponding 

realisations, and ex-ante uncertainty, understood as a disagreement measure between the 

forecasters or dispersion of consensus forecasts (see also Patton and Timmermann, 2010, 

2011). Clements’ implicit assumptions are that (i) data on distributions of forecast uncertainty 

come from the distribution of forecasts surveys or consensus forecasts (ii) distributions of ex-

post and ex-ante uncertainties are independent and (iii) forecast uncertainties are independent 

from forecast-induced policy actions, e.g. monetary policy decisions based on the grounds of 

forecasts’ knowledge. Assumption (i) is somewhat restrictive, if it comes to the analysis of 

uncertainties for countries where data on systematic forecasts surveys are either not available, 

or not reliable. Assumption (ii) might be not be fully realistic and the validity of assumption 

(iii) has already been questioned, in context of inflation, by Clements (2004) and Granger and 

Pesaran (2000). Regarding (iii), if forecast of inflation is taken seriously by the monetary 

authorities and happens to be unfavourable (that is, inflation is to be too high or too low, 

according to the inflation targeters), they would impose an anti-inflationary or pro-

inflationary action, as the result of which inflation would miss the level originally forecasted 

and the forecast would prove to be inaccurate.  

Limiting our interest to inflation uncertainties, we aim at relaxing assumptions (ii) and (iii) 

and substituting assumption (i) by another one, that the distribution of non-Knightian 

uncertainty can be derived from series of recursive observations of ex-post uncertainties. This 

approach does not require an access to forecast survey data, but rather a reasonably long time 

series data of the forecasted indicator (and possible related series) which enables recursive 

estimation and forecasting. Such approach is often made by the practitioners preparing so-

called fan charts in most central banks, with a notable exception of UK (see e.g. Kowalczyk, 

2013; for UK fan charts see Clements, 2004, Elder et al., 2005). In Patton and Timmerman 

(2010) terminology, fan charts are visual representations of forecast term structure, that is 

differences in distributions of forecast uncertainty for different horizons. We base our 

analysis on a new simple statistical distribution, called weighted skew normal herein, 

introduced in Section 2. It explicitly identifies the elements of ontological uncertainty, that is 

related to pure randomness (unpredictability) of future events and epistemic uncertainty, 

expressing incomplete or potentially biased knowledge of the forecasters. The parameters of 

this distribution can be interpreted as (1) outcomes of pro- and anti- inflationary economic 

policy actions undertaken on the basis of experts’ forecast signals, assuming an infinite 

number of such forecasters who are making their predictions on the basis of the common 

baseline point forecast, (2) accuracy of experts’ forecasts aimed at improving on the baseline 
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forecast, (3) thresholds that define the presumed ‘safe’ region for inflation, that is where 

monetary intervention is not required, and (4) dispersion of the unobserved ‘net’ 

uncertainties, free from monetary policy effects.  

We have checked to what extent a measure of dispersion of econometric point forecasts 

errors is related to the Knightian measures of aggregate macroeconomic uncertainty. There is 

a reasonably high and significant rank correlation of a simple dispersion measure of inflation 

forecast errors with the recently proposed Knightian aggregate uncertainty measures, namely 

the Economic Policy Uncertainty index (see Baker, Bloom and Davis 2013) and the measure 

developed by Jurado, Ludvigson and Ng (2013); see Section 3. In Section 4 we apply the 

weighted skew normal distribution to approximation of forecast errors derived from simple 

time series models of monthly and annual inflation for 38 countries. We have found that the 

weighted skew normal distribution fits the forecast errors better than two-piece normal 

distribution which is usually applied in central banking inflation forecasting (see e.g. Wallis, 

2004). Moreover, interpretation of the estimated parameters of the weighted skew normal 

distribution is often in line with general monetary policy characteristics. In Section 5 we 

propose new types of fan charts representing forecast uncertainty term structure based on 

decompositions of uncertainties derived from the weighted skew normal distribution. These 

term structures show, for UK and Poland, some interpretational and statistical (predictive) 

advantages of the proposed approach. Section 6 contains conclusions and suggestions for 

further development. 

2. MODEL OF INFLATION UNCERTAINITES 

We consider that 
t h 

, inflation in time t+h, is a random variable that can be split into two 

parts: predictable and nonpredictable from the past. However, the component nonpredictable 

from the past can still be forecastable by methods other than those of time series analysis 

(‘fine tuning’, or experts’ corrections based on some sort of inside information). We follow 

central banks’ tradition of two-stage probabilistic forecasting, which consists of first 

conducting past-related econometric forecast and then assessing the uncertainty relatively to 

this forecast. (see e.g. Pinheiro and Esteves, 2012). Consequently, we decompose 
t h 

 as: 

ˆ
t h t h t hU        ,                    (1) 

where ˆ
t h 

 is the baseline point forecast, usually obtained from a time series econometric 

model and Ut+h is a random variable representing ex-post uncertainties revealed in time t 

regarding inflation in time t+h, so that h is the forecast horizon. To avoid confusion with 

other concepts (see e.g. Fountas et al. 2006) we refer to Ut+h as U-uncertainties. It is further 

shown that realisations of U-uncertainties can be recovered from data (see Section 3 below). 

Further on we regard each Ut+h separately for each time period and forecast horizon and, for 

simplicity of notation, we drop the subscripts, so that 
def

t hU U  .  

Let us consider the following specification of U:   

Y m Y k
U X Y I Y I  
          ,                 (2) 

where 
1 if

0 otherwise
Y m

Y m
I 


 


   ,   
1 if

0 otherwise
Y k

Y k
I



 
 


   , 

and 
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2 2

2 2

0
( , ) ,

0
X Y N

 

 

   
    
    

   ,  

 ,   , m , k   and 1 1   .  

Below we provide interpretation to all six parameters in (2). Random variable X contains two 

elements usually regarded as characteristics (or types) of uncertainties: ontological 

uncertainties, related to the purely random (unpredictable in mean) nature of future inflation, 

and epistemic uncertainties, related to fragmentary and incomplete knowledge of the 

forecaster (for general discussion of these concepts see e.g. Walker et al., 2003, and for 

application in inflation forecasting context see Kowalczyk, 2013).
1
 The epistemic elements in 

X can in fact be predictable, e.g. by experts who based their judgements on the analysis of 

non-quantitative data, expected effects of current political decisions, etc. That is why we refer 

to X as to quasi-uncertainties. For interpretation of Y, we assume that an infinite number of 

such expert forecasters deliver individual forecasts based on individually obtained 

information. These forecasters have the common knowledge of the baseline forecast, so that 

their forecasts are formulated in relation to ˆ
t h 

. As these individual forecasts differ from 

each other and each forecaster is supposed to have own sources of information, it also create 

uncertainties, represented by Y, called in the literature uncertainties by disagreement. The 

intuition is simple here: if the forecasters don’t agree, they are uncertain. In the context of 

forecasting inflation the concept of uncertainty by disagreement has been introduced by 

Bomberger (1996) and developed further, in particular, by Diebold, Tay and Wallis (1999), 

Giordani and Söderlind (2003), Lahiri and Liu (2006), Lahiri and Sheng (2010), Patton and 

Timmermann (2010) and Siklos (2013).  

To what extent these experts’ forecasts represented by Y are ‘educated’, or accurate, is 

expressed by the correlation coefficient  between X and Y. If either X is totally unpredictable 

(that is, if quasi-uncertainty becomes fully ontological) or if the experts are ignorant, then 

0  . The higher is the value of , the more epistemic becomes X and/or the experts become 

more competent. For this reason we refer to Y as to imperfect knowledge (the knowledge 

becomes perfect if 1  ). It is reasonable to assume that the variances of X and Y are 

identical. They are denoted as 2 . This assumption is grounded within the conjecture that, in 

the absence of epistemic element in quasi-uncertainties, disagreement between the experts 

has the same variability as ontological uncertainty. We also assume that the experts’ forecasts 

cannot be negatively related to quasi-uncertainties X, that is 0 1  . 

