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EGALITARIAN EQUIVALENCE AND STRATEGYPROOFNESS IN
THE QUEUEING PROBLEM

YOUNGSUB CHUN, MANIPUSHPAK MITRA, AND SURESH MUTUSWAMI

Abstract. We investigate the implications of egalitarian equivalence (Pazner
and Schmeidler [22]) together with queue efficiency and strategyproofness in the
context of queueing problems. We completely characterize the class of mechanisms
satisfying the three requirements. Though there is no mechanism in this class
satisfying budget balance, feasible mechanisms exist. We also show that it is
impossible to find a mechanism satisfying queue efficiency, egalitarian equivalence
and a stronger notion of strategyproofness called weak group strategyproofness. In
addition, we show that generically there is no mechanism satisfying two normative
notions, egalitarian equivalence and no-envy, together.

JEL Classifications: C72, D63, D82.

Keywords: Queueing problem, queue efficiency, strategyproofness, egalitarian
equivalence, budget balance, feasibility, weak group strategyproofness, no-envy.

1. Introduction

There is a significant recent literature in economics on queueing models, both

from a normative viewpoint (Chun [4], [5], Maniquet [15]) as well as from a strategic

viewpoint (Kayi and Ramaekers [14], Mitra [16], Mitra and Mutuswami [17]).1 Our

objective in this paper is to combine the strategic and normative approaches; in

particular, we are interested in mechanisms that have nice strategic and normative

Date: April 8, 2013.
This paper is based on the second half of our paper entitled “No-envy, egalitarian equivalence
and strategyproofness in queueing problems.” The authors are grateful to William Thomson for
his comments and suggestions. Chun’s work was supported by the National Research Foundation
of Korea Grant funded by the Korean Government KRF-2009-342-B00011 and NRF-2010-330-
B00077.
1There is an extensive literature on queueing in Operations Research. Furthermore, at least some
of the recent work explicitly uses Game Theory. That literature is too vast to survey here and we
refer the interested reader to Hassin and Haviv [12].
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properties for the queueing problem with a single server, linear waiting costs and

quasi-linear preferences.2

The strategic notion we use is strategyproofness which requires that an agent

should not have an incentive to misrepresent her waiting cost no matter what she

believes other agents to be doing. For the normative notion, we have at least two

well-known alternatives: no-envy and egalitarian equivalence. No-envy (Foley [10])

requires that no agent should prefer consuming another agent’s allocation. It has

been analyzed in many different contexts (Alkan, Demange and Gale [1], Pàpai

[21], Svensson [23], Tadenuma and Thomson [24], and Thomson [27]). In queueing

problems, its implications have been studied by Chun [4] and Kayi and Ramaekers

[14].

In this paper, we focus on the second normative notion, egalitarian equivalence

(Pazner and Schmeidler [22]). An allocation is egalitarian equivalent if there is a

reference bundle such that each agent is indifferent between her allocation and the

reference bundle. Like no-envy, an attractive feature of egalitarian equivalence is

that it is an ordinal concept and makes no inter-personal utility comparisons. Since

the reference bundle is common, it is easy to see that it satisfies equal treatment of

equals or horizontal equity. It has also been studied in many contexts (Demange [8],

Dutta and Vohra [9], Thomson [25] and Yengin [29], [30]). However, to the best of

our knowledge, egalitarian equivalence in the queueing context has not been studied

so far.

We investigate the implications of imposing egalitarian equivalence together with

queue efficiency and strategyproofness.3 Our starting point is the classic result of

Holmström [13] which implies that in our context, a mechanism satisfies queue ef-

ficiency and strategyproofness if and only if it is a Vickrey-Clarke-Groves (VCG)

mechanism.4 It follows that imposing an additional criteria like egalitarian equiva-

lence gives us a subset of VCG mechanisms.

We present a complete characterization of the family of mechanisms satisfying

queue efficiency, strategyproofness and egalitarian equivalence. To understand our

2Such a combined analysis of strategic and fairness properties has also been done by Atlamaz and
Yengin [2], Kayi and Ramaekers [14], Pápai [21], and Yengin [29], [30].
3The same issue was addressed in the context of allocation of heterogeneous objects by Yengin [29],
[30].
4The family of VCG rules are due to Vickrey [28], Clarke [7] and Groves [11].
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characterization, note that a reference bundle is a queue position along with a corre-

sponding transfer and can change across profiles. We show that if we impose queue

efficiency and strategyproofness along with egalitarian equivalence, then there is ef-

fectively only one degree of freedom in choosing the position in the reference bundle.

