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Abstract

Alternative methods for the seasonal adjustment of economic data
are described that operate in the time domain and in the frequency
domain. The time-domain method, which employs a classical comb
filter, mimics the effects of the model-based procedures of the SEATS–
TRAMO and STAMP programs. The frequency-domain method elim-
inates the sinusoidal elements of which, in the judgement of the user,
the seasonal component is composed.

It is proposed that, in some circumstances, seasonal adjustment is
best achieved by eliminating all elements in excess of the frequency
that marks the upper limit of the trend-cycle component of the data.
It is argued that the choice of the method seasonal adjustment is liable
to affect the determination of the turning points of the business cycle.

Keywords: Wiener–Kolmogorov Filtering, Frequency-Domain Methods, The
Trend-Cycle Component

1 Introduction

For a great many years, and until recently, there has been a broad consensus
amongst central statistical agencies in the matter of how to perform the
seasonal adjustment of economic data. The prevalent techniques have been
those that were developed by the U.S. Bureau of the Census and which
have been encapsulated in the X-11 computer program. The program was
the culmination of the pioneering work undertaken by Julius Shiskin in the
1950’s and the 1960’s. (See Shiskin et al. 1967.)

The X-11 program has undergone numerous improvements and modifica-
tions, leading to the X-11-ARIMA software packages of 1975 and 1988. (See
Dagum 1980, 1988.) Its latest incarnation is in the X-12-ARIMA package.
(See Findlay et al. 1998.) Much of the relevant information on the method
has been provided in a monograph of Ladiray and Quenneville (2001).

Recently, some alternative methods of seasonal adjustment have been
making headway amongst central statistical agencies. Foremost amongst
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these is the ARIMA-model-based method of the TRAMO–SEATS package,
which has been adopted by Eurostat, the central statistical agency of the
European Union (See Caporello and Maravall 2004.) The STAMP program
is also capable of seasonal adjustment. (See Koopman et al. 2000.) There
are also indications that the Census Bureau itself is becoming more eclectic
in its approach to seasonal adjustment. (See Monsell, Aston and Koopman
2003.)

In view of such developments, it seems that the time is ripe for a re-
examination of the concepts and methods of seasonal adjustment. In this
paper, we examine three methods that can be used for removing from an
economic data sequence the elements associated with the annual seasonal
cycle and its harmonics.

The first method, which operates in the time domain, is derived from a
simple ARIMA model of a seasonal fluctuation superimposed upon a white-
noise process. The Wiener–Kolmogorov methodology is used in deriving a
filter that is appropriate for removing the seasonal component.

When there is a trend in the data, this can be removed by differencing
before the filter is applied. Thereafter, the filtered data can be reinflated by
anti-differencing or summation, which requires the estimation of some initial
conditions. Alternatively, the trend can be represented by an interpolated
polynomial, which is subtracted from the data prior to filtering. Thereafter,
the polynomial sequence can be added back to the filtered sequence.

Unlike the models that underlie the STAMP and SEATS–TRAMO pro-
grams, which are intended to be realistic representations of the processes
generating the data, our model is an heuristic device that is intended only
for the purpose of deriving the seasonal-adjustment filter. Nevertheless, the
filter has much the same effects as those of the aforementioned programs.

The second method that we shall examine is a more flexible one, which
operates in the frequency domain. By inspecting the periodogram of the
residuals from a polynomial detrending of the data, one can determine the
width of the frequency bands that contain the elements of the seasonal com-
ponent that is to be eliminated.

In addition to the elements at the seasonal frequencies and its harmonics,
these bands are liable to comprise several adjacent elements, which may also
be removed from the data. Thereafter, the seasonally-adjusted data can be
synthesised from the remaining spectral elements. (Equivalently, the seasonal
component may be synthesised from the seasonal elements and subtracted
from the original data.) The manner of dealing with trends in the case of
the frequency-domain method is the same as in the case of the time domain-
method.

The frequency-domain method envisages a circular sequence, which is the
result of mapping the finite data sequence onto the circumference of a circle
of the same length. The circular sequence gives rise to an infinite sequence,
which is the periodic extension of the finite sequence. It is important that
there should be no disjunctions in the periodic extension at the points where
the end of one replication of the data sequence joins the beginning of the next.
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Various devices are proposed for this purpose, which include extrapolating
the data sequence and tapering it.

The spectral analysis of an econometric data sequence often reveals a
fundamental component that falls within a low-frequency band running from
the zero frequency up to a well-defined limit. The seasonal component of the
data is liable to be separated from the fundamental component by a wide
dead space containing nothing but the spectral traces of minor elements of
noise.

Such a discovery may suggest that, instead of removing only the seasonal
component from the data, one might aim to isolate the fundamental compo-
nent. The process of isolating this band-limited component can be described
as one of cleansing the data. This represents the third method of seasonal
adjustment.

A band-limited data sequence cannot be modelled by an ARMA pro-
cess, since this is supported on the entire frequency range running from
zero up to the Nyquist frequency π radians per sample period. To make
the band-limited process amenable to ARMA modelling, its frequency band
must be mapped onto the interval [0, π]. This can be achieved by synthesis-
ing a continuous trajectory from the relevant Fourier ordinates, which can
be re-sampled at the appropriate rate, which must be less than the original
sampling rate.

