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Abstract 

 
The paper aims at assessing the forecast risk and the maximum admissible forecast 

horizon for the non-systematic component of inflation modeled autoregressively, where a 

distortion is caused by a simple first-order bilinear process. The concept of the guaranteed 

upper risk of forecasting and the δ-admissible distortion level is defined here. In order to 

make this concept operational we propose a method of evaluation of the p-maximum 

admissible forecast risk, on the basis of the maximum likelihood estimates of the bilinear 

coefficient. It has been found that for the majority of developed countries (in terms of 

average GDP per capita) the maximum admissible forecast horizon is between 5 and 12 

months, while for the poorer countries it is either shorter than 5 or longer than 12. There is 

also a negative correlation of the maximum admissible forecast horizon with the average 

GDP growth. 

 

 



1. Introduction  

The literature on inflation forecasting has, so far, focused on identification and further 

analysis of its systematic part, often described as the core or underlying inflation. This 

component of inflation is loosely defined as the dynamics of prices being neutral regarding to 

output in the medium and long-run. The literature on this subject is huge (see e.g. the seminal 

works by Eckstein, 1981, Cecchetti, 1996, Quah and Vahey, 1995, Cristadoro et al. 2005, 

current critical reviews and advances by Silver, 2007, Rich and Steindel, 2007, Bodenstein, 

2008, Siviero and Veronese, 2011, Wynne, 2008 and Bermingham, 2010). In fact forecasting 

core inflation has become a common practice at many central banks and other financial 

institutions. There is, however, a limited interest in investigation of the non-systematic part of 

inflation, described as the difference between the headline (or observed) inflation and its core 

component. It is usually acknowledged that the non-systematic inflation is stationary and 

short-term forecastable. Nevertheless, the specific forecasting techniques have not been 

researched so far and, in particular, the length of the admissible forecasting horizon has 

usually been defined here rather vaguely.  

In this paper we aim to assess the forecast risk and the maximum admissible forecast 

horizon for the non-systematic component of inflation, where there is a certain type of non-

linearity in the process, defined (or approximated) by a simple first-order bilinear process. 

The presence in such component creates misspecification in forecasting for periods longer 

than one. This prompts the question about the maximum admissible forecast horizon, for 

which distortions caused to the forecast due to such misspecification are not substantial. 

Obviously, what is ‘substantial’ here is arbitrary and has to be defined prior to any 

investigation. Here we start with the concept of the guaranteed upper risk of forecasting. The 

δ-admissible distortion level defined as the maximal value of the bilinear coefficient for 

which the forecast instability does not exceed a priori given admissible risk level δ (Section 

2). In order to make the concept of the admissible risk level operational, in Section 3 we 

propose a method for evaluation of the p-maximum admissible forecast risk, which 

corresponds to the pth fractile of the distribution of a statistic used for evaluation of the null 

hypothesis of no bilinearity. After a series of Monte Carlo experiments, we suggest to use, as 

such statistic, a Student-t ratio for the maximum likelihood estimates of the bilinear 

coefficient. After computing the p-maximum admissible forecast risk, it is possible to 

evaluate the maximum forecast horizon for which, under such level of risk, the estimated 

bilinear coefficient is equal to its maximal admissible value.  
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Section 4 contains a description of empirical results for time series of monthly data on 

inflation for 122 countries. The maximum span of the series is from 1957 to April 2011 (some 

series are shorter). This section also discusses the relationship between the GDP (in terms of 

levels and growths) and the maximum admissible forecast horizon.  

2. Risk assessment problem 

Suppose that the non-systematic inflation, tπ , that is a difference between the headline and 

core inflations at time t, t = 0, 1,…,T, is described by a simple stationary bilinear 

autoregressive BL(1,0,1,1) process:  

1 1 1t t t t tu uπ απ βπ− − −= + +    ,        (1) 

where α and β are the parameters and { }tu  is a sequence of i.i.d. random variables with zero 

expected value (both unconditional and conditional on past information) and finite higher 

moments. The rationale for the existence of the bilinear term in (1) can be grounded, for 

instance, within the theory of speculative inflation (see e.g. Schmitt-Grohé, 2004, Sims, 2004 

for economies with inflationary targeting) and within the modern hyperinflation theories (see 

Vázquez, 1998, Jha et al., 2002, Adam et al., 2006 and Arce, 2009).  

Let us consider forecasting from (1) outside T, initially assuming the knowledge of α but 

not β. In this case the forecasting scheme is analogous to that from a linear AR(1) model, that 

is: 

1
f f

T T T
τ

τ τπ απ α π+ + −= =  , for τ = 1, 2, 3, ….      (2) 

The absence of information regarding β leads in the above forecasting scheme causes a 

distortion and creates a forecasting risk. Let us define such risk as the mean-square error 

(MSE) of the forecast, that is: 

2( ) ( )f
T TMSE E τ ττ π π+ += −    . 

Theorem 1 (see Appendix A) gives the asymptotic expansion of MSE(τ) in terms of model 

parameters. In order to evaluate a possible impact of the bilinear distortion on MSE(τ), let us 

define the guaranteed upper risk of forecast as the maximum admissible mean square forecast 

error for a given set of the bilinear parameters, that is (see Kharin, 1996): 

[ , ]
( ) sup ( )MSE MSE

β β β
τ τ

+ +

+
∈ −

= . 

Let us also define the forecast instability coefficient ( )κ τ  as:  
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0

0

( ) ( )( )
( )

MSE MSE
MSE
τ τκ τ

τ
+ −

=    , 

where 
2 2

0 2

(1 )( )
1

MSE
τσ ατ

α
−

=
−

  

is the minimally admissible risk value for the situation without bilinear distortions, and 2σ  is 

variance of ut. Following Kharin (1996), we can define the δ-admissible distortion level 

( , )β δ τ+  as the maximal distortion level β+ for which the instability coefficient ( )κ τ  does not 

exceed a priori given admissible risk level δ. It can be shown (see Theorem 2 in the 

Appendix A) that, under additional assumption of normality for ut, the following asymptotic 

expansions are true: 

2 2
2 4 2

2

(1 )( ) ( )
1

MSE o
τσ ατ β σ β

α+ + +

−
= + ϒ +

−
   ,      (3) 

2 2 2( ) ( )oκ τ β σ β+ += ϒ +    ,        (4) 

2( , ) ( )oδβ δ τ β
σ+ += +

ϒ
   ,        (5) 

where: 
2 2 1

2 2 2

1 12 2
(1 ) (1 ) (1 )

τ τ τα α α
α α α

−− −
ϒ = + −

− − −
  . 