In particular, once a queue position is selected for a profile, then we must select the

same position for all profiles. Furthermore, the transfers are determined up to a

type independent constant which can be any real number.

We go on to show that none of these mechanisms are budget balanced. However,

we do get a possibility result with the weaker notion of feasibility which allows

a mechanism to run budget surpluses but not deficits. We characterize the non-

empty set of mechanisms that satisfy queue efficiency, strategyproofness, egalitarian

equivalence and feasibility. This class restricts the reference bundle to choose only

the first queue position. However, there cannot be an upper bound that can be

placed on the budget surplus that may result.

Another desirable property of a mechanism is immunity to manipulations by

groups of agents. Call a mechanism weak group strategyproof if it is not possi-

ble for a group of agents to manipulate their reports in a manner which makes all

of them strictly better-off. We show that if there are three or more agents, then we

cannot find mechanisms satisfying queue efficiency, weak group strategyproofness

and egalitarian equivalence.5

The contrast between the results obtained here and the results obtained in the

literature using no-envy is striking. With regard to budget balance, Kayi and Ra-

maekers [14] show that there are mechanisms satisfying no-envy, strategyproofness

and budget balance.6 With regard to weak group strategyproofness, Chun, Mitra

and Mutuswami [6] show that there are mechanisms satisfying no-envy and weak

group strategyproofness.

The rather sharp contrast leads us to suspect that no-envy and egalitarian equiv-

alence are incompatible and we show that this indeed is the case if there are at least

four agents. In the queueing problem, this incompatibility was shown by Chun [4]

in the class of all budget balance mechanisms. Incompatibility was also obtained by

5As a matter of fact, these mechanisms don’t even satisfy pairwise strategyproofness which only
requires immunity against deviations by coalitions of size at most two.
6As shown in Remark 5.5, no-envy implies queue efficiency.



4 YOUNGSUB CHUN, MANIPUSHPAK MITRA, AND SURESH MUTUSWAMI

Thomson [25] in allocation problems with indivisible goods and by Thomson [26] in

the context of time division. The only compatibility result is due to Yengin [30] in

the context of heterogenous goods assignment problem with the option that each

agent may be assigned more than one object.

In what follows, the model is given in Section 2. The characterization result on

queue efficienct, strategyproof and egalitarian equivalent mechanisms is given in

Section 3. We discuss the consequence of additionally imposing budget balance in

Section 4. In Section 5, we show that strategyproofness can not be strengthened

to weak group strategyproofness, and also the relationship between no-envy and

egalitarian equivalence. We conclude in Section 6.

2. The model

Let N = {1, . . . , n}, n ≥ 2, be the set of agents. Each agent has one job to

process and the machine can process only one job at a time. Each job takes the

same processing time and without loss of generality, this time is normalized to

one. A queue is an onto function σ : N → {1, . . . , n}. Agent i’s position in the

queue is denoted σi. The predecessors of i in the queue σ, denoted Pi(σ), is the set

{j|σj < σi}. Similarly the followers of i in the queue σ, denoted Fi(σ), is the set

{j|σj > σi}. When the context is clear, we shall abuse notation slightly by dropping

the dependence on σ and simply referring to Pi and Fi. The set of all possible queues

is Σ(N).

Each agent is identified with her waiting cost per unit of time θi > 0. If agent i’s

queue position is σi, then she incurs a waiting cost of (σi − 1)θi.
7 An agent’s net

utility depends on her waiting costs and the transfers she receives. We assume that

preferences are quasi-linear and so,

ui(σi, ti, θi) = −(σi − 1)θi + ti, ti ∈ <.

Let θ = (θi)i∈N ∈ <n++ be the profile of waiting costs of all agents.8 For all profiles

θ and all i ∈ N , let θN\{i} be the profile of waiting costs of all agents except i. A

queueing problem G is the tuple (N, θ).

7This assumes that no waiting cost is incurred while the job is being processed. This is without
loss of generality.
8Here <++ denotes the positive orthant of the real line.
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A queue σ is efficient for the profile θ if

σ ∈ argminσ′∈Σ(N)

∑
i∈N

(σ′i − 1)θi.

In words, a queue is efficient if it minimizes the aggregate waiting costs of the agents.

It is straightforward to check that queue efficiency implies the following condition:

θi > θj =⇒ σi < σj.

One can easily establish the converse too. That is, if σ is any queue obeying the

above condition, then it is efficient.