Further four parameters of the model (2), that is m , k ,  , and  , can be interpreted in the 

light of actions and outcomes of some sort of monetary policy. There is no need to assume 

anything specific regarding this policy except for the fact that it is based on experts’ forecasts 

Y regarding quasi-uncertainty X and that the policy undertaken in time t might affect inflation 

in time t+h. The model requires rather strong assumption that the baseline forecast ˆ
t h 

 does 

not stimulate monetary policy outcomes and that the monetary authorities react to 

information passed to them through Y only. In another words, the baseline forecast ˆ
t h 

 is 

assumed to be a policy-neutral part of inflation.  

                                                 
1
 Walker et al. (2003) and Kowalczyk (2013) talk of variability uncertainty rather than of ontological 

uncertainty. Walker’s et al. classification has been criticised for incompleteness and tautology (Norton, Brown 

and Mysiak, 2006). Other definitions and classifications, also often criticised, are frequently used in different 

sciences. It is also important to acknowledge the relative and time-varying nature of ontological uncertainty in 

economics (see e.g. Lane and Maxfield, 2005). 
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The parameters m  and k  denote respectively ‘high’ and ‘low’ thresholds for imperfect 

knowledge Y which, if breached, signal to the monetary authorities the necessity of 

undertaking an anti-inflationary decision (if m  is breached from below) or pro-inflationary 

(if k  is breached from above). While m  and k  decide on signals for monetary policy 

actions,   and   describe actual effectiveness (outcomes) of these actions. The parameter  

tells to what extent anti-inflationary decisions undertaken on the basis of inflation signals are 

transmitted into the change in inflationary uncertainties and β tells the same for output-

stimulating pro-inflationary decisions. Rational behaviour of the policy makers and 

forecasters implies that 0  , 0  , 0m  , 0k   and 0 1  .  

Random variable U defines a family of distributions which we name the weighted skew-

normal and abbreviated as  WSN , , , ,m k    . For operational simplicity it is convenient 

to normalize WSN in such way that =1 and define U   as: 

 1~ WSN , , , ,
U

U m k  


     ,              (3) 

where /m m   and /k k  . The probability density function (pdf) of U   is given by: 

1 2 2

2 2

1 1
( )

(1 ) (1 )

( ) ,
1 1

WSN

B t kAB t mAt t
f t

A A A AA A

m t k t
t

  

    

 
 

 


 

       
        

             

     
       

         

    (4) 

where  and  denote respectively the density and cumulative distribution functions of the 

standard normal distribution, and: 

2( ) 1 2A A       ,   ( )B B         . 

If, in (2), 2    and 0m   , the distribution of U coincides with the Azzalini (1985, 

1986) skew-normal SN( )  distribution with pdf 
SN ( ; ) 2 ( ) ( )f t t t    , where 

21










. 

It follows from (4) that the pdf of the weighted skew-normal variable 
1WSN ( , , , , )m k    

can be interpreted as a weighted sum of pdf’s for two Azzalini-type skew normal densities 

with different  ’s and a pdf of conditional distribution 
X Y

k m
 

  ; hence the name for the 

distribution. Basic characteristics and properties of WSN, generalisations and moment 

generating function are given in Appendix A, Part I. 

As the main moments, especially variance, of U can be interpreted as aggregate 

characteristics of uncertainties, we can evaluate their dependence on the parameters of the 

monetary policy: decision thresholds (k and m), strength of forecast-induced anti-inflationary 

() and output-stimulative (β) monetary outcomes, and the degree of predictability of X from 

imperfect knowledge, measured by .  

It immediately follows from (2) that the WSN distribution is symmetric only if 0    or, 

if k m   and   ; otherwise it is asymmetric. This is in line with a general consensus 

that distributions of inflation uncertainties might be skewed (for recent advances see 
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Demetrescu and Wang, 2012). The type of skew distribution usually applied for central banks 

for constructing fan charts is the two-piece skew normal (see e.g. Wallis, 2004). Explanation 

in the literature or interpretation of skewness in this distribution is usually not detailed. It is 

described by Wallis (2004) that: ‘the degree of skewness shows their collective assessment of 

the balance of risks on the upside and downside of the forecast’. We argue that skewness 

might result from widely defined asymmetries in monetary policy actions and outcomes. Our 

interpretation of WSN distribution implies that, under the assumption of normal distributions 

of quasi-uncertainties X and imperfect knowledge Y, inflation uncertainties become skewed if 

either the strength of anti- and pro-inflationary policy differ from each other and/or 

thresholds defining the expected inflationary ‘danger zones’ are not symmetric. 

Ontological uncertainty, that is the non-predictable component in X, can be extracted as: 

     ( | )Z X E X Y X Y        , 

so that: 

     
2 2

2

0 (1 ) 0
( , ) ,

0 0
Z Y N

 



   
    
    

   . 

In another words, Z is the part of the quasi-uncertainty X which is net of epistemic element, 

that is of imperfect knowledge. Similarly we can retrieve the epistemic part of X from U as:  

( | )V U E X Y U Y       .               (5) 

Although V does not contain the epistemic element of X, it is contaminated by it through 

possible monetary policy outcomes, as: 

   ( | ) Y m Y k
V U E X Y U Y Z Y I Y I   
              . 

Further in the text we refer to V as V-uncertainties or, not very precisely (because of this 

contamination), as net uncertainties. Distribution of V is also related to WSN, as: 

   1
2 2 2

1
WSN , , , ,0

1 1 1

m k
V

 

    

 
 
    

   . 

If parameters in (2) can be estimated or calibrated for each forecast horizon h, both U-

uncertainties and V-uncertainties can be used for constructing probabilistic forecasts in the 

form of fan charts, that is by retrieving and then plotting equiprobable quantiles. Each of 

these fan charts would have different interpretation. The fan chart based on U-uncertainties 

would incorporate the possible forecast-induced monetary policy outcomes, and also 

epistemic uncertainty, and the fan chart based on V-uncertainties would be free of them. The 

former would be of interest for ‘end users’ who do not have any influence on monetary 

policy, or the monetary policy body after the decision was made, and the latter to the 

monetary policy body before the decision is made, as it excluded the effects of its own 

decision and possible effects of imperfect forecasting. In another words, V-uncertainties can 

be interpreted as such where information from the forecasters do not have any effect on 

uncertainty. Comparing both could provide an idea of the influence that the epistemic 

element has on the distribution of inflation forecasts. 

A straightforward way of doing this is by comparing variances of V- and U-uncertainties 

through their variance ratio, denoted as VRUV: 
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*

( ) / 2var( )
VRUV 1 2

var( ) ( )

m kD DV

U Var U

  

  

      ,            (6) 

where 
2( ) ( ) 1 ( ) ( )a

a

D D a t t dt a a a 


     .  

VRUV is equal to unity, that is var( ) var( )U V , if 0   or 2( )m kD D     . It should 

be noted that VRUV does not depend on  , but rather on the ratios /m m   and /k k  .  

Deviation of VRUV from unity represents the effect of the epistemic element on the 

uncertainties (through  ) and the effect of monetary policy (through 
m kD D  ), where   

and   reflect the strength of individual monetary policy actions, and 
mD  and 

kD  reflect the 

frequency of such actions. Let us denote the compound monetary policy effect as 

| | | |m kS D D   . Appendix A, Part II, gives a general representation of VRUV as a 

function of S and forecast bias ( )E U . In the case of unbiased forecast, that is when 

( ) 0E U  , it is convenient to represent VRUV as a function of S: 

 
2

,

var( ) 2
VRUV 1

var( ) 1 2 m k

V S

U S W S







  

  
 ,              (7) 

where  
22 2

, ( ) ( ) / ( ) ( )m k m k m kW D k D m D k D m           . 