With the use of the formula above one might evaluate the potential distortion to the means 

square error of forecast due to omitted bilinearity. Figures 1a,b and c show the results of a 

numerical evaluation of MSE+(τ), ( )κ τ  and ( , )β δ τ+  for values of α varying from -0.99 to 

0.99,  τ = 1,2,3 and 5, 2 1σ =  and δ = 1.  

Figures 1a-c suggest that nonlinear and asymmetric responses of the guaranteed forecast risk 

and instability coefficients might cause practical problems in establishing the admissible risk 

level δ. The fact that for large α’s (typical for inflationary processes), the MSE+(τ) rapidly 

approaching infinity makes it particularly cumbersome.  

This is illustrated by relating the admissible risk level δ to a range of AR(1) α coefficients 

corresponding to a certain level of the nonstationarity which is defined as: 

( )2 2 2Φ α σ β τ+= +    .         (6) 
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Figure 1a: Dependence of MSE+(τ) on autoregressive parameter and forecast horizon  
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Figure 1a: Dependence of ( )κ τ  on autoregressive parameter and forecast horizon  
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Figure 1c: Dependence of ( , )β δ τ+  on autoregressive parameter and forecast horizon  
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If Φ = 1, (6) constitutes the stationarity limit for (1) (see e.g. Granger and Anderson, 1978). 

For  0 ≤ Φ < 1 it is a general measure of time-dependence (predictability) of a stationary 

process (1) so that Φ = 0 refers to a purely random unpredictable process (white noise). For a 

given Φ, 2σ , τ and α, values of δ can be solved out from (5) and plotted against α. Figure 2 

shows δ as a function of [ , ]Φ Φα∈ −  for Φ equal respectively to 0.25, 0.75 and 0.95, 2 1σ =  

and τ = 2, where 2 2 2( )=( ) /β τ Φ α σ+ − .  

Figure 2: Dependence of δ on the degree of predictability 
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Figure 2 shows that the increase in the admissible risk for a given predictability is not linear 

and not even monotonous if regarded as function of the degree of predictability. For large 

predictability and large α (in excess of 0.8) the level of admissible risk falls. So that, 

establishing the appropriate admissible risk level in inflation forecasting might be difficult.  

3. Econometric problem 

The problem with establishing the admissible risk level, outlined in section 2, might be to 

some extent relaxed if it is possible to estimate the parameters of (1) econometrically. Let us 

assume that there exists statistical data on inflation for the period t = 0, 1,…,T, and, prior to 

forecasting for the periods T + τ, it is possible to estimate the parameters α and β. Denoting 

these estimates respectively by α̂  and β̂  and using some initial values π0 and u0, it is possible 

to obtain the estimates onf ut recursively as: 

1 1 1
ˆˆˆ ˆt t t t tu uπ απ βπ− − −= − −    . 

This might help in constructing a one-step ahead forecast as: 
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 1
f

T T t Tuπ απ βπ+ = +    , 

However, for forecast horizons longer than one, there is no possibility of recovering Tu τ+ ,  

τ = 2, 3… . In this case forecast from the estimated equation (1) coincides with the forecast 

from a simple AR(1) model and is based upon information on a single parameter α, that is on:  

1
1

ˆˆ ˆf f
T T T T Tuτ τ

τ τπ απ α π α βπ−
+ + −= = +     . 

However, the econometric estimates can, to some extent, help with establishing the admissible 

risk level, which can, in turn, lead to establishing the maximum admissible forecast horizon 

(MAF), that is the maximum value of τ for which, given δ, the absence of β̂  in the forecasting 

process does not lead to the increase of the expected MSE(τ) over the MSE+(τ). 

Let βξ  be a well-defined statistic for β with the argument β̂ . In particular it can be the 

Student-t statistic for β, that is ˆ ˆ( ) / ( )Sβ β β− , where ˆ( )S β  is the standard deviation of β̂ , or 

the normalised estimate of β, that is ˆ ( )tS uβ ⋅ , where ( )tS u  is the estimated standard deviation 

of ut. Denote by | 0
ˆ p
ξ ββ =  such value of β̂  which corresponds to the pth fractile of the 

distribution of βξ  for β=0. Knowing | 0
ˆ p
ξ ββ =  and α̂ , it is possible to find the p-maximum 

admissible forecast risk ˆ ( )p
β

δ τ  which can be obtained by solving (5) for δ  with 

| 0
ˆ( , ) p
ξ ββ δ τ β+ ==  and ( )tS u . Since, in practice, a normalisation for a unitary variance of ut is 

required, it can be achieved by using | 0
ˆ( , ) ( )p

tS uξ ββ δ τ β+ == ⋅  rather than ( , )β δ τ+ . It is 

convenient to interpret the p-maximum admissible forecast risk ˆ ( )p
β

δ τ  as the risk which is 

associated with ignoring, in the forecasting scheme, the β parameter if it is equal to the 

unusually high (or low) estimate of β , in the case where the hypothesis that β = 0 is true. 

Whether the value of β̂  is ‘unusually’ high (or low) is decided by using tail percentiles like 

0.05 or 0.95. 

The concept of p-maximum admissible forecast risk requires knowledge of the 

distribution of the statistic βξ , which is usually either the distribution of β̂ , or its Student-t 

ratio. If β is estimated by the maximum likelihood (ML) method, the asymptotic normality of 

the estimates allows for approximation of the normalised statistics by the standard normal 
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distribution. However, the behaviour of the statistics in finite samples depends on the speed of 

convergence. 