Let E(θ) be the set of efficient queues at the profile θ. This set is a singleton if

the efficient queue is unique which will be the case if θi 6= θj for all i, j ∈ N, i 6= j.

A mechanism µ = (σ, t) associates to each queueing problem G, a tuple µ ≡
(σ, t) ∈ Σ(N)×<n where σ is the queue and t = (t1, . . . , tn) is the vector of transfers

to the agents. In much of what we do, we shall be holding the set of agents constant

and changing the preference profile. We shall note the dependence on the preference

profile θ by denoting the allocation as µ(θ) = (σ(θ), t(θ)). Agent i’s own allocation

will be denoted µi(θ) = (σi(θ), ti(θ)).

Next we introduce two properties of mechanisms that are of interest. The first is

queue efficiency, which requires that a mechanism should choose an efficient queue

at every profile.

Definition 2.1. A mechanism µ = (σ, t) satisfies queue efficiency (EFF) if for all

profiles θ, σ(θ) ∈ E(θ).

Remark 2.2. Our definition of a mechanism associates a unique queue to every

queueing problem. Since E(θ) can contain more than one element, queue efficiency

implicitly assumes the existence of a tie-breaking rule which selects an efficient queue

whenever there is more than one such queue. For our purposes, any tie-breaking

rule will suffice.

Our strategic notion is strategyproofness which requires that an agent should not

strictly gain by misrepresenting her waiting cost no matter what she believes other

agents to be doing. Let ui(σi(θ
′), ti(θ

′); θi) = −(σi(θ
′) − 1)θi + ti(θ

′) be the utility

of agent i when the announced profile is θ′ and her own waiting cost is θi. Call two

profiles θ and θ′ i-variants if θj = θ′j for all j 6= i.
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Definition 2.3. A mechanism µ = (σ, t) satisfies strategyproofness (SP) if for all

i ∈ N , all i-variants θ, θ′, ui(σi(θ), ti(θ); θi) ≥ ui(σi(θ
′), ti(θ

′); θi).

3. Egalitarian equivalence and strategyproofness

Our main normative notion is egalitarian equivalence which was introduced by

Pazner and Schmeidler [22].

Definition 3.1. A mechanism µ = (σ, t) is egalitarian equivalent (EE) if for all

profiles θ, there exists a reference bundle (σ0(θ), t0(θ)) such that for all i ∈ N,

ui(σi(θ), ti(θ); θi) = ui(σ0(θ), t0(θ); θi).

Egalitarian equivalence is based on the idea that an allocation where everyone

consumes the same “reference bundle” is trivially egalitarian, and so is any re-

distribution which makes everyone indifferent between her own allocation and the

reference bundle. In general, we would label an allocation egalitarian equivalent

if we can find one reference bundle such that everyone is indifferent between her

allocation and the reference bundle.

Our characterization result builds on the classic work of Holmström [13] on VCG

mechanisms.

Definition 3.2. A mechanism µ = (σ, t) is a VCG mechanism if the transfers are

given by

(3.1) ∀θ, ∀i ∈ N : ti(θ) = −
∑

j∈Fi(σ)

θj + gi(θN\{i}).

Holmström [13] showed that the VCG mechanisms are the only ones satisfying

EFF and SP when preferences are quasi-linear and the domain of types is convex.

Since the domain of types is <n++ in our context, it follows that the only mechanisms

satisfying EFF and SP are the VCG mechanisms.

The following theorem characterizes the set of mechanisms satisfying EFF, SP and

EE. It shows that in effect, we have effectively one degree of freedom in choosing

the position in the reference position. In particular, once we select a queue position

σ0 for a profile, then we must select the same σ0 for all profiles. Furthermore, the

transfers are specified up to a profile-independent constant c.
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Theorem 3.3. A mechanism µ = (σ, t) satisfies EFF, SP and EE if and only if

there exist σ0 ∈ {1, . . . , n} and c ∈ < such that

(3.2) ∀θ ∈ <n++, ∀i ∈ N : ti(θ) =
∑

j∈N\{i}

(σ0 − σj(θ))θj + c.

To prove this theorem we use the following lemma. Given a queue σ(θ) for the

profile θ and i ∈ N , we define the queue σ(θN\{i}) as follows:

σj(θN\{i}) =

{
σj(θ)− 1 if σj(θ) > σi(θ),

σj(θ) otherwise.

In words, σ(θN\{i}) is the queue formed by removing agent i and moving all agents

behind her up by one position. It is easy to see that σ(θN\{i}) is efficient in the

N \ {i} economy for the profile θN\{i} if σ(θ) is efficient for the profile θ.