In is clear from (7) that 2

0
VRUV 1

S



  , 

0
VRUV 1


  and VRUV 1

S
 . It is also 

shows that, as a function of S  and  , VRUV is (conditionally) unimodal for fixed 0.   

Let us denote its corresponding conditional maximum as 
maxVRUV ( )  and the value of the 

argument S for which it is achieved as 
maxS  (see Appendix A, Part II, for the derivation of 

this maximum ).  

Figure 1 plots VRUV for the fully symmetric case, that is for   , 2 1  , 

/ / 1m k    , and for different values of  , against 
1/S D   , representing the 

strength of forecast-induced monetary policy. For the very low strength of the forecast- 
 

Figure 1: VRUV for the case where 
2 1  ,   , 1m k    

and for different values of   . Values of VRUV smaller 

than one are in a lighter shade  
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induced monetary policy VRUV is smaller than one and is decreasing with the increase in  , 

that is where the degree of imperfect knowledge is increasing. In this case variance of U 

increases in relation to variance of V. This means that, in such case, an increase in epistemic 

elements is raising inflation uncertainty. If, on the other hand, the epistemic element is 

utilised in the monetary policy, so that its forecast-induced strength increases up to the 

optimal point where VRUV reaches its maximum, inflation uncertainty represented by 

variance of U decreases in relation to variance of V. In the case shown by Figure 1, 

max 1(1) / 1S D  , (  11/ 2D    ) and  
1

max 1VRUV (1) 1 2 5.03D


   . 

Results given above suggest a practical application for the uncertainties defined as such 

which maximizes VRUV. As in practice the strength and future effects of the current 

monetary policy are unknown, in some cases it might be plausible to safeguard against the 

worst possible case, where the uncertainty also incudes that of the strength and frequency of 

monetary policy actions on the evaluation of V-uncertainties. Such maximum V-uncertainties 

are called herein the M-uncertainties. If 
max ( )VRUV   is known (as shown in Appendix A, 

Part II, it can be easily computed analytically or, for more complicated cases, numerically), 

M-uncertainties can be recovered from U-uncertainties as 
max( ) ( )M U VRUV  , without 

the need of any additional estimation. An empirical application of 
maxVRUV  for constructing 

fan charts for UK and Poland is given in Section 5. 

3. MEASUREMENT OF INFLATION UNCERTAINTIES 

Assuming that ˆ
t h 

 in (1) can be estimated, observations on U-uncertainties can simply be 

identified as baseline ex-post point forecast errors, that is as the differences between inflation 

actually observed in time t+h and the corresponding forecast, that is ˆ
t h 

. Distributions of 

such uncertainties by error have been widely applied, with some variations, for constructing 

probabilistic forecasts of inflation in most of central banks, among others in Chile, Czech 

Republic, Norway, Poland, Slovakia and Sweden, with notable exceptions of Bank of 

England, Israel and US where parameters of the distributions used to construct fan-charts are 

derived differently. In these central banks where the uncertainties by error are used, their 

empirical distributions are usually smoothed, often subjectively adjusted and fitted with a 

theoretical distribution, for which the probabilities of inflation being within particular 

intervals (bands) are computed. 

We have computed such baseline point forecast errors for 38 countries, that is for 32 OECD 

countries and for Brazil, China, India, Indonesia, South Africa and the Russian Federation. 

We have alternatively used non-deseasonalised monthly data on monthly inflation (that is on 

changes in CPI in relation to previous month, called further in this paper monthly inflation), 

and monthly data on annual inflation (changes in CPI in relation to the corresponding month 

of the previous year, called annual inflation). The data series are of various lengths and end at 

January or February 2013. The longest series starting in January 1949 is for Canada (770 

observations) and the shortest are for Estonia (182 observations) and China (242 

observations). The raw CPI data can be downloaded from: http://stats.oecd.org/. It is 

conjectured that if these countries conducted some sort of effective monetary policy, it might 

in turn affect the distribution of uncertainties. Some countries (e.g. the members of the 

European Monetary Union, EMU) do not have autonomous monetary policy since the 

creation of the Euro. Nevertheless, for EMU countries, the policy of European Central Bank 

affects inflationary uncertainties in a similar way an autonomous monetary policy might. In 

our approach it is not relevant how the monetary policy decisions are made; their effect on 

uncertainties is what matters.  

https://securewebmail.le.ac.uk/owa/redir.aspx?C=_bJ3ztklZEK5an5mVbGAp_QcLEApANBINAAskoqFK7u7lprw35xwjYVoh1BAtblNK2WJEdLSDvs.&URL=http%3a%2f%2fstats.oecd.org%2f
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The forecast errors have been computed separately for each series in the following way.  

1. Orders of seasonal and non-seasonal integration have been identified using the Taylor 

(2003) test which takes into account the possibility of the presence of unit roots at 

frequencies other than tested. 

2. Initial (for first recursion) period for estimation has been defined as a maximum of the 

first 80 observations and the 20% of the series length. 

3. Point forecasts (that is, estimates of ˆ
t h 

) have been made recursively using the estimated 

seasonal autoregressive moving average model (SARMA) for the first recursion period 

and then by updating it by one observation at a time and re-estimating the model. Orders 

of the lag polynomials are obtained in each recursion by the Gómez and Maravall (1998) 

procedure which is based on the automatic lag selection that minimises the Bayesian 

Information Criteria (BIC). Forecasts have been made for up to 12 periods ahead. These 

forecasts have not been adjusted or manipulated. As the result, for each country we have 

obtained reasonably long series of forecasts for different forecasts horizons, and then 

forecast errors, with the maximum number of sample observations for Canada being 613 

and the smallest for Estonia at 99. 

Apart from SARMA, we have also tried different univariate forecasting models, most notably 

the bilinear autoregressive-moving average model. These alternative models produced 

different uncertainties, but the final outcomes, in terms of interpretation, have been similar to 

those presented below and obtained from SARMA. 

At the next stage we have checked whether such simple ex-post forecast errors can indeed be 

used for constructing non-Knightian components of an aggregate measure of Knightian 

uncertainty. If this is to be the case, a measure of uncertainty based on dispersion of the ex-

post forecast errors should correlate with available measures of macroeconomic uncertainty 

computed independently and with the use of different types of data. As such measures of 

macroeconomic uncertainty we have selected the economic policy uncertainty index (EPU), 

developed by Baker, Bloom and Davis (2013) on the basis of Bloom (2009), available at 

http://www.policyuncertainty.com/ and another recently proposed measure called aggregate 

macroeconomic uncertainty (AMU) developed by Jurado, Ludvigson and Ng (2013), 

available at http://www.nyu.edu/user/ludvigsons/data.htm. The EPU is an aggregate index, 

based on (a) the frequency of the use of word ‘uncertainty’ in leading newspapers, (b) tax 

code provisions and (c) disagreement between the forecasters (that is, uncertainty by 

disagreement, as discussed in Section 2 above). Monthly data on EPU are available for 

Canada, China, France, Germany, India, Italy, Spain, UK and US and are constantly updated. 

The AMU is available only for US, also in monthly data, for the period July 1960 – December 

2011. It is a complex aggregate obtained from the residuals’ covariance matrix of a factor 

augmented forecasting model using 279 individual series (for details see also 

http://www.econ.nyu.edu/user/ludvigsons/jln_supp.pdf). 