In order to investigate the finite sample properties of the statistics, the following Monte 

Carlo experiments have been performed. The data generating process is (1) with β = 0 and 

~ . . (0 ,1)tu i i d N , t = 0, 1,…,T, which reduces it to a simple AR(1) process with a random 

initial value. The parameter α varies as 0.25, 0.5 and 0.75, T varies as 75, 100 and 250 and, 

for each sets of parameters and each T, 10,000 replications are generated. In each replication 

the parameters α and β are estimated by the constrained maximum likelihood method used for 

the Kalman Filter representation of (1), where the constraint is the stationarity condition.1  

Table 1 shows the Bera-Jarque measures of normality for the empirical distributions of the 

estimates of β and their Student-t statistics, ˆ( )t β  with p-values in the parentheses. It indicates 

that the convergence to normality is relatively slow here. This prompts the question whether 

the percentiles of the standard normal distribution can be used as the critical values for the t-

ratios of the estimated β parameters. Table 2 shows the empirical percentiles of the simulated 

distributions of the t-ratios for the ML β estimates in comparison with the percentiles of the 

standard normal distribution, which is the asymptotic distribution for the ML estimates.  

Results in Table 2 suggest that, although the finite sample distributions of the Student-t 

ratios are not normal and the tails of the distributions are heavy, especially for the large values 

of α and small samples, the differences are not very substantial. With some caution, 

percentiles of normal distribution can be used here for testing the significance of the estimates 

of β. 

Figures 3a-3c show the computed values of 0.95
ˆ ( )
β

δ τ  obtained by solving (5) for δ, that is: 

( )2
2

ˆ | 0
ˆ( )p p
ξ ββ

δ τ β σ== ϒ    , 

where | 0
ˆ p
ξ ββ =  has been selected alternatively by three criteria: percentiles of β̂  (Figure 3a), 

percentiles of ˆ( )t β  (Figure 3b) and percentiles of normalised β̂ , that is ˆ ( )tS uβ β= ⋅ , where 

( )tS u  is the estimated standard deviation of ut. (Figure 3c). These are compared with their 

sample estimates ˆ
ˆ ( )p
β

δ τ , that is:  

                                                 
1 Computations were performed in Aptech GAUSS using the constrained maximum likelihood package (CML) 
and Roncalli (1995) Kalman Filter routines. 
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( )2
2

ˆ | 0
ˆ ˆ ˆ( ) ( )p p S uξ ββ
δ τ β == ϒ    ,        (7) 

where ϒ̂  is computed as ϒ  in (3)-(5), except that the estimates α̂  are used here rather than α.   

 

Table 1: Bera-Jarque statistics for the ML estimates of β and their t ratios 

T α = 0.25 α = 0.50 α = 0.75 
 for β̂  

75 326.6 
(0.00) 

777.6 
(0.00) 

341.8 
(0.00) 

100 71.12 
(0.00) 

86.42 
(0.00) 

127.3 
(0.00) 

250 1.64 
(0.44) 

1.76 
(0.41) 

3.00 
(0.22) 

500 2.20 
(0.33) 

1.03 
(0.60) 

0.25 
(0.88) 

 for ˆ( )t β  
75 61.32 

(0.00) 
7843 
(0.00) 

839900 
(0.00) 

100 8.25 
(0.02) 

40.26 
(0.00) 

1317 
(0.00) 

250 0.57 
(0.75) 

0.86 
(0.65) 

0.90 
(0.64) 

500 3.36 
(0.18) 

1.91 
(0.36) 

0.56 
(0.75) 

 

Table 2: Simulated percentiles of ˆ( )t β  

  percentiles 
  99% 97.5% 95% 90% 50% 
 

T=75 
α=0.25 2.39 1.97 1.67 1.28 0.00 
α=0.50 2.46 2.01 1.68 1.29 0.00 
α=0.75 2.54 2.11 1.75 1.33 0.00 

 
 

T=100 
α=0.25 2.35 1.95 1.61 1.27 0.00 
α=0.50 2.35 1.98 1.65 1.27 0.00 
α=0.75 2.44 2.05 1.68 1.30 0.00 

 
 

T=250 
α=0.25 2.29 1.95 1.65 1.26 -0.02 
α=0.50 2.33 1.85 1.60 1.25 0.01 
α=0.75 2.39 1.89 1.61 1.25 -0.01 

∞  2.33 1.96 1.64 1.28 0.00 
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True and estimated 5% maximum admissible forecast risk 

T = 100, α = 0.5, 10,000 replications 

                         Figure 3a:                                                       Figure 3b:  
                criterion: percentiles of β̂                         criterion: percentiles of ˆ( )t β   
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                                                                 Figure 3c:  
                                                  criterion: percentiles of β   
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Figures 3a-c indicate that, although the estimates of the 5% admissible forecast risk are biased 

(either negatively, as in Figure 3a, or positively, as in Figures 3b and 3c), its values stabilizes 

quickly with the increase of forecast horizon and, for the horizons greater than 9, they are 

virtually constant. Similar is observed for different sample sizes and different values of α. 

Generally, it appears that the criterion of selecting | 0
ˆ p
ξ ββ =  according to the percentiles of ˆ( )t β  

is most advisable, since the bias of the estimates is usually the smallest.  

4. Risk assessment and forecast horizon for worldwide inflation 

The concept of p-maximum admissible forecast risk can be applied in practice for assessing 

the rationale of forecasting of the non-systematic part of inflation and, in particular, 

evaluating the maximum forecast horizon for which the bilinear distortions do not cause the 
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risk in excess of the admissible value. For the empirical analysis a panel of monthly time 

series of annual inflation rates (that is, on the basis of the corresponding month of the 

previous year) for a wide number of countries have been used. The data are taken from the 

International Monetary Fund database (see http://www.imfstatistics.org/imf, can be accessed 

e.g. through the ESDC database at http://esds80.mcc.ac.uk/wds_ifs/ReportFolders/ 

reportFolders.aspx). Out of the data set for 170 countries, series for 122 countries have been 

selected with the maximum time coverage of the data set is from January 1957 to April 2011 

(for most countries the series have been shorter). The series which were incomplete, with a 

substantial number of missing or systematically repeated observations, have been eliminated. 

For the remaining series, in a few obvious cases infrequent missing values have been 

interpolated and some evident typos in data corrected. From the original data the monthly 

series of annual (y/y) inflation have been computed which gives the maximum length of the 

series of 591 observations. Outliers greater than 5 standard deviations of the series have been 

truncated (there were very few of them). The systematic part of inflation has been eliminated 

by smoothing the data by the Hodrick-Prescott filter with the smoothing constant equal to 

16,000. For each country the parameters of equation (1) have been estimated by the 

constrained ML Kalman Filter method (see Section 3). 