Lemma 3.4. A mechanism µ = (σ, t) satisfies EFF, SP and EE only if it is a VCG

mechanism such that

(3.3) ∀i ∈ N,∀θN\{i} : gi(θN\{i}) =
∑
j 6=i

(σ0 − σj(θN\{i}))θj + c,

where σ0 ∈ {1, . . . , n} and c ∈ <.

Remark 3.5. We can see the restriction imposed by EE if we compare (3.3) to the

VCG transfers (3.1). In (3.1), gi can be any arbitrary function of θN\{i}. In (3.3), it

is affine with the coefficients of θj, j 6= i, being pinned down precisely by the choice

of σ0. The set of mechanisms which are EFF, SP and EE is thus a small subset of

the set of VCG mechanisms.

Proof. Let θ be a profile and (σ0(θ), t0(θ)) the corresponding reference bundle. Sup-

pose that the efficient queue (for the profile θ) is such that σi(θ) = i, i ∈ N . This

implies that the profile θ must be such that θ1 ≥ θ2 ≥ · · · ≥ θn. For EFF, SP and

EE to hold together, the following condition must hold:

∀i ∈ N : −(σi(θ)− 1)θi −
∑

j∈Fi(σ)

θj + gi(θN\{i}) = −(σ0(θ)− 1)θi + t0(θ).

The left-hand side of the above expression is the utility from a VCG mechanism

and the right hand side is the utility from the egalitarian equivalence requirement.
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We can write the above as

(3.4) t0(θ) = (σ0(θ)− σi(θ))θi −
∑

j∈Fi(σ)

θj + gi(θN\{i}).

Choose two agents i, i+ 1. Noting that σi(θ) = i for all i, we have, using (3.4),

(3.5) (σ0(θ)−i)θi−
∑
j>i

θj+gi(θN\{i}) = (σ0(θ)−i−1)θi+1−
∑
j>i+1

θj+gi+1(θN\{i+1}).

Hence,

(3.6) (σ0(θ)− i)θi + gi(θN\{i}) = (σ0(θ)− i)θi+1 + gi+1(θN\{i+1})

Since gi does not depend on θi and gi+1 does not depend on θi+1, it follows that

gi(θN\{i}) = (σ0(θ)− i)θi+1 + fi,i+1(θN\{i,i+1}),(3.7)

gi+1(θN\{i+1}) = (σ0(θ)− i)θi + fi,i+1(θN\{i,i+1}).(3.8)

Note that (3.6) implies that the same function fi,i+1(θN\{i,i+1}) appears in (3.7) and

(3.8). By putting i+ 1 instead of i in (3.6), we obtain

(3.9) gi+1(θN\{i+1}) = (σ0(θ)− i− 1)θi+2 + fi+1,i+2(θN\{i+1,i+2}).

Equating (3.8) and (3.9) gives us a recursive relationship between fi,i+1 and fi+1,i+2:

(3.10) fi+1,i+2(θN\{i+1,i+2}) = (σ0(θ)− i)θi − (σ0(θ)− i− 1)θi+2 + fi,i+1(θN\{i,i+1}).

Note that there are n− 1 functions of the type fi,i+1 and n− 2 recursion relations.

Hence, we can solve for n−2 of the fi,i+1 functions in terms of one of them. Solving

in terms of f1,2 gives us:

∀i = 2, . . . , n− 1 : fi,i+1(θN\{i,i+1}) = f1,2(θN\{1,2}) + (σ0(θ)− 1)θ2 − (σ0(θ)− i)θi+1.

We are now left with the task of determining f1,2(θN\{1,2}). Note that fi,i+1 cannot

depend on θi or θi+1 while −(σ0(θ)− i)θi+1 appears on the right-hand side. Noting

that f1,2 cannot depend on θ1 or θ2, it follows that

(3.11) f1,2(θN\{1,2}) =
∑
i≥2

(σ0(θ)− i)θi+1 + c.

Observe that the constant is arbitrary. Furthermore, by the recursion relation (3.10),

the same constant must appear in all fi,i+1 functions and hence, in all gi functions.
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By substituting for f1,2 in (3.7) (with i = 1), it follows that

(3.12) g1(θN\{1}) = (σ0θ)− 1)θ2 +
∑
i≥2

(σ0(θ)− i)θi+1 + c =
n−1∑
i=1

(σ0(θ)− i)θi+1 + c.