As the purpose of this paper is to examine the distribution which fits the inflation forecast 

errors rather than to develop and alternative measure of uncertainty, we have limited 

ourselves to introducing a rather rudimentary measure of inflation uncertainty. It is called 

herein econometric forecast uncertainty (abbreviated as EFU) and is defined as a simple 24-

months moving standard deviation of the smoothed SARMA forecast errors. Table 1 contains 

Spearman’s rank correlation coefficients of EFU with the logarithms of EPU and with AMU 

(for US only) for the forecast horizons 1,3,6,9 and 12.
2
 

                                                 
2
 The logarithms are used in order to milder the effect of so called informational cascades; see e.g. Baltag et al. 

(2013). Results which used levels rather than logarithms are similar. 

http://www.policyuncertainty.com/
http://www.nyu.edu/user/ludvigsons/data.htm
http://www.econ.nyu.edu/user/ludvigsons/jln_supp.pdf
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All correlation coefficients in Table 1 for all countries except for Canada and China are 

significant at 1% level (using bootstrapped standard errors). For Canada and China they are 

mostly insignificant or at the margins of significance. For Canada, the lack of correlation is 

likely caused by unpredictable (by the univariate SARMA model) fall in inflation in the first 

half of 1990’s, where the decline in Canadian inflation was preceded by an earlier inflation 

drop in US and therefore foreseen by the media. As media information constitute relevant 

component of EPU, this was not reflected by this index. For China, EFU index reflects two 

autoregressively unforecastable slowdowns in Chinese inflation (in 2007 due to anti-

inflationary measures undertaken in order to cool off the economy and in 2009 due to a burst 

in the real estate bubble) while, on the other hand, EPU index mirrors the widespread 

discussion in professional press in 2008 about the possible breakdown of the Chinese 

economy and the aftermath of natural disasters in the same year. 

For US, correlation of EFU with AMU is higher than that with EPU. There is no surprise 

here, as the econometric forecasts errors of inflation, although obtained by different 

techniques than SARMA modelling, constitute a substantial part of AMU. It is interesting to 

note that for US the correlation of EFU with the log of EPU seems to raise with the increase 

in forecast horizon, the correlation with AMU actually decreases. 

Table 1: Spearman’s rank correlation coefficients of EFU with logs of EPU and with AMU. EFU is computed as 

moving standard deviation of forecasts errors. EPU is economic policy uncertainty index reported at 

www.PolicyUncertainty.com and described in Baker, Bloom and Davis (2013) AMU is the aggregate 

macroeconomic uncertainty as in Jurado, Ludvigson and Ng (2013). Insignificance is marked by 

underlining; the coefficients with p-values>0.10 are doubly underlined, with p-values between 0.05 and 

0.10 singly underlined by a solid line and with p-values between 0.01 and 0.05 underlined singly by a 

dotted line. 

 
with logs of EPU 

with 

AMU 

f.hor Canada China France Germany India Italy Spain UK US US 

1 -0.07 0.06 0.28 0.20 0.69 0.41 0.29 0.73 0.42 0.77 

3 0.05 0.15 0.37 0.29 0.73 0.54 0.34 0.81 0.50 0.69 

6 0.18 0.21 0.42 0.32 0.74 0.51 0.36 0.78 0.60 0.63 

9 0.15 0.25 0.41 0.36 0.69 0.49 0.46 0.74 0.61 0.53 

12 0.13 0.26 0.46 0.30 0.68 0.47 0.49 0.77 0.57 0.54 

Figure 2 presents time series of EFU’s and logarithms of EPU’s for Canada, India, UK and 

US and also the series of AMU for US compared with EFU. All series are normalised by the 

first observation. The similarities in dynamic development of both measures are striking. It is 

not the purpose of this paper to decide which one is better. The relevant conclusion is such 

that econometric forecast errors can be regarded as an adequate measure of uncertainty and, 

therefore, used for estimation of parameters of the distribution of U as defined by (2).  

4. ESTIMATION OF DISTRIBUTION OF EX-POST UNCERTAINTIES 

With the use of the forecast errors computed in the way described in Section 3, we have 

estimated the parameters of the WSN distribution (4). In order to reduce the computational 

burden we have assumed that the decision thresholds are fixed (relatively to ) and identical 

for all countries so that / / 1m m k k        (that is, the thresholds are equal to one 

standard deviation of the uncertainties) and the correlation coefficient  = 0.75, that is that 
 

http://www.policyuncertainty.com/
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Figure 2: Monthly time series of EFU and log of EPU for selected countries. For definitions and sources of EPU 

and EFU see the header of Table 1. 

  

  

 

 

the level of imperfect knowledge and quality of forecasts made by individual forecasters, who 

constitute Y, are reasonably good. Hence, we are left with three parameters to be estimated: 

, β and . Computations also have been repeated for different thresholds and correlation 

coefficients and the results seem to be relatively robust to changes of these parameters. 

We have compared the fit of WSN with that of two-piece skew normal distribution, TPN, 

often used for constructing fan charts of inflation (for its statistical properties see John, 1982 

and Kimber, 1985; for wider discussion and use in the context of fan-chart modelling see e.g. 

Tay and Wallis, 2000). One of the representations of its pdf is: 
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 

  

   , 

where  
1

1 22 ( ) / 2A   


  . Three parameters to be estimated are 2

1  , 2

2  and  .  

Maximum likelihood estimation of parameters of various types of skew normal distributions, 

albeit formally straightforward, as the density functions are expressed in closed form, is 

usually numerically awkward, with possible bias and convergence problems (see e.g. Pewsey, 

2000, Monti, 2003). For this reason we have decided to apply the minimum distance 

estimators (MDE’s) rather than maximum likelihood. Appropriately defined MDE’s are 

asymptotically efficient and asymptotically equivalent to the maximum likelihood estimators 

(see Basu, Shioya and Park, 2011). Additional advantage is the ease of their interpretation, as 

the distance measures tell of the fit of the theoretical to empirical distribution, and the 

possibility of comparison, in order to search for the one which gives the best fit.  

The minimum distance criteria can be defined in different ways. In this paper we have used 

the Hellinger twice squared distance criterion, defined as (see e.g. Basu, Shioya and Park, 

2011): 

1/2 1/2 2

1

( , ) 2 [ ( ) ( ) ]
m

n n

i

HD d f d i f i 


      , 

where n is the sample size, m is number of disjoint intervals, ( )nd i  is the empirical frequency 

of data falling into the i
th

 interval and ( )f i  is the corresponding theoretical probability for 

this interval, that is an integral of the density function over the interval. Properties of 

estimators based on Hellinger distances have been well researched in the context of other 

skew normal distributions (see Greco, 2011), and it is known that the estimates are 

reasonably robust to the presence of outliers, which might appear in a large sample of 

inflation forecast errors, especially for longer forecast horizons. Other distance measures 

belonging to the Cressie and Read (1984) family of power divergence disparities, have also 

been used leading to similar results. 

We made a deviation from the established tradition of computing the f  analytically and 

obtained the estimates of the theoretical probabilities by simulation, that is, by Monte Carlo 

approximation of the theoretical probabilities. Random number generators of the distributions 

considered here are straightforward (for WSN see Appendix A, Part III, and for TPN see 

Nakatsuma, 2003). Details of this estimation procedure, called the simulated minimum 

distance estimator, SMDE, are given in Charemza et. al (2012); similar approach have been 

used by Dominicy and Veredas (2013). The version of SMDE applied here can be defined as: 

  , 1

ˆ arg min ( ,
RSMDE

n n r r
HD d f 



 




    , 

where ,rf   is the Monte Carlo approximation of the theoretical probabilities, f , of a random 

variable obtained by generating r = 1,2,…,R replications (drawings) from a distribution with 

parameters   ( k  ), 
nd  denotes the density of empirical sample of size n, and   is 

an aggregation operator based on R replications, which deals with the problem of the ‘noisy’ 

criterion function (median, in this case). 

Figure 3 illustrates the differences between the Hellinger distances obtained for the estimated 

WSN and TPN distributions for the forecasts horizons 1 and 4. Explanation of country labels 
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(abbreviations) is given in Appendix B. Detailed estimation results are available on request. 