A question arises concerning the effects of the alternative methods of sea-
sonal adjustment. The choice of the method is bound to affect the parameters
of any model that is build upon the data. However, a full investigation of
this would carry us too far field. Instead, we choose to examine the extent
to which the alternative methods give rise to differences in the dating of the
turing points of a typical business cycle.

The methods that are described in this paper have been implemented in
a computer program IDEOLOG that is available, together with its code in
Pascal, at the address

http://www.le.ac.uk/users/dsgp1/

2 The Time-Domain Method

The method that we shall adopt for seasonal adjustment in the time domain
has some affinities with the ARMA-model-based methods of seasonal adjust-
ment that are represented most prominently by the TRAMO–SEATS and
STAMP programs.

The airline passenger model

The TRAMO–SEATS program employs the airline passenger model of Box
and Jenkins (1976) as its default model. This is represented by the equation

y(z) =
N(z)

P (z)
ε(z) =

{
(1 − ρz)(1 − θzs)

(1 − z)(1 − zs)

}
ε(z), (1)
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where N(z) and P (z) are polynomial operators and y(z) and ε(z) are, respec-
tively, the z-transforms of the output sequence y(t) = {yt; t = 0,±1,±2, . . .}
and of the input sequence ε(t) = {εt; t = 0,±1,±2, . . .} of unobservable
white-noise disturbances. The integer s stands for the number of periods in
the year, which are s = 4 for quarterly data and s = 12 for monthly data.
Without loss of generality as far as the derivation of the filters is concerned,
the variance of the input sequence can be set to unity.

Given the identity 1− zs = (1− z)Σ(z), where Σ(z) = 1 + z + · · ·+ zs−1

is the seasonal summation operator, it follows that

P (z) = (1 − z)(1 − zs) = ∇2(z)Σ(z), (2)

where ∇(z) = 1 − z is the backward difference operator. The polynomial
Σ(z) has zeros at the points exp{i(2π/s)j}; j = 1, 2, . . . , s − 1, which are
located on the circumference of the unit circle in the complex plane at angles
from the horizontal that correspond to the fundamental seasonal frequency
ωs = 2π/s and its harmonics.

The TRAMO–SEATS program effects a decomposition of the data into a
seasonal component and a non-seasonal component that are described by sta-
tistically independent processes driven by separate white-noise forcing func-
tions. It espouses the principal of canonical decompositions that has been
expounded by Hillmer and Tiao (1982).

The first step in this decomposition entails the following partial-fraction
decomposition of the generating function of the autocovariances of y(t):

N(z−1)N(z)

P (z−1)P (z)
=

U∗(z−1)U∗(z)

∇2(z−1)∇2(z)
+

V ∗(z−1)V ∗(z)

Σ(z−1)Σ(z)
+ ρθ. (3)

Here, ρθ is the quotient of the division of N(z−1)N(z) by P (z−1)P (z), which
must occur before the remainder, which will be a proper fraction, can be
decomposed.

In the preliminary decomposition of (3), the first term on the RHS cor-
responds to the trend component, the second term corresponds to the sea-
sonal component and the third term corresponds to the irregular component.
Hillmer and Tiao have provided expressions for the numerators of the RHS,
which are somewhat complicated, albeit that the numerators can also be
found by numerical means.

When z = eiω, equation (3) provides the spectral ordinates of the pro-
cess and of its components at the frequency value of ω. The corresponding
spectral density functions are obtained by letting ω run from 0 to π. The
quotient ρθ corresponds to the spectrum of a white-noise process, which is
constant over the frequency range.

The principal of canonical decomposition proposes that the estimates of
the trend and of the seasonal component should be devoid of any elements
of white noise. Therefore, their spectra must be zero-valued at some point in
the interval [0, π]. Let qT and qS be the minima of the spectral density func-
tions associated with the trend and the seasonal components respectively.
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Figure 1: The gain of the canonical trend extraction filter associated with the
airline monthly passenger model.

By subtracting these values from their respective components, a revised de-
composition is obtained that fulfils the canonical principal. This is

N(z−1)N(z)

P (z−1)P (z)
=

U(z−1)U(z)

∇2(z−1)∇2(z)
+

V (z−1)V (z)

Σ(z−1)Σ(z)
+ q, (4)

where q = ρθ + qT + qS.
The Wiener–Kolmogorov principle of signal extraction indicates that the

filter that serves to extract the trend from the data sequence y(t) should take
the form of

βT (z) =
U(z−1)U(z)

∇2(z−1)∇2(z)
× P (z−1)P (z)

N(z−1)N(z)

=
U(z−1)U(z)

N(z−1)N(z)
× Σ(z−1)Σ(z). (5)

This is the ratio of the autocovariance generating function of the trend com-
ponent to that of the process as a whole. This filter nullifies the seasonal
component in the process of extracting a trend that is relatively free of high-
frequency elements. The nullification of the seasonal component is due to
the factor Σ(z).