Since σi+1(θN\{1}) = i for i = 1, . . . , n− 1, the above can be written as

(3.13) g1(θN\{1}) =
∑
j 6=1

(σ0(θ)− σj(θN\{1}))θj + c.

Since g1 does not depend on θ1, it follows that (3.13) also holds at any profile θ′

such that θ′N\{1} = θN\{1}. So, suppose that θ′N\{1} 6= θN\{1}. Observe that we can

always construct a profile θ′ such that θ′1 > maxi 6=1 θ
′
i. We can now use the same

procedure to get (3.13). Since the procedure is symmetric, it follows that

(3.14) ∀θ, ∀i ∈ N : gi(θN\{i}) =
∑
j 6=i

(σ0(θ)− σj(θN\{i})θj + c.

To complete the proof we show that for two different profiles θ and θ′, the queue

position in the reference bundle remains unchanged. For all k ∈ {0, 1, . . . , n}, we

define the profile θk by

θki =

{
θ′k if i ≤ k,

θk otherwise.

Note that we are moving from θ = θ0 to θ′ = θn by changing the waiting cost

of agents, one at a time. It follows from (3.1) that gi(θ
i−1
N\{i}) = gi(θ

i
N\{i}). Since

σj(θ
i−1
N\{i}) = σj(θ

i
N\{i}) for all j 6= i, it follows from (3.14) that

(3.15) 0 = gi(θ
i−1
N\{i})− gi(θ

i
N\{i}) =

[
σ0(θi−1)− σ0(θi)

] ∑
j∈N\{i}

θj.

Since θj ∈ <++ for all j ∈ N , (3.15) implies that σ0(θi−1) = σ0(θi). Hence σ0(θ) =

σ0(θ0) = σ0(θ1) = · · · = σ0(θn) = σ0(θ′) and the proof is complete. �

Proof of Theorem 3.3: Lemma 3.4 has an immediate useful implication which

we will use. By substituting (3.3) in (3.4) and simplifying, it follows that

(3.16) t0(θ) =
∑
i∈N

(σ0 − σi(θ))θi + c.
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We first show the necessity of (3.2). By EE, −(σi(θ)−1)θi+ti(θ) = −(σ0(θ)−1)θi+

t0(θ). Using (3.16) and Lemma 3.4, it follows that

(3.17) ti(θ) =
∑
j 6=i

(σ0 − σj(θ))θj + c.

This establishes the necessity of (3.2). That σ0 is any arbitrary queue position and

c is an arbitrary constant follows from Lemma 3.4.

For sufficiency, consider µ such that the transfer satisfies (3.2), σ0 is an arbitrary

queue position and c an arbitrary real constant. EFF and SP are satisfied since

µ is a VCG mechanism. We only need to check that it satisfies EE. Consider any

i ∈ N . Using (3.17) we get ui(µi(θ); θi) = −(σi(θ)− 1)θi − (σ0 − σi(θ))θi + t0(θ) =

−(σ0 − 1)θi + t0(θ) = ui(σ0, t0(θ); θi). Since the selection of i was arbitrary, EE

follows. �

4. Budget balance and feasibility

We now examine whether the mechanisms that we have identified satisfy addi-

tional desirable properties. One such property is budget balance. This requires that

the sum of transfers to the agents be zero. In other words, there is no net transfer

into or out of the economy.

Definition 4.1. A mechanism µ is budget balanced (BB) if for all θ,
∑n

i=1 ti(θ) = 0.

A weaker variant of budget balance is feasibility which allows a mechanism to

accumulate a budget surplus but not a deficit. So long as the accumulated surplus

can be disposed off elsewhere in the economy, this can be justified. Otherwise, it is

an efficiency loss.

It is worth noting that there are mechanisms satisfying EFF and SP which run a

budget surplus, an example of which is the well-known pivotal mechanism. In the

queueing context, the pivotal mechanism serves everyone in the reverse (ascending)

order of their waiting costs. Each agent pays the sum of waiting costs of those served

behind him. This mechanism runs a budget surplus at all profiles.

Definition 4.2. A mechanism µ is feasible (F) if for all θ,
∑n

i=1 ti(θ) ≤ 0.
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We start with budget balance and show that none of the mechanisms characterized

in Theorem 3.4 satisfies BB.

Proposition 4.3. There is no mechanism satisfying EFF, SP, EE and BB.

Proof. From Theorem 3.3, it follows that a mechanism (σ, t) satisfies EFF, SP and

EE only if the transfers ti satisfy (3.2). Applying BB and then simplifying it, we

obtain that for all profiles θ,

(4.1)
∑
j∈N

(σj(θ)− σ0)θj =
nc

n− 1
.