In each panel a straight 45 degree line marks the points for which the Hellinger distances for 

the WSN and TPN distribution would be identical. If the dot representing a particular country 

is below this line, WSN distribution has a better fit (that is, smaller distance measure) than 

TPN distribution and vice versa. For monthly inflation, better fit of WSN in comparison to 

TPN is evident for most countries, and for annual inflation for nearly all countries. It appears 

that the advantage of WSN over TPN is increasing with the increase in forecast horizon. 

Figure 4 depicts the comparison between estimated  and β parameters (multiplied by -1, for 

the clarity of graphs). Deviations from the 45 degree line downwards denote the dominance 

of the forecast-induced anti-inflationary effects on uncertainty (that is,     ) and vice 

versa. As forecasts of Poland and UK are analyzed further in a greater detail, they are 

denoted by italics and squares as country symbols. 

Figure 3: WSN and TPN Hellinger distances. Each point represents the pair of minimum Hellinger distances 

obtained for fitting the weighted skew normal (WSN) and two-piece normal (TPN) distributions to 1 

and 4-step ahead forecasts errors for 32 countries. Number of observations varies from 182 to 770. 

Country symbols are explained in Appendix B. Poland and UK are marked by squares and italics. 

 
Forecasts made using monthly data on monthly inflation 

3.a: 1-step ahead forecasts 3.b: 4-steps ahead forecasts 

  

 

Forecasts made using monthly data on annual inflation 
3.c: 1-step ahead forecasts 3.d: 4-steps ahead forecasts 

  

Results in Figure 4 differ markedly for different forecast horizons and for different types of 

inflation forecasted. For monthly inflation points on the graphs are widely scattered and 

hence difficult to interpret. Generally, the results seem to be smoother for the annual 
 

Figure 4: Estimated  and β parameters. Each point represents the corresponding  and β parameters which 

minimized the Hellinger distances obtained for fitting the weighted skew normal (WSN) distribution 
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to 1 and 4-step ahead forecasts errors for 32 countries. Number of observations varies from 182 to 

770. Country symbols are explained in Appendix B.  

Forecasts made using monthly data on monthly inflation 

4a: 1-step ahead forecasts 4b: 4-steps ahead forecasts 

  

Forecasts made using monthly data on annual inflation 
4c: 1-step ahead forecasts 4d: 4-steps ahead forecasts 

  

 

inflation, and more symmetric, in terms of discrepancies of the corresponding values of ’s 

and β’s, for the longer forecast horizon. For annual inflation the anti-inflationary effects on 

uncertainty are clearly more evident than output-stimulating effects, as the majority of points 

are below the 45 degree line. It is interesting that the clear outlier here is Japan, with its 

prolonged output-stimulating and pro-inflationary policy. Also Russia, the biggest natural-

resource economy which maintains nominal exchange rate control, resulting in ‘dirty float’ 

and inflationary pressure in times of oil price raises, is constantly marked below the 45 

degree line, which is consistent with its persistent anti-inflationary policy. 

5. INFLATION TERM STRUCTURES FOR UK AND POLAND 

In order to compare WSN and TPN applied for computing forecasts term structures we have 

selected two countries, UK and Poland, for which we have evaluated the probabilistic 

forecasts for the last 12 months of our sample, that is for the period from March 2012 to 

February 2013. We have compared our results with these given by the probabilistic forecasts 

published as fan charts by the Bank of England and National Bank of Poland in their Inflation 

Reports. 

For these countries we have used the same method of computing point forecasts errors as in 

Sections 3 and 4. Next, for each horizon from 1 to 12, we have estimated the parameters of 
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WSN and TPN distributions, using the simulated minimum distance estimation with the 

Hellinger criterion, as described in Section 4.  

Figures 3a-3d indicate, that for Poland, for the forecasts horizons 1 and 4, the Hellinger 

distances are nearly identical for WSN and TPN, while for UK the fit of WSN is slightly 

better. In order to investigate the fit of the distributions closer, we have additionally applied 

tests based on the probability integral transform, pit. The results of pit’s uniformity testing 

(not reported here and available on request) confirm that the WSN is generally superior, in 

terms of fit, to TPN (for h=1 for both countries and for h=10 for Poland the results are 

inconclusive). 

At the next stage the estimated parameters of WSN have been applied for simulating the 

distributions of U-uncertainties (100,000 replications for each forecast horizon). Then we 

have retrieved V-uncertainties using (5). We have also computed M-uncertainties, as 

described in Section 2 which corresponds to the maximum of VRUV. 

Analogously to U-uncertainties, we have simulated and applied TPN uncertainties obtained 

by fitting TPN, rather than WSN, distribution to ex-post forecast errors. For all these types of 

uncertainties (U, V, M, TPN) and for each forecast horizon we have computed 6 equidistant 

quantiles, giving five finite intervals of identical probabilities of 14.29% and two infinite, at 

the upper and lower ends. The distributions are then centered around point forecasts, that is, 

the estimates of ˆ
t h 

 in (1). The fan charts derived in this way are given at Figures 5 (for UK) 

and 6 (for Poland), where different darks of grey represent the equidistant quantiles and the 

dashed lines represent the point forecasts of inflation. For the sake of comparison, we keep 

the scale identical for all fan charts. 

For both countries, the fan charts based directly on ex-post forecast errors, that are U-

uncertainties obtained from WSN and TPN-uncertainties, do not differ much from each other. 

This is hardly surprising, as the both are based on the same set of empirical data, so that the 

empirical variance of forecast errors is the same. However, for V-uncertainties (Figures 5b 

and 6b), the bands are visibly wider than for U-uncertainties and TPN-uncertainties. 

Evidently, the widest are the fan-charts based on M-uncertainties. 

The fact that the fan charts made with the use of V-uncertainties are, for UK and Poland, 

wider than these made with the use of U-uncertainties suggests that the ratio of variances of V 

and U, that is VRUV, as defined by (6), is greater than unity. It implies that for both countries 

the forecast-induced monetary policy reflected by U is effective for diminishing inflation 

uncertainty.  

Potential confusion between concepts of U- and V-uncertainties might lead to 

misunderstandings. An example here is the critique of the Bank of England forecasts by 

Dowd (2007) who claimed that the Bank of England overestimated the inflation uncertainty 

in the sense that in the period 1997-1999 the observed inflation was within an interval which 

has a low probability according to the Bank of England fan chart assumptions. In fact the 

published Bank of England forecasts claim to be monetary policy neutral and are made under 

the assumption of the monetary policy being unaffected by the forecasts. If this is the case 

and (a) accuracy of experts’ forecasting is good, that is,  in (2) is high, and (b) strength of 

forecast-induced monetary policy outcomes is reasonable, that is  and β are markedly 

negative, VRUV is greater than one and there is no surprise that the Bank of England 

uncertainties were high and, at the same time, inflation was often close to its target. 
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Figure 5: Fan charts for UK. The solid line represents recorded inflation; the dashed line is the point forecasted 

inflation, which is the mean of the distribution of uncertainties. Different darks of grey represent 

equiprobable intervals of 14.29%. 

5a: Using U-uncertainties 5b: Using V-uncertainties 

  

5c: Using M-uncertainties 5d: Using TPN-uncertainties 

  

Figure 6: Fan charts for Poland (for description see Figure 5 

6a: Using U-uncertainties 6b: Using V-uncertainties 

  

6c: Using M-uncertainties 6d: Using TPN-uncertainties 
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In order to assess the accuracy of point forecasts with the use of the uncertainty distributions 

introduced above, we use the concept of forecast p-values which is, to an extent, the analogue 

to p-values used in testing statistical hypotheses. If recorded (observed) inflation is above the 

baseline point forecast, the forecast p-value is a probability of inflation being greater than the 

recorded inflation conditionally on inflation being greater than the expected value. If, on the 

other hand, recorded inflation is below the point forecast, it is the probability that inflation is 

below the recorded inflation, conditional on inflation being smaller than the expected value. 