Appendix B contains the results of the ML estimates of coefficients α and β for individual 

series. Tables B1 shows the estimation results. In columns (1)-(4), after the country codes and 

number of observations, the estimates of the AR(1) coefficients,α̂ , are given and followed by 

their t ratios. In column (5) the significance of the AR(1) the AR(1) coefficients which are 

significant at the 0.01 level are marked by (3) and those with p-values smaller than 0.01 by 

(0). Columns (6) –(9) describe the estimates of the bilinear coefficient; columns (6) and (7) 

give the non-normalised and normalised estimates correspondingly, column (8) shows the t-

ratios for the non-normalised estimators and the last column (9) indicates the significance. 

Table B2 present the forecast risk assessment characteristics. Column (3) gives the 

stationarity measures computed as: 2 2 2ˆˆ ˆ ( )tS uΦ α β= + . Column (4) presents the 0.90
| 0ξ̂ ββ =  

coefficients computed as in (7), with the selection criteria being the 90th percentile of the ˆ( )t β  

statistic. The corresponding 0.90
ˆ

ˆ ( )
β

δ τ ∗  values, where 24τ ∗ =  and represents the most remote 

forecast horizon, for which the values of 0.90
ˆ ( )
β

δ τ  are virtually independent from τ, are shown 

in column (5). These values are halved, in order to allow for the symmetry of positive and 

negative bilinearity. Column (6) shows the estimates of the maximum admissible forecast 

http://www.imfstatistics.org/imf
http://esds80.mcc.ac.uk/wds_ifs/ReportFolders/%20reportFolders.aspx
http://esds80.mcc.ac.uk/wds_ifs/ReportFolders/%20reportFolders.aspx
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horizon for which the effect of bilinearity does not exceed the maximal admissible distortion 

level computed at risk equal to 0.90
ˆ

ˆ ( )
β

δ τ ∗ . More precisely, maxτ  is defined as such forecast 

horizon τ for which 0.90
ˆ

ˆ[ ( ) , ]
β

β β δ τ τ∗
+≈ . 

In order to assess the poolability of the panel and to decide whether particular series in the 

panel can be analysed separately, a simple correlation analysis between the pairs of ML 

residuals of the estimated equations (1) have been performed. For 7,381 correlations the 

percentage of significant correlations at 5% equal to 8.89%. Although this is more than the 

expected 5%, nevertheless this percentage is not very high, so that the possible distortions to 

the estimates for the individual countries due to interdependence within the panel are likely 

not substantial. The estimated bilinear coefficients are, in most cases, insignificant; there are 

only 24 significant (at the 5% level of significance) bilinear coefficients.  

The distribution of countries according to the maximum admissible forecast horizon is 

given in Table 3. 

Table 3: distribution of maxτ  for non-systematic inflation 

maxτ  No. of countries 

smaller than 6 29 

between 6 and 9 45 

Between 10 and 14 36 

Greater than 14 12 

 

There is an interesting regularity between the World Bank estimates of the annual GDP level 

per capita adjusted for purchasing power disparities measured at constant 2005 international 

dollars (see http://esds80.mcc.ac.uk/WDS_WB/) and maxτ . Figure 4 shows a scatter diagram 

of the average GDP per capita and maxτ . The periods for which means of the GDP have been 

computed correspond to the periods used for computing maxτ . Some visible outliers on the 

diagrams have been marked by country symbols. There is also a linear regression line 

presented at this figure. 

 

 

http://esds80.mcc.ac.uk/WDS_WB/
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Figure 4: Average levels of GDP and the maximum admissible forecast horizons 
 

 

There is a visible, albeit not very strong, negative relationship between the maximum 

admissible forecast horizon and the average GDP level. The correlation coefficient is equal to 

-0.194, with Student-t ratio equal to 2.143 and a one-sided p-value 0.01606. The triangular 

shape of the scatter points suggests a nonlinearity of the dependence pattern. Out of 12 

countries with max 5τ <  , 9 have average per capita GDP level below the level of 10,000 

International $. Similarly, out of 19 countries with max 12τ > , 8 has the average per capita 

GDP below the 10,000 international $. For the countries with maxτ  between 5 and 12, the 

proportion of richer countries is greater. If there is a relation between the level of 

development of a country measured by its GDP per capita and the maximum admissible 

forecast horizon it can be stated that the developed countries have usually the linearly 

forecastable inflation with the moderate forecast horizons, while the poorer countries usually 

have inflation linearly forecastable for either very short, or very long periods.  

The concept of the maximum admissible forecast horizon might also add to the empirical 

evidence of GDP convergence. Figure 5 depicts the relationship between maxτ  and the average 

rate of growth of the 122 countries analysed here. The data for growth have been obtained 

from the World Bank sources at http://esds80.mcc.ac.uk/WDS_WB/.  

 

  

http://esds80.mcc.ac.uk/WDS_WB/
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Figure 4: Average levels of GDP and the maximum admissible forecast horizons 
 

 

There is a significant negative correlation between maxτ  and the average GDP growth (the 

correlation coefficient is equal to -0.1648, with Student t-ratio equal to 1.820 and one-sided p-

value 0.03438). Detailed interpretation is beyond the scope of this paper, but it seems possible 

that it may contribute to further discussion on the empirical evidence for convergence in 

growth.  

5. Concluding remarks 

The paper presents a relatively simple method of assessing the maximal admissible forecast 

horizon for non-systematic inflation when an autoregressive forecasting model is used. The 

empirical results indicate the plausibility of the method which might be implemented in 

practice by monetary policy authorities and forecasting institutions. It can also be used as an 

auxiliary tool for evaluation the rationale of inflation smoothing and for assessing the quality 

of linear autoregressive forecasting models. However, the bilinear model used here is 

relatively simple and its extension (for instance, by allowing for more complicated lags 

structure) is likely to increase the practical relevance of the method proposed.  
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Appendix A 

Proofs of Theorems 1 and 2 and corollaries 

Lemma. If the time series tπ  satisfies the bilinear model (1), 2 2 2 1α β σ+ < , Nτ ∈ , 0β → , 
then the following asymptotic expansions for the second order moments hold: 

 
2

2 2 2 4 2 2
3 42 2 2 2 2 2

1 4 1{ } 2 ( ) ( )
1 1 (1 ) (1 )(1 ) 1tE oα α απ σ βµ β σ β µ β
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− − − − − −
2 2 1 1