We now have an impossibility as the left-hand side of (4.1) is dependent on θ (no

matter how we choose σ0) while the right-hand side is a constant. �

While budget balanced mechanisms are not possible, it turns out—rather

unexpectedly—that there are feasible mechanisms satisfying EFF, SP and EE. The

following result characterizes all such mechanisms. In particular, we show that

σ0 = 1 and c ≤ 0.

Theorem 4.4. A mechanism µ satisfies EFF, SP, EE and F if and only if the

transfers satisfy

(4.2) ∀θ, ∀i ∈ N : ti(θ) =
∑

j∈N\{i}

(1− σj(θ))θj + c, c ≤ 0.

Proof. If µ satisfies (4.2), then ti(θ) = −
∑

j∈N\{i}(σj(θ)− 1)θj + c < 0 for all i ∈ N
and hence F holds. From Theorem 3.3, it also follows that if a mechanism satisfies

(4.2), then it satisfies EFF, SP and EE. Hence sufficiency of (4.2) is established.

To establish the necessity of (4.2), we only need to show the necessity of c ≤ 0

and σ0 = 1 using F. Suppose first that c > 0. Consider a profile θ such that θi =

2c/n(n− 1) for all i ∈ N . Then, using (3.2) of Theorem 3.3, we get
∑

i∈N ti(θ) =

(2σ0 − 1)c/2 > 0 for any σ0 ∈ {1, . . . , n}, and hence we have a violation of F.

Therefore, c ≤ 0.

Next, suppose that σ0 = k, k ∈ {2, . . . , n}. Consider a profile θ such that θ1 =

· · · = θk = a > θk+1 = · · · = θn = b > 0. For this profile,

(4.3)
∑
i∈N

ti(θ) = (n− 1)

[
k(k − 1)a

2
− (n− k)(n− k + 1)b

2

]
+ nc.
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Since k > 1 and c ≤ 0, we can select

(4.4) a =
1

k(k − 1)

[
3 +

2n|c|
n− 1

]
> b =

2

n(n− 1)

and then substituting these values in (4.3) and simplifying it, we get

(4.5)
∑
i∈N

ti(θ) = (n− 1)

[
3

2
− (n− k)(n− k + 1)

n(n− 1)

]
> 0.

This violates F showing that σ0 = 1 is necessary. �

Remark 4.5. Let µ∗ denote the set of mechanisms that satisfies EFF, SP, EE

and F. From Theorem 4.4, it follows that if µ, µ′ ∈ µ∗, then for each profile θ,

the difference between the transfer of any agent i ∈ N across the two mechanisms

µ and µ′ is the (agent and profile independent common) constant c. Since this

constant c is restricted to be non-positive, it follows that the mechanism µ ∈ µ(c)

that minimizes the budget surplus is the one for which c = 0. It is also clear from

(4.2) of Theorem 4.4 that, unlike Yengin [29], one cannot place any upper bound on

the budget surplus.

5. Impossibility Results

Theorem 3.4 shows that there is a class of mechanisms satisfying EFF, SP and

EE. We now ask what happens if we impose two additional desirable properties:

weak group strategyproofness and no envy. Unfortunately, we get negative results.

5.1. Weak Group Strategyproofness. A mechanism is weak group strategyproof

if there is no deviation by a group making all deviating members strictly better-off.

Call two profiles θ and θ′ S-variants if θi = θ′i for all i ∈ N\S.

Definition 5.1. A mechanism (σ, t) is weak group strategyproof (WSP) if for all

S-variants θ and θ′, ui(σi(θ), ti(θ); θi) ≥ ui(σi(θ
′), ti(θ

′); θi) for at least one i ∈ S.

This concept has been used by, among others, Bogomolnaia and Moulin [3], Moulin

and Shenker [19], Mutuswami [20], and Mitra and Mutuswami [17]. It is obvious

that WSP implies SP.

Proposition 5.2. For n ≥ 3, there is no mechanism satisfying EFF, WSP and EE.
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Proof. Let (σ, t) be a mechanism satisfying EFF, WSP and EE. Since WSP implies

SP, we can use Theorem 3.4 to infer that the reference bundle for any profile θ

is (σ0, t0(θ)) where t0(θ) =
∑
j∈N

(σ0 − σj(θ))θj + c. The allocation of agent i is

(σi(θ), ti(θ)) where ti(θ) =
∑

j∈N\{i}
(σ0 − σj(θ))θj + c.