Due to possible asymmetry in uncertainties we are using one-sided probabilities, so that an 

ideally accurate forecast would have a p-value of 1. We have computed the forecast p-values 

using, as a benchmark, point forecasts obtained with the use of SARMA model discussed in 

Section 3. These benchmark forecasts have been used as means for the uncertainty 

distributions. It is difficult to say what the ideal forecast p-values should be. If they are high 

(close to unity), the benchmark forecasts are relatively accurate and the distribution of the 

uncertainties is too wide. If they are low, the accuracy of the benchmark forecast is poor and 

the distribution is too narrow. It might be a convenient consensus to look at the forecast p-

values close to that on one standard deviation as optimal. Tables 2 and 3 show values of 

benchmark point forecasts, recorded inflation and forecast p-values. The benchmark forecasts 

are as marked on Figures 5 and 6 by dashed lines.  

The tables also show the computed probabilities of the violation of inflation target bands. For 

Poland, these target bands are officially announced as being from 1.5% to 3.5%, with target 

inflation being equal to 2%. For UK, where only point target of 2% is given, we have 

assumed the usual ±1% hypothetical bands, from 1% to 3%. Tables 3 and 4 show that, at the 

moment of making the forecast, the probabilities of inflation actually recorded obtained with 

the use of V-uncertainties were higher than these obtained with the use of U-uncertainties. 

This is quite understandable, as for both countries and all forecast horizons VRUV is greater 

than unity, so that the variances of V-uncertainties are greater than the corresponding 

variances of U-uncertainties. Differences between the p-values obtained for U-uncertainties 

and for TPN-uncertainties are not substantial, with the p-values being usually higher for the 

former rather than for the latter. Forecast p-values for M-uncertainties are interpreted as a 

cautious analog to these for V-uncertainties, with additional doubt related to the possible 

effects of the forecast-induced monetary policy. 

Table 2: UK. Observed inflation, forecasts, probabilities of violation of target bands (1%-3%) and p-values 

computed with the use of U, V, M and TPN-uncertainties for SARMA-based forecasts. Distributions 

and forecasts are evaluated using data up to February 2012. 

f.hor 

 

obs.infl 

 

mean 

forecast 

infl. target violation prob. forecast p-values  

U-unc V-unc M-unc TPN-unc U-unc V-unc M-unc TPN-unc 

Mar 12 3.5 2.7 0.35 0.46 0.46 0.35 0.30 0.52 0.49 0.29 

Apr 12 3.0 2.5 0.42 0.64 0.56 0.40 0.66 0.81 0.77 0.65 

May 12 2.8 2.5 0.59 0.71 0.75 0.49 0.88 0.91 0.92 0.84 

Jun 12 2.4 2.5 0.66 0.72 0.78 0.57 0.98 0.98 0.98 0.97 

Jul 12 2.6 2.6 0.69 0.73 0.78 0.63 0.99 0.99 0.99 0.98 

Aug 12 2.5 2.8 0.72 0.75 0.81 0.68 0.90 0.91 0.93 0.89 

Sep 12 2.2 3.0 0.74 0.76 0.83 0.72 0.75 0.78 0.84 0.74 

Oct 12 2.6 3.2 0.76 0.78 0.84 0.75 0.85 0.87 0.90 0.84 

Nov 12 2.6 3.3 0.77 0.79 0.84 0.76 0.83 0.85 0.89 0.83 

Dec 12 2.7 3.3 0.78 0.80 0.85 0.78 0.86 0.87 0.90 0.84 

Jan 13 2.7 3.3 0.79 0.81 0.86 0.80 0.87 0.88 0.91 0.87 

Feb 13 2.8 3.3 0.80 0.82 0.87 0.81 0.90 0.91 0.93 0.90 
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Table 3: Poland. Observed inflation, forecasts, probabilities of violation of target bands (1.5%-3.5%) and p-

values computed with the use of U, V, M and TPN-uncertainties for SARMA-based forecasts. 

Distributions and forecasts are evaluated using data up to February 2012. 

f.hor 

 

obs.infl 

 

benchmark 

forecast 

infl. target violation prob. forecast p-values  

U-unc V-unc M-unc TPN-unc U-unc V-unc M-unc TPN-unc 

Mar 12 3.8 3.6 0.55 0.54 0.53 0.53 0.64 0.73 0.75 0.67 

Apr 12 3.9 3.7 0.58 0.59 0.60 0.58 0.79 0.83 0.87 0.79 

May 12 3.4 3.8 0.60 0.63 0.64 0.62 0.79 0.88 0.86 0.74 

Jun 12 4.0 3.9 0.61 0.65 0.69 0.66 0.95 0.96 0.97 0.94 

Jul 12 3.9 4.1 0.65 0.70 0.75 0.68 0.93 0.94 0.95 0.90 

Aug 12 3.6 4.2 0.67 0.71 0.76 0.71 0.78 0.81 0.86 0.73 

Sep 12 3.6 4.2 0.70 0.75 0.79 0.74 0.79 0.82 0.86 0.75 

Oct 12 3.3 4.1 0.71 0.76 0.80 0.74 0.74 0.78 0.83 0.71 

Nov 12 2.7 3.9 0.73 0.76 0.80 0.71 0.62 0.68 0.75 0.58 

Dec 12 2.3 3.7 0.73 0.77 0.82 0.69 0.62 0.68 0.75 0.55 

Jan 13 1.7 3.4 0.74 0.77 0.82 0.70 0.55 0.60 0.69 0.50 

Feb 13 1.3 3.1 0.73 0.77 0.82 0.72 0.53 0.59 0.67 0.49 

 

Different patterns in evolution of p-values with the increase in the forecast horizon can be 

noticed for UK and Poland. For UK, the p-values systematically increase with the increase in 

forecast horizon, while for Poland they tend to decrease. Under ideal forecasting conditions, 

where uncertainty distributions are invariant in time, one would expect these probabilities not 

to evolve with the changes in forecast horizon. In fact, for UK, the computed SARMA-based 

point forecast tend to become more accurate with the increase in forecast horizon, while for 

Poland it becomes less accurate. For UK the realisations are closer to the benchmark forecast, 

the p-values tend to increase, and for Poland it is the other way around. A reverse 

interpretation is also possible. Assuming that the SARMA-based forecasts are the most 

efficient, the UK ideal fan charts (that is such in which the p-values are invariant to forecast 

horizon) should be narrower for short horizons and wider for longer horizons and for Poland 

it should be the other way around.  

Results given above depend on the accuracy of benchmark point forecasts and are hence not 

fully comparable. The applied SARMA-based forecast is, to an extent, arbitrarily chosen and 

by no means the most efficient. It is, however, possible to compare uncertainties obtained 

from externally produced forecasts using the concepts of p-values described above. We have 

computed the p-values using the distributions described above for forecasts published by the 

Bank of England for UK and National Bank of Poland for Poland in their Inflation Reports. 

Data on quarterly inflation point forecasts (medians) have been collected from the websites 

(for Bank of England) and interpolated from fan charts (for Poland). Also the original p-

values, obtained using probabilistic distributions of the Bank of England and National Bank 

of Poland forecasts have been computed on the basis of interpolations from the published fan 

charts. They might therefore be not very accurate. These point forecasts have been in turn 

interpolated into months and used as medians for the previously computed distributions of 

uncertainties and the p-values have been recomputed. Results are given in Tables 4 and 5. 