2 1 2 4 2 2
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− − − − −
Proof. 1) Using the decomposition of (1), analogous to the moving average decomposition of 
the AR(1) process, that is:  

1 1
( )i
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u u uπ α β∞

− −= =
= + +∑ ∏  

and applying the assumption of independence of tu  and t iu −  at 1i ≥ , we have: 
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Considering that 2{ } 0 { }t tE u Var u σ= , = < +∞ , and t iu −  are independent at i j≠ , and using 
the fact that 

1 2 3 4
{ } 0t t t tE u u u u ≠  only for the situations where either 1 2 3 4t t t t= = =  or where 

these four indices are pairwise equal), we get: 
1
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2) From (5), as 1τ ≥ , we have: 
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Using independence of { }tu  and selecting nonlinear elements in the first summand, we find:  
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Selecting nonlinear elements in the second summand, we get: 
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Theorem 1. If the time series tπ  satisfies the bilinear model (1) with 0β → , 2 2 2 1α β σ+ < , 

Nτ ∈ , and the forecasting procedure (2) is used, then the mean square risk satisfies the 
asymptotic expansion: 
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Proof. Using (2), we have 2 2 2( ) { } 2 { } { }T T T TMSE E x E x x E xτ τ

τ ττ α α + += − + .  
By Lemma we get: 
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Corollary 1. If the random errors { }tu  in (1) have the Gaussian probability 
distribution 2

1(0 )N σ, , then: 

 
2 2 2 1

2 2 4 2
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1 1 1 2( ) (2 ) ( )
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MSE o
τ τ τ τα α α ατ σ β σ β

α α α α
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− − − −
 (A2) 

Proof. For the Gaussian probability distribution 2
1(0 )N σ,  we have 3 0µ = , 4

4 3µ σ= . Then 
(A2) follows from (A1). ■ 

Note, that the risk functional in (A2), (A1) has an additive form: the first summand is the risk 
value for the non-distorted model ( 0β = ), i.e. for the autoregression model; the second term 
proportional to 2β  is generated by the bilinear distortion.  

Corollary 2. Under Theorem 1 the condition at 1τ =  is: 
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Theorem 2. If the time series tπ  satisfies the bilinear model (1), [ ]β β β+ +∈ − , , 0β+ → , 
2 2 2 1α β σ++ < , Nτ ∈ , random errors { }tu  have the Gaussian probability 

distribution 2
1(0 )N σ, , and the forecasting procedure (2) is used, then the guaranteed upper 

risk, the instability coefficient and the δ -admissible distortion level satisfy the asymptotic 
expansions: 
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Proof. 1. The coefficient at 2 4β σ  in (A2) equals to: 2

2 2 1
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It can be shown that this coefficient is positive: if 0α = , then 2 3K
β
= ; if 1− < 0α < , then for 

Nτ ∈  we have 2
1 0
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τα
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−

, 
2

2 2
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−
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−
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, therefore 2 0K
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2. From (A2) and the definition of ( )MSE τ+  it can be shown that: 
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3. The second and the third expansions in (A3) follow from the expansion of the guaranteed 
risk.■  

Corollary 3. Under Theorem 2 conditions at 1τ = : 
2 2
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2
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+
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Appendix B 

Table B1: ML Kalman Filter estimates  

 

Country No.obs. AR(1) coefficient Bilinear coefficient   
  α̂  ( )t α  signif β̂  β  ( )t β  signif 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

ALBA 183 0.793 16.97 (3) 0.720 0.007 0.213 (0) 
ARGE 591 0.951 72.07 (3) -3.067 -0.012 -2.870 (3) 

ARME 156 0.855 21.49 (3) 0.387 0.006 0.459 (0) 
AUST 591 0.701 23.29 (3) -33.362 -0.044 -3.131 (3) 
BARB 483 0.753 24.89 (3) -0.534 -0.002 -0.222 (0) 
BELG 591 0.755 27.95 (3) 7.781 0.008 0.747 (0) 
BENI 171 0.771 15.68 (3) -0.279 -0.003 -0.095 (0) 
BOLI 590 0.911 53.25 (3) 0.766 0.003 0.385 (0) 

BOTS 370 0.884 29.22 (3) -21.670 -0.039 -2.373 (3) 
BRAZ 315 0.943 49.89 (3) 1.604 0.012 2.256 (3) 
BULG 183 0.860 22.43 (3) 0.328 0.009 0.630 (0) 
BURK 566 0.693 22.72 (3) 2.355 0.022 1.441 (0) 
BURU 383 0.789 24.57 (3) -1.512 -0.012 -0.836 (0) 
CAMB 137 0.703 11.44 (3) -1.283 -0.007 -0.199 (0) 
CAME 455 0.853 33.05 (3) 5.980 0.035 2.267 (3) 
CANA 590 0.789 31.02 (3) -4.014 -0.005 -0.444 (0) 
CAPE 171 0.706 12.76 (3) 5.553 0.039 1.017 (0) 
CENT 299 0.781 21.65 (3) 0.000 0.000 0.000 (0) 
CHAD 274 0.812 23.01 (3) 1.954 0.029 1.034 (0) 
CHHK 304 0.731 18.52 (3) -5.509 -0.013 -0.479 (0) 

CHMC 218 0.780 18.38 (3) 0.000 0.000 0.000 (0) 
COLO 591 0.884 43.85 (3) 0.336 0.000 0.369 (0) 
CONG 496 0.802 29.30 (3) 0.947 0.011 1.796 (3) 
COTE 550 0.796 30.53 (3) 0.888 0.004 0.156 (0) 
CROA 243 0.948 45.53 (3) 0.934 0.011 1.875 (3) 
CYPR 591 0.653 20.98 (3) -2.530 -0.007 -0.431 (0) 
CZEC 159 0.884 23.75 (3) 4.309 0.010 0.459 (0) 

DENM 471 0.774 26.51 (3) -10.670 -0.015 -0.924 (0) 
DOMR 591 0.940 65.23 (3) -0.483 -0.002 -0.109 (0) 
EQUA 591 0.932 60.62 (3) -2.568 -0.006 -1.405 (0) 
EGYP 591 0.790 31.04 (3) 5.898 0.019 1.795 (3) 
ELSA 591 0.835 36.50 (3) 4.853 0.011 0.903 (0) 
ESTO 171 0.859 23.59 (3) -13.709 -0.055 -2.032 (3) 
ETHI 482 0.846 34.26 (3) -1.126 -0.009 -0.531 (0) 