Consider profiles θ and θ′ such that θ1 > · · · > θn and, for all i ∈ N , θ′i = θi + x,

x > 0, θ′i ∈ (θi, θi−1) for all i ∈ {2, . . . , n}. For these profiles, we show that there is

a violation of WSP for all choices of σ0.

(1) σ0 = 1 : Let (θ′2, θ
′
3, θN\{2,3}) be the true profile. We can check that agents 2

and 3 can profitably manipulate via the misreports θ2 and θ3.

(2) σ0 = n : Let θ be the true profile. Here, agents n−2 and n−1 can profitably

manipulate via the misreports θ′n−1 and θ′n−2.

(3) σ0 6= {1,n} : Let
(
θ′σ0+1, θN\{σ0+1}

)
be the true profile. In this case agents

σ0 − 1 and σ0 + 1 can manipulate profitably via the misreports θ′σ0−1 and

θσ0+1. �

Remark 5.3. When n = 2, all mechanisms satisfying EFF, SP and EE are also

WSP. In particular, putting c = 0 and σ0 = k, k = 1, 2, gives us the k-pivotal

mechanisms identified in Mitra and Mutuswami [17] and shown to be WGS. Clearly,

adding a constant to all transfers preserves the WGS property. It follows from the

earlier discussion that putting σ0 = 1 and c ≤ 0 gives us feasibility as well in this

case.

5.2. No-envy and egalitarian equivalence. In this sub-section we make a de-

tailed comparison between our results obtained using egalitarian equivalence and the

results already obtained in the literature using the normative concept of no-envy.

The idea of this comparison is to see the differing implications of the two equity

criteria in the context of queueing models.

No-envy was introduced by Foley [10] and requires that no agent should end up

with a higher utility by consuming what any other agent consumes.

Definition 5.4. A mechanism µ satisfies no-envy (NE) if for all θ and all i, j ∈ N ,

ui(µi(θ); θi) ≥ ui(µj(θ); θi).
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Remark 5.5. It is straightforward to see that no-envy implies queue efficiency. If

agent i is not to envy j at the profile θ, we must have

−(σi(θ)− 1)θi + ti(θ) ≥ −(σj(θ)− 1)θi + tj(θ) or ti(θ)− tj(θ) ≥ (σi(θ)− σj(θ))θi.

Combining this with a similar inequality from the condition that agent j should not

envy agent i, we obtain

(5.1) (σi(θ)− σj(θ))θi ≤ ti(θ)− tj(θ) ≤ (σi(θ)− σj(θ))θj.

The two conditions on the transfers are compatible only when (σi(θ) − σj(θ))(θi −
θj) ≤ 0. Hence, if θi > θj, then σi(θ) < θj(θ).

9 This is the condition for efficiency.

Note that this result imposes no restrictions on the transfers.10

In contrast to no-envy, egalitarian equivalence imposes no restriction on the choice

of the queue provided we have the freedom in choosing transfers. To see this, let θ

be a profile and let (σ0(θ), t0(θ)) be the reference bundle. Suppose the mechanism

chooses the queue σ. It is easy to verify that egalitarian equivalence will be satisfied

if the transfers satisfy the following restrictions:

∀i ∈ N, ∀θ : ti(θ) = (σi − σ0(θ))θi + t0(θ).

As a matter of fact, the difference between no-envy and egalitarian equivalence

extends beyond their implications for queue efficiency. We show below that these

concepts are incompatible when there are at least four agents. No additional as-

sumption is needed for this result. A variant of this result has been established by

Chun [4] who showed that the two equity notions are incompatible if BB are addi-

tionally imposed. He also showed that when there are two or three agents, NE and

EE are compatible even if BB is additionally required. Here we strengthen Chun’s

[4] negative result by showing that the impossibility holds even if BB is dropped

from the list.

We note that the incompatibility of no-envy and egalitarian equivalence for the

problem of assignment of objects in a general quasi-linear framework with three

9Since this is a queue on a single machine, σi(θ) 6= σj(θ).
10This is a strengthening of Chun [4]’s result which assumes that the transfers satisfy budget
balance.
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agents was established by Thomson [25] and Thomson [26] also established this

incompatibility in the context of time division.11

Proposition 5.6. If n ≥ 4, then NE and EE are incompatible.