For all uncertainties computed by us around the banks’ own forecast medians the pattern is 

such that p-values increase with the increase in forecasts horizon. This would suggest that, in 

relation to the bank’ own forecasts, our fan charts have been either too narrow for short 

horizons or too wide for long horizons. However, the probabilistic forecasts produced by the 

banks exhibit different pattern. The p-values tend to decrease (albeit not monotonically) with 
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the increase in forecast horizon suggesting that their fan charts becomes too thin for long 

horizons. The banks’ own uncertainties should be identified with V-uncertainties, as it is 

claimed that the forecasts have been made under assumption of no policy action. In 

comparison with V-uncertainties, for longer horizons the banks’ own fan charts seem to be 

‘too thin’, or overoptimistic, which is indicated by the relatively low p-values of 4-quarter 

forecasts.  

Table 4: UK. Observed inflation at the end of quarter, forecasts, probabilities of violation of target bands (1%-

3%) and p-values computed with the use of U, V, M and TPN-uncertainties for Bank of England 

forecasts as published in November 2011. Forecast p-values for bank own distribution are interpolated 

from bank fan chart.  

f.hor 

 

obs.infl 

 

bank median forecast 

forecast p-values 

bank own  

 

U-unc 

 

V-unc 

 

M-unc 

 

TPN-unc 

 

Q1 12 3.5 4.3 0.36 0.27 0.48 0.46 0.28 

Q212 2.4 3.9 0.40 0.50 0.59 0.67 0.37 

Q3 12 2.2 4.3 0.50 0.44 0.50 0.61 0.41 

Q4 12 2.7 3.7 0.14 0.77 0.79 0.85 0.76 

 

Table 5: Poland. Observed inflation at the end of quarter, forecasts, probabilities of violation of target bands 

(1.5%-3.5%) and p-values computed with the use of U, V, M and TPN-uncertainties for National Bank 

of Poland forecasts as published in November 2011. Bank point forecast and forecast p-values are 

interpolated from bank fan chart.  

f.hor 

 

obs.infl 

 

bank point forecast 

forecast p-values  

bank own  

 

U-unc 

 

V-unc 

 

M-unc 

 

TPN-unc 

 

Q1 12 3.8 3.4 0.90 0.48 0.62 0.62 0.50 

Q212 4.0 3.0 0.58 0.46 0.66 0.67 0.43 

Q3 12 3.6 2.5 0.68 0.65 0.71 0.77 0.56 

Q4 12 2.3 1.9 0.52 0.87 0.88 0.92 0.86 

 

6. CONCLUSIONS  

Ex-post forecast errors of inflation might tell us more than just by how much the forecasters 

err. Firstly, they can be interpreted as a relevant component of aggregate macroeconomic 

uncertainties, as simple measures of their variability are highly correlated with more complex 

aggregate uncertainty measures. Secondly, they might reveal interesting stories about 

outcomes of some monetary actions, if the weighed skew normal distribution proposed in this 

paper is fitted to them. For most countries, this distribution fits to the inflationary forecast 

errors better than the widely used two-piece normal distribution.  

We also conclude that the weighted skew normal distribution fitted to the empirical 

distribution of point forecast errors is an attractive tool for making inflation fan charts, which 

are the graphical representation of forecast uncertainty term structure. Nature of this 

distribution enables to construct different types of fan charts: (i) these which represent 

historical forecast errors, by direct fitting the weighted skew normal distribution to the 

observed forecast errors and (ii) these which are based on the uncertainties which are free 

from the epistemic element. Both types of fan charts could be used for different practical 

purposes, and possibly by different users; the former by the ‘end users’, who do not have 

direct influence on monetary policy and who do not really care of what is epistemic and what 

is not, and the latter by central bankers and other policy decision makers, aiming, among 

other things, at reducing uncertainty through policy action. In some cases yet another type of 
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fan charts can be utilised, based on the safest possible (widest) distributions, covering for the 

possible errors in identification of the ontological element in the uncertainties.  

Our results suggest that more has to be done on the evaluation of forecast error uncertainties 

and the role of uncertainty by disagreement in relation to uncertainty by error. Nevertheless, 

we feel that it is already possible to learn more about the different types and nature of 

inflation uncertainty, and also on the effects of monetary policy actions onto it.  
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APPENDIX A 

Properties of weighted skew-normal distribution and VRUV 

I. Weighted skew normal distribution and its properties. 

General notation 

For a random variable Y  and a real number a , notation 
Y aI 

  (or 
Y aI 

) denotes an indicator 

of the event  Y a  (correspondingly  Y a ), that is equal to unity if Y a  and zero 

otherwise. 

Definition 1. Let X and Y constitute a bivariate normal random variable such as: 

2

2
( , ) ,

X X X Y

Y X Y Y

X Y N
   

   

   
    
    

, with 1     ,               (A.1) 

and  

Y m Y k
U X Y I Y I  
        , where , ,k m     .              (A.2) 

The distribution of U  defined by (A.1)-(A.2) is called the weighted skew normal so that 
 ,

,WSN ( , , , , )X Y

X Y
U m k

 

     . 

Definition 2. Let  

0 0

0 1
( , ) ,

0 1
X Y N





    
    
    

 with 1  ,                      (A.3) 

and  

0 00 0 0Y m Y kU X Y I Y I 

           , , ,k m       .              (A.4) 

The distribution of U   defined by (A.3)-(A.4) is called the standard weighted skew normal so 

that 
1WSN ( , , , , )U m k   . 

Proposition 1. The probability density function (pdf) of the standard weighted skew normal 

distribution *

1WSN ( , , , , )U m k    is given by:  

 
1WSN

2 2

2 2

1 1

(1 ) (1 )

( ) ,
1 1

B t kAB t mAt t
f t

A A A AA A

m t k t
t

  

    

 
 

 


 

       
        

             

     
       

         

 

where  and  denote respectively the density and cumulative distribution functions of the 

standard normal distribution, and  

2( ) 1 2A A       ,   ( )B B         .                   (A.5) 

Proof. In order to derive the cumulative distribution function 
1WSNF  of *U  we integrate joint 

pdf of 
0 0( , )X Y , that is 

2 2

2

2

22(1 )( , ) / 2 1

x xy y

x y e




  

 


  , over three disjoint areas as follows: 
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1

( )/

( )/

2 2

2 2

( ) ( , ) ( , ) ( , )

( )
1 1

( )
1 1

t x t kt m k t m

WSN

m t x k

t m
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F t dx x y dy dx x y dy dx x y dy

t B x m x
x dx

t B x k x
x dx

 

  










  




  




  

 

   









   

     
      

         

     
      

         

     



2 2
( )

1 1

k

t
m x k x

x dx
 


 

     
      

         





 

Taking the first derivative 
1
( ) /WSNdF t dt  complete the proof.■ 

As:  

2

1
( )

(1 )

B t mAt
dt m

A A A

 

  








   
    

      
 , 

2

1
( )

(1 )

B t kAt
dt k

A A A

 

  








    
   

      
 ,

2 2
( ) ( ) ( )

1 1

m t k t
t dt m k

 


 





     
        

         
 ,  

and  ( ) ( ) ( ) ( ) 1m k m k          , 

it follows from Proposition 1 that 
1WSNf  can be interpreted as a weighted sum of three pdf’s as

1WSN 1 1 2 2 3 3( ) ( ) ( ) ( )f t f t f t f t     , where 

 1
2

1 1
( )

( ) (1 )

B t mAt
f t

m A A A

 

  




   
   

        

   ,    
1 ( )m    

2
2

1 1
( )

( ) (1 )

B t kAt
f t

k A A A

 

  




    
   

      

   ,     
2 ( )k   

3
2 2

1
( ) ( )

( ) ( ) 1 1

m t k t
f t t

m k

 


 

     
       

           

 , 
3 ( ) ( )m k    

The pdf 
3f  is a pdf of conditional variable  0 0X k Y m  . 