FIJI 446 0.788 26.85 (3) 2.363 0.007 0.408 (0) 
FINL 591 0.742 26.07 (3) -4.947 -0.006 -0.108 (0) 

FRAN 591 0.803 32.78 (3) -12.762 -0.011 -0.565 (0) 
GAMB 542 0.826 33.61 (3) 3.806 0.015 1.108 (0) 
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Country No.obs. AR(1) coefficient Bilinear coefficient   
  α̂  ( )t α  signif β̂  β  ( )t β  signif 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

GEOR 147 0.723 9.06 (3) 1.949 0.034 2.577 (3) 
GERM 183 0.639 11.17 (3) -24.200 -0.030 -1.014 (0) 
CHAN 517 0.895 47.29 (3) 0.563 0.002 0.115 (0) 
GREE 591 0.741 23.77 (3) -7.579 -0.009 -0.262 (0) 
GREN 359 0.716 19.13 (3) 7.837 0.025 1.048 (0) 
GUAT 591 0.908 50.64 (3) -7.763 -0.015 -2.050 (3) 
GUIN 241 0.766 18.47 (3) -0.277 -0.004 -0.215 (0) 
GUYA 143 0.660 10.34 (3) 1.447 0.006 0.147 (0) 
HAIT 586 0.879 44.34 (3) 7.445 0.022 1.865 (3) 

HOND 591 0.902 49.75 (3) 0.000 0.000 0.001 (0) 
HUNG 363 0.871 33.27 (3) 1.369 0.002 0.192 (0) 

ICEL 279 0.895 34.67 (3) -1.265 -0.003 -0.223 (0) 
INDI 589 0.860 40.12 (3) -3.707 -0.008 -0.499 (0) 
INDI 459 0.938 57.46 (3) 0.504 0.002 0.376 (0) 
IREL 111 0.865 16.92 (3) -20.044 -0.029 -0.322 (0) 
ISRA 591 0.914 54.48 (3) 0.423 0.001 0.111 (0) 
ITAL 591 0.877 44.39 (3) -1.733 -0.001 -0.568 (0) 

JAMA 590 0.931 59.29 (3) -5.669 -0.012 -1.722 (3) 
JAPA 590 0.781 30.35 (3) 0.000 0.000 -0.001 (0) 
JORD 363 0.745 21.27 (3) 2.755 0.014 0.639 (0) 
KAZA 159 0.930 36.55 (3) 8.694 0.043 2.598 (3) 
KENY 459 0.854 34.52 (3) 0.852 0.004 0.409 (0) 
KORE 434 0.847 32.84 (3) 10.128 0.020 1.175 (0) 
KYRG 134 0.904 24.66 (3) 4.772 0.029 1.043 (0) 
LATV 171 0.697 13.20 (3) -7.024 -0.035 -2.265 (3) 
LITH 167 0.837 19.73 (3) -2.107 -0.009 -0.370 (0) 

LUXE 591 0.751 23.90 (3) 46.486 0.056 4.563 (3) 
MACE 159 0.799 16.66 (3) -0.615 -0.005 -0.304 (0) 
MADA 506 0.881 392.40 (3) 0.217 0.001 0.011 (0) 
MALA 314 0.883 32.90 (3) 3.506 0.012 0.717 (0) 
MALY 590 0.817 33.94 (3) 5.953 0.010 0.712 (0) 
MALT 590 0.743 26.73 (3) 8.537 0.027 1.573 (0) 
MAUT 246 0.749 17.64 (3) 1.725 0.011 0.507 (0) 
MAUR 525 0.850 36.72 (3) 5.782 0.015 1.125 (0) 

MEXI 591 0.947 71.98 (3) 3.795 0.005 1.051 (0) 
MOLD 148 0.894 25.44 (3) -0.209 -0.001 -0.125 (0) 
MORO 590 0.761 28.39 (3) -2.887 -0.008 -0.485 (0) 
MOZA 153 0.887 23.51 (3) 0.306 0.002 0.167 (0) 
NEPA 505 0.844 35.18 (3) 1.277 0.004 0.472 (0) 
NETH 591 0.731 26.03 (3) 1.922 0.002 0.111 (0) 
NICA 83 0.636 7.09 (3) -39.927 -0.086 -0.765 (0) 
NIGE 459 0.736 23.23 (3) 2.639 0.028 1.613 (0) 
NIGR 554 0.829 34.70 (3) 3.412 0.015 1.735 (3) 

NORW 591 0.819 34.10 (3) -4.970 -0.007 -0.722 (0) 
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Country No.obs. AR(1) coefficient Bilinear coefficient 
  α̂  ( )t α  signif β̂  β  ( )t β  Signif 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

PAKI 591 0.768 29.11 (3) -3.376 -0.006 -0.534 (0) 
PANA 380 0.672 17.72 (3) -5.090 -0.013 -0.844 (0) 
PERU 591 0.997 43.77 (3) 27.078 0.065 10.088 (3) 
PHIL 591 0.910 53.22 (3) 1.762 0.004 0.600 (0) 

POLA 219 0.871 26.52 (3) 8.793 0.024 1.022 (0) 
PORT 591 0.791 31.21 (3) -8.363 -0.010 -0.649 (0) 

ROMA 186 0.889 26.47 (3) 2.890 0.009 0.462 (0) 
RUSS 170 0.983 41.13 (3) 16.815 0.108 10.427 (3) 

SAMO 469 0.786 26.47 (3) 4.528 0.036 1.969 (3) 
SAUD 313 0.770 21.44 (3) 5.499 0.017 0.990 (0) 
SENE 459 0.802 28.49 (3) 4.460 0.031 2.239 (3) 
SERB 146 0.917 27.27 (3) 4.713 0.034 2.371 (3) 
SEYC 442 0.750 23.83 (3) -0.877 -0.008 -0.625 (0) 
SING 542 0.843 28.19 (3) -1.377 -0.004 -0.122 (0) 
SLOA 159 0.835 19.15 (3) 3.894 0.013 0.378 (0) 
SLOE 172 0.765 25.86 (3) -47.457 -0.119 -3.962 (3) 
SOLO 328 0.767 21.59 (3) -0.722 -0.003 -0.248 (0) 
SOUT 591 0.913 53.44 (3) -6.225 -0.009 -1.283 (0) 
SPAI 591 0.748 27.41 (3) 17.835 0.018 1.147 (0) 
SRIL 591 0.770 29.33 (3) 0.233 0.001 0.315 (0) 
STKI 323 0.721 18.25 (3) -6.068 -0.022 -0.828 (0) 