Proof. Let µ be a mechanism satisfying NE and EE. Let θ be a profile such that

θ1 > · · · > θn. By EE, there exists (σ0(θ), t0(θ)) such that −(σi(θ) − 1)θi + ti(θ) =

−(σ0(θ)− 1)θi + t0(θ) for all i ∈ N . Rewriting this, we get

(5.2) ∀i ∈ N : ti(θ) = (σi(θ)− σ0(θ))θi + t0(θ).

Choose two agents i, i + 1. As shown in Remark 5.5, NE implies EFF and hence,

σi+1(θ) = σi(θ) + 1. Using (5.1), it follows that θi+1 ≤ ti+1(θ) − ti(θ) ≤ θi. Using

(5.2), it follows that θi+1 ≤ (σi+1(θ) − σ0(θ))θi+1 − (σi(θ) − σ0(θ))θi ≤ θi. This

implies that

(5.3) 0 ≤ (σ0(θ)− σi(θ))(θi − θi+1) ≤ θi − θi+1.

Since θi > θi+1, it follows that 0 ≤ σ0(θ) − σi(θ) ≤ 1. Note that the selection of i

and i+ 1 has been arbitrary. By choosing i = 1, we obtain 0 ≤ σ0(θ)− 1 ≤ 1 which

implies that σ0(θ) ∈ {1, 2}. By choosing i = n − 1, we obtain σ0(θ) ∈ {n − 1, n}.
The two restrictions on σ0(θ) are incompatible when n ≥ 4. �

As observed before, Chun [4] has shown that NE and EE are compatible when

n ≤ 3 even if we also require BB. Here, we ask another question: Are NE, EE and SP

compatible when n ≤ 3? The answer is yes. When n = 2, the k-pivotal mechanisms

are an example. We have already observed that when there are just two agents,

these mechanisms satisfy EFF, SP and EE. Chun, Mitra and Mutuswami [6] show

that they also satisfy NE.

When n = 3, the proof of Proposition 5.6 shows that we must have σ0 = 2. Using

(3.3), we can compute the transfers easily.12 Assuming that the constant is zero, the

transfers for a profile θ such that θ1 > θ2 > θ3 are:

t1(θ) = −θ3, t2(θ) = θ1 − θ3, t3 = θ1.

11In our terminology, this impossibility result is established together with queue efficiency and
budget balance.
12Since NE implies EFF, the queue is determined by the EFF criterion.
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The corresponding utilities are

u1 = −θ3, u2 = θ1 − θ2 − θ3, u3 = θ1 − 2θ3.

It is straightforward to check that no agent envies any other agent. Not surprisingly,

this mechanism is not budget balanced.

In a heterogenous object assignment problem with the option that each agent may

be assigned more than one object, it was shown by Yengin [30] that EFF, SP, EE

and NE are compatible. Hence, the fact that in the queueing problem each agent is

assigned only one queue position (one object) along with queue efficiency imposes

significant structure to drive this incompatibility in comparison to the general model

of assigning objects (by Yengin [30]).

6. Conclusions

Queueing models (single server, identical serving costs, quasi-linear preferences)

constitute a very special environment in which it is possible to implement the “first-

best” (queue efficiency, budget balance and implementation in dominant strategies).

Indeed, in a very general heterogenous good allocation setting, Mitra and Sen [18]

have argued that the structure of allocation problems for which one can obtain

balanced VCG mechanisms must be queueing ‘like.’

Since it is rare to find environments where budget balanced VCG mechanisms

exist, one natural question that arises when we do find such an environment is

whether such mechanisms also have nice equity properties. Two standard equity

notions are no envy and egalitarian equivalence. The question of whether there are

dominant strategy mechanisms satisfying no-envy has been addressed by Kayi and

Ramaekers [14]. Here we deal with the issue of VCG mechanisms and egalitarian

equivalence.

We show that the set of queue efficient, strategyproof and egalitarian equivalent

mechanisms is non-empty and provide a complete characterization of this class.

The fact that this class of mechanisms is non-empty illustrates the speciality of the

queueing model. However, none of these mechanisms satisfy additional desirable

properties like budget balance or immunity to group deviations. This is hardly

surprising.
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From a more general mechanism design perspective, asking for egalitarian equiva-

lent VCG mechanisms which are also budget balanced or weak group strategyproof

is indeed asking for too much. In particular, if we want egalitarian equivalence then

strategyproofness reduces the degrees of freedom of the reference bundle substan-

tially by making the queue position fixed for all profiles. Therefore, one should not

be disheartened to find a negative result with such strong properties. One surprising

result is that there are feasible VCG mechanisms that satisfy egalitarian equivalence.
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