Relations between 
1f  and 

2f  and skew normal distribution are as follows. Simple Azzalini 

(1985, 1986) skew normal distribution ( , )SN    can be defined by its pdf as 

2
( ; , ) ( / ) ( / )SNf t t x     


  . Hence, for 0m k   and 2    functions 

1f  and 
2f  

reduce to pdf’s of 
1 1( , )SN   and 

2 2( , )SN    with 
1 A  , 

2

1 / 1      and 

2 A  , 
2

2 / 1     respectively. This representation allows for yet another 
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interpretation of simple skew normal distribution, as 
1WSN ( 2 ,0,0,0, )SNU   , or 

00 0 02SN

YU X Y I    , where 
0 0, (0,1)X Y N  and 

0 0( , )corr X Y  . 

Representation 
1WSN 1 1 2 2 3 3( ) ( ) ( ) ( )f t f t f t f t      can be now interpreted as a weighted 

sum of conditional pdf of  0 0X k Y m   and two pdf‘s that, under some restrictions on 

parameters, coincide with that of Azzalini skew normal (hence the name of the WSN 

distribution). 

Proposition 2. Moment generating function (MGF) of *

1WSN ( , , , , )U m k    is given by: 

 
2 2 2

1

2 2 2
WSN ( ) ( ) ( ) ( ) ( )

u u u
A A

R u e k B u e m u k u e B u m
 

              , (A.6) 

Proof. By definition of MGF and *U we get: 

     

2 2

* 2

1

2

2(1 )

2

1
( )

2 1

x xy yk m
u x y u x yu U ux
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R u E e dx e e e e dy



  

 

   
    

 

 
     

  
    .   

Changing order of integration and in each of the integrals above, substituting 

2( ) / 1z x y     and noting that MGF of standard normal distribution is 
2 /2ue , complete 

the proof.■ 

Corollary. Moment generating function 
WSNR  of  ,

,WSN ( , , , , )X Y

X Y
U m k

 

      defined by 

(A.1)-(A.2) is given by:  
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                                            (A.7) 

Proof A weighted skew normal random variable  ,

,WSN ( , , , , )X Y

X Y
U m k

 

      can be 

expressed through 1WSN , , , ,Y Y

X X
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 

  
 

  
 
 
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 
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       ,   
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Y

m
m






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k
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




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
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 . Therefore 
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Applying Proposition 2 to the representation above, complete the proof.■ 

In order to calculate moments of  ,

,WSN ( , , , , )X Y

X Y
m k

 

      it is enough to calculate 

derivatives at zero of corresponding MGF and, due to (A.7), calculate derivatives at zero of 

MGF for 
1WSN ( , , , , )m k   . 

Proposition 3. Let 
1WSNR  be a moment generating function (MGF) given by (A.5), then 
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Proof. 

Let 
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a b cg u e bu c      .                          (A.8) 

By Taylor expansion we get: 
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Substituting (A.9) and (A.10) to (A.8) yields: 
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2 8 2 3! 4!

1 1
( ) ( ) ( ) ( ) 3 ( 1) ( )

2 3!

1
3 ( ) 6 ( ) (3

4!

a b cg u

au a u b c b c b c c
c b c u c u c u c u

c b c u a c b c c u a b c b c u

a c ab c c b c c

   

  





    
                 
   

                  

     4) ( ) ...c u    

Therefore: 

'

, , (0) ( )a b cg b c    ,                              (A.11) 
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'' 2

, , (0) ( ) ( )a b cg a c b c c       ,      (A.12) 

(3) 2 2

, , (0) 3 ( 1) ( )a b cg a b c b c        ,      (A.13) 

(4) 2 2 4 2

, , (0) 3 ( ) 6 ( ) (3 ) ( )a b cg a c ab c c b c c c         ,      (A.14) 

Bearing in mind that  

1WSN , ,( ) ,( ), 1,( ), 1,( ),( ) ( ) ( ) ( ) ( )A B m A B k m kR u g u g u g u g u
             ,             (A.15) 

Taking derivative of the both sides of (A.15) and substituting to (A.11)-(A.14) complete the 

proof. ■ 

Note. For 0m   and 0k  it is convenient to simplify expression for 
1WSN'' (0)R  as: 

 
1WSN'' (0) 1 m kR C D C D      ,                  (A.16) 

where 

 ( ) ( 2 )C C        and 
2( ) 1 ( ) ( ) ( )a

a

D D a a a a t t dt 


         .      (A.17) 

II. Properties of VRUV 

Definition 3. Let  0,0

,WSN ( , , , , )U m k      be defined by (A.1)-(A.2) and 

 V U E X Y U Y    . Define 
var( )

VRUV
var( )

V

U
    . 

Proposition 4.  

1) Noting that 2 *var( ) var( )U U  and: 

   2 2 2 * 2 2 2var( ) var( ) 2 var( )Y m m kY k
V U E X Y I Y I Y U D D           

            

yields the following representation: 

*

/ 2
VRUV 1 2

var( )

m kD D

U

  


 
   ,                    (A.18) 

where 
2( ) ( ) 1 ( ) ( )a

a

D D a t t dt a a a 


      . 

2) For 0m   and 0k  , applying Proposition 3 and (A.16) to *U  we get: 

1

2
*

WSN

2 2

var( ) 1 ' (0)

( ) ( )
1 2 ,

( ) ( ) ( ) ( )

m k

k m
m k

m k m k

U C D C D R

S k ZD S m ZD
S D D

D k D m D k D m

 

 


   

      

    
      

    

  

where ( ) ( )Z EU m k    , 
m kS D D    . This, together with (A.18), yields 

another convenient expression for VRUV: 

2 2

2
VRUV 1

( ) ( )
1 2

( ) ( ) ( ) ( )
k m

m k

m k m k

S

S k ZD S m ZD
S D D

D k D m D k D m




 


   


 

    
     

    

     . (A.19) 
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3) For 0Z EU  , 0, 0k m     and 0, 0    the above simplifies for  

 
2

,

var( ) 2
VRUV 1

var( ) 1 2 m k

V S

U S W S







  

  
, 

where  
22 2

, ( ) ( ) / ( ) ( )m k m k m kW D k D m D k D m        . 

By taking partial derivative with respect to S  from the above we get: 

    2 2

max max max ,
0

= ( )=argmax VRUV ( ) argmax max VRUV / 2 / 4 (1 ) / m k
S

S S W    


    

In particular, in a fully symmetric case when    and k m  , it yields: 

 
1

, 2m m mW D


 , 
maxS  max (1)=1S , 1

maxVRUV (1) (1 2 )mD   .                  (A.20) 

■ 

III. Simulation 

Formulae (A.3)-(A.4) suggest a convenient way of generating random numbers from

1WSN ( , , , , )m k    distribution. A straightforward algorithm is: 

Step 1: generate a pair of random numbers (x, y) from a bivariate normal distribution with 

zero means, unitary variance and covariance equal to . 

Step 2: (a) if y ≤ m and y ≥ k: return z = x , 

(b) if y > m: return z x y   , 

(c) if y < k: return z x y   . 

 

APPENDIX B 

Country symbols 

AUT Austria FRA France JAP Japan SLV Slovenia 

BEL Belgium GER Germany KOR Korea SAF South Africa 

BRA Brazil GRC Greece LUX Luxembourg SPA Spain 

CAN Canada HUN Hungary MEX Mexico SWD Sweden 

CHL Chile ICE Iceland NTL Netherlands SWZ Switzerland 

CHN China IND India NOR Norway TUR Turkey 

CZE Czech Rep IDS Indonesia POL Poland UK United Kingdom 

DNK Denmark IRE Ireland PRT Portugal US United States 

EST Estonia ISR Israel RUS Russia  

 FIN Finland ITA Italy SVK Slovak Rep  
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