STLU 501 0.708 22.01 (3) -1.825 -0.008 -0.218 (0) 
SSAF 458 0.899 42.21 (3) 15.002 0.024 2.061 (3) 
SURI 444 0.913 46.65 (3) -0.070 0.000 -0.325 (0) 

SWAZ 470 0.516 13.03 (3) 0.460 0.003 0.351 (0) 
SWED 591 0.792 30.88 (3) -21.449 -0.036 -3.327 (3) 
SWIT 591 0.796 31.94 (3) -3.960 -0.005 -0.111 (0) 
THAI 495 0.874 39.60 (3) 10.180 0.020 1.287 (0) 

TONG 194 0.667 11.36 (3) -14.147 -0.058 -1.627 (0) 
TRIN 590 0.801 32.40 (3) 1.753 0.003 0.112 (0) 
TUNI 225 0.897 29.19 (3) -7.236 -0.011 -0.408 (0) 
TURK 447 0.919 47.03 (3) -6.139 -0.013 -1.865 (3) 

UGAN 169 0.872 21.54 (3) 7.979 0.052 1.361 (0) 
UNIK 591 0.884 46.00 (3) 10.587 0.012 0.971 (0) 
UNIS 591 0.794 30.66 (3) -26.021 -0.026 -1.187 (0) 

URUG 591 0.924 58.39 (3) 5.608 0.010 1.694 (3) 
VENE 591 0.899 47.68 (3) -4.098 -0.007 -0.791 (0) 
VIET 131 0.892 23.03 (3) 2.750 0.007 0.229 (0) 

ZAMB 250 0.880 28.15 (3) 12.067 0.032 1.245 (0) 
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           Table B2: ML Kalman Filter forecast measures  

 

Country No.obs.      Φ̂  
0.90
| 0ξ̂ ββ =  

0.90
ˆ

ˆ (24)
β

δ
 maxτ  

(1) (2) (3) (4) (5) (6) 

ALBA 183 0.629 0.009 0.002 7 
ARGE 591 0.904 -0.016 0.084 16 
ARME 156 0.731 0.007 0.003 9 
AUST 591 0.493 -0.057 0.042 4 
BARB 483 0.566 -0.003 0.000 5 
BELG 591 0.570 0.011 0.002 5 
BENI 171 0.595 -0.003 0.000 6 
BOLI 590 0.830 0.003 0.002 13 
BOTS 370 0.784 -0.050 0.200 11 
BRAZ 315 0.890 0.016 0.066 16 
BULG 183 0.739 0.011 0.007 10 
BURK 566 0.481 0.028 0.010 4 
BURU 383 0.623 -0.015 0.006 6 
CAMB 137 0.494 -0.009 0.001 4 
CAME 455 0.730 0.045 0.106 9 
CANA 590 0.623 -0.007 0.001 6 
CAPE 171 0.501 0.050 0.034 4 
CENT 299 0.610 0.000 0.000 6 
CHAD 274 0.660 0.038 0.046 7 
CHHK 304 0.535 -0.017 0.005 5 
CHMC 218 0.608 0.000 0.000 6 
COLO 591 0.781 0.000 0.000 11 
CONG 496 0.644 0.014 0.006 7 
COTE 550 0.633 0.005 0.001 7 
CROA 243 0.898 0.014 0.065 16 
CYPR 591 0.427 -0.009 0.001 3 
CZEC 159 0.782 0.013 0.014 11 
DENM 471 0.600 -0.020 0.009 6 
DOMR 591 0.883 -0.002 0.001 16 
EQUA 591 0.869 -0.008 0.013 15 
EGYP 591 0.624 0.024 0.015 6 
ELSA 591 0.697 0.015 0.009 8 
ESTO 171 0.741 -0.070 0.277 10 
ETHI 482 0.716 -0.011 0.006 9 
FIJI 446 0.622 0.009 0.002 6 
FINL 591 0.551 -0.007 0.001 5 
FRAN 591 0.645 -0.014 0.006 7 
GAMB 542 0.682 0.019 0.013 8 
GEOR 147 0.524 0.043 0.028 5 
GERM 183 0.409 -0.038 0.013 3 
CHAN 517 0.801 0.002 0.000 12 
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Country No.obs.      Φ̂  
0.90
| 0ξ̂ ββ =  

0.90
ˆ

ˆ (24)
β

δ
 maxτ  

(1) (2) (3) (4) (5) (6) 

GREE 591 0.549 -0.011 0.002 5 
GREN 359 0.514 0.032 0.015 4 
GUAT 591 0.825 -0.020 0.047 13 
GUIN 241 0.586 -0.005 0.000 6 
GUYA 143 0.436 0.008 0.001 4 
HAIT 586 0.774 0.029 0.062 11 
HOND 591 0.814 0.000 0.000 13 
HUNG 363 0.759 0.003 0.001 10 
ICEL 279 0.801 -0.004 0.002 12 
INDI 589 0.740 -0.010 0.006 10 
INDI 459 0.879 0.003 0.002 15 
IREL 111 0.750 -0.037 0.084 10 
ISRA 591 0.835 0.001 0.000 14 
ITAL 591 0.770 -0.001 0.000 11 
JAMA 590 0.867 -0.015 0.047 15 
JAPA 590 0.610 0.000 0.000 6 
JORD 363 0.556 0.018 0.006 5 
KAZA 159 0.867 0.055 0.583 15 
KENY 459 0.729 0.005 0.001 9 
KORE 434 0.717 0.026 0.032 9 
KYRG 134 0.818 0.038 0.160 13 
LATV 171 0.487 -0.045 0.026 4 
LITH 167 0.701 -0.011 0.005 8 
LUXE 591 0.567 0.072 0.097 5 
MACE 159 0.638 -0.006 0.001 7 
MADA 506 0.776 0.001 0.000 11 
MALA 314 0.780 0.015 0.018 11 
MALY 590 0.668 0.013 0.006 8 
MALT 590 0.553 0.034 0.021 5 
MAUT 246 0.561 0.015 0.004 5 
MAUR 525 0.723 0.019 0.019 9 
MEXI 591 0.897 0.006 0.012 16 
MOLD 148 0.800 -0.001 0.000 12 
MORO 590 0.579 -0.011 0.002 6 
MOZA 153 0.787 0.003 0.001 12 
NEPA 505 0.713 0.005 0.001 9 
NETH 591 0.534 0.003 0.000 5 
NICA 83 0.412 -0.111 0.110 3 
NIGE 459 0.543 0.035 0.021 5 
NIGR 554 0.687 0.019 0.014 8 
NORW 591 0.670 -0.009 0.003 8 
PAKI 591 0.590 -0.008 0.001 6 
PANA 380 0.452 -0.016 0.003 4 
PARA 591 0.706 0.000 0.000 9 
PERU 591 0.998 0.083 57.523 19 
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Country No.obs.      Φ̂  
0.90
| 0ξ̂ ββ =  

0.90
ˆ

ˆ (24)
β

δ
 maxτ  

(1) (2) (3) (4) (5) (6) 

PHIL 591 0.829 0.005 0.003 13 
POLA 219 0.760 0.030 0.061 10 
PORT 591 0.625 -0.013 0.004 6 
ROMA 186 0.790 0.012 0.012 12 
RUSS 170 0.978 0.138 26.580 18 
SAMO 469 0.620 0.047 0.055 6 
SAUD 313 0.593 0.022 0.011 6 
SENE 459 0.645 0.040 0.048 7 
SERB 146 0.841 0.044 0.277 14 
SEYC 442 0.563 -0.010 0.002 5 
SING 542 0.711 -0.005 0.001 9 
SLOA 159 0.698 0.017 0.012 8 
SLOE 172 0.599 -0.153 0.489 6 
SOLO 328 0.589 -0.004 0.000 6 
SOUT 591 0.833 -0.012 0.019 13 
SPAI 591 0.560 0.023 0.010 5 
SRIL 591 0.593 0.001 0.000 6 
STKI 323 0.520 -0.028 0.011 5 
STLU 501 0.502 -0.010 0.001 4 
SSAF 458 0.809 0.030 0.095 12 
SURI 444 0.833 -0.001 0.000 13 
SWAZ 470 0.267 0.004 0.000 2 
SWED 591 0.629 -0.047 0.058 7 
SWIT 591 0.633 -0.006 0.001 7 
THAI 495 0.765 0.026 0.047 11 
TONG 194 0.448 -0.074 0.059 4 
TRIN 590 0.642 0.004 0.001 7 
TUNI 225 0.805 -0.014 0.020 12 
TURK 447 0.844 -0.017 0.044 14 
UGAN 169 0.763 0.067 0.302 11 
UNIK 591 0.782 0.015 0.018 11 
UNIS 591 0.631 -0.033 0.029 7 
URUG 591 0.854 0.013 0.029 14 
VENE 591 0.808 -0.009 0.008 12 
VIET 131 0.795 0.009 0.008 12 
ZAMB 250 0.775 0.041 0.127 11 
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List of country names and codes 

Country name code Country name code 

Albania ALBA Kyrgyz Republic KYRG 
Argentina ARGE Latvia LATV 
Armenia ARME Lithuania LITH 
Austria AUST Luxembourg LUXE 
Barbados BARB Macedonia, FYR MACE 
Belgium BELG Madagascar MADA 
Benin BENI Malawi MALA 
Bolivia BOLI Malaysia MALY 
Botswana BOTS Malta MALT 
Brazil BRAZ Mauritania MAUT 
Bulgaria BULG Mauritius MAUR 
Burkina Faso BURK Mexico MEXI 
Burundi BURU Moldova MOLD 
Cambodia CAMB Morocco MORO 
Cameroon CAME Mozambique MOZA 
Canada CANA Nepal NEPA 
Cape Verde CAPE Netherlands NETH 
Central African Rep. CENT Nicaragua NICA 
Chad CHAD Niger NIGE 
China,P.R.:Hong Kong CHHK Nigeria NIGR 
China,P.R.:Macao CHMC Norway NORW 
Colombia COLO Pakistan PAKI 
Congo, Dem. Rep. of CONG Panama PANA 
Côte d'Ivoire COTE Paraguay PARA 
Croatia CROA Peru PERU 
Cyprus CYPR Philippines PHIL 
Czech Republic CZEC Poland POLA 
Denmark DENM Portugal PORT 
Dominican Republic DOMR Romania ROMA 
Ecuador EQUA Russian Federation RUSS 
Egypt EGYP Samoa SAMO 
El Salvador ELSA Saudi Arabia SAUD 
Estonia ESTO Senegal SENE 
Ethiopia ETHI Serbia SERB 
Fiji FIJI Seychelles SEYC 
Finland FINL Singapore SING 
France FRAN Slovak Republic SLOA 
Gambia GAMB Slovenia SLOE 
Georgia GEOR Solomon Islands SOLO 
Germany GERM South Africa SOUT 
Ghana CHAN Spain SPAI 
Greece GREE Sri Lanka SRIL 
Grenada GREN St. Kitts and Nevis STKI 
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Country name code Country name code 

Guatemala GUAT St. Lucia STLU 
Guinea-Bissau GUIN Sub-Saharan Africa SSAF 
Guyana GUYA Suriname SURI 
Haiti HAIT Swaziland SWAZ 
Honduras HOND Sweden SWED 
Hungary HUNG Switzerland SWIT 
Iceland ICEL Thailand THAI 
India INDI Tonga TONG 
Indonesia INDI Trinidad and Tobago TRIN 
Ireland IREL Tunisia TUNI 
Israel ISRA Turkey TURK 
Italy ITAL Uganda UGAN 
Jamaica JAMA United Kingdom UNIK 
Japan JAPA United States UNIS 
Jordan JORD Uruguay URUG 
Kazakhstan KAZA Venezuela VENE 
Kenya KENY Vietnam VIET 
Korea, Republic of KORE Zambia ZAMB 
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