The gain of the trend-extraction filter is depicted in Figure 1. Here,
s = 12 and the values of ρ = 0.4 and θ = 0.6 that determine the polynomial
N(z) are the estimates of Box and Jenkins (1976). The filter is an appropriate
device for seasonal adjustment if the high-frequency elements that it serves to
attenuate are liable to be regarded as a noisy contamination of no economic
significance. In that case, as we shall propose later, it might be best to be
remove them completely from the data.

The seasonal-adjustment filter, which nullifies the seasonal component
without further attenuating the high-frequency elements of the data, is marginally
more complicated. Define

W (z−1)W (z)

∇2(z−1)∇2(z)
=

U(z−1)U(z)

∇2(z−1)∇2(z)
+ q. (6)
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Figure 2: The gain of the seasonal adjustment filter associated with the airline
passenger model.

Then, the seasonal adjustment filter is

βA(z) =
W (z−1)W (z)

N(z−1)N(z)
× Σ(z−1)Σ(z). (7)

The gain of this filter is shown in Figure 2. Further examples of its gain, for
various values of the parameters ρ and θ, are provided in a paper of Findlay
(2005).

An alternative model

The filter that we shall propose is derived from a model that combines a
white-noise component η(t) with a seasonal component obtained by passing
an independent white noise ν(t) through a rational filter with poles located
on the unit circle at angles corresponding to the seasonal frequencies, and
with zeros at the same angles, which lie inside the circle. The z-transform of
the sequence g(t), which is the data sequence or some transformation thereof
that is free of trend, such as the differenced data or the residuals from the
interpolation of a polynomial trend, is given by

g(z) =
R(z)

Σ(z)
ν(z) + η(z), (8)

where
R(z) = 1 + ρz + ρ2z2 + · · · + ρs−1zs−1 (9)

with ρ < 1, and where Σ(z) = 1+z+z2+· · ·+zs−1 is the seasonal summation
operator, as previously defined.

This equation can be compared with that of the basic structural time
series model

y(z) =
zζ(z)

∇2(z)
+

ξ(z)

∇(z)
+

ν(z)

Σ(z)
+ η(z), (10)

wherein ζ(z), ξ(z), ν(z) and η(z) are the z-transforms of independently dis-
tributed white-noise sequences. Equation (8) lacks the terms in ∇(z) and
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Figure 3: The gain of the seasonal adjustment filter associated with equation (8).

∇2(z), which give rise to a stochastic trend; and it includes the polynomial
R(z) in the numerator of the term in ν(z). The basic structural time series
model is the default model of the STAMP program.

The seasonal-adjustment filter that extracts η(z) from g(z) of equation
(8) is also the filter the extracts Σ(z)η(z) from

Σ(z)g(z) = R(z)ν(z) + Σ(z)η(z), (11)

The z-transform of the filter, which is derived according to the Wiener–
Kolmogorov principle, is

βC(z) =
σ2

ηΣ(z)Σ(z−1)

σ2
ηΣ(z)Σ(z−1) + σ2

νR(z)R(z−1)
. (12)

Setting z = exp{−iω} and letting ω run from 0 to π generates the frequency
response of the filter, of which the modulus or gain is plotted in Figure 3 for
the case where s = 12, ρ = 0.6 and λ = σ2

η/σ
2
ν = 0.125.

There is hardly a difference between Figure 3 and Figure 2, which relates
to the seasonal-adjustment filter associated with the airline passenger model.
This is notwithstanding the fact that the airline passenger model incorporates
a stochastic trend, whereas there is no trend term in equation (8). Also, the
airline filter βA(z) has a numerator of degree 2s and a denominator of degree
2(s + 1), whereas both the numerator and the denominator of βC(z) are of
degrees 2(s − 1).

In fact, βC(z) is a classic comb filter in which the zeros of the numerator
polynomial Σ(z), which are located on the perimeter of the unit circle, are
balanced by poles of the denominator that fall on the same radii but which
are located within the circle at a short distance from the perimeter. The
poles counteract the effects of the zeros, except in the neighbourhoods of
the seasonal frequencies and its harmonics, where the zeros account for the
notches in the gain function.

The formulae for the seasonal-adjustment filters are not fully adapted to
the circumstances of a finite data sequence with an underlying trend. In the
following section, we shall show how the comb filter can be implemented.
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The method depends upon eliminating the trend in the first instance before
applying the filter. After the filtering, the trend can be restored. We shall
deal first with the means of adapting the filter to a finite sample.

The finite-sample filter

To derive the finite-sample version of a Wiener–Kolmogorov filter, we may
consider a data vector g = [g0, g1, . . . , gT−1, ]

′ that has a seasonal component
ξ and a noise component η:

g = ξ + η. (13)

To cast the equations into a form analogous to (11), it is necessary to define
the matrix counterparts of the polynomial operators R(z) and Σ(z).

Let LT = [e1, e2, . . . , eT−1, 0] be the matrix lag operator of order T , which
is obtained from the identity matrix IT = [e0, e1, . . . , eT−1] by deleting the
leading column and by appending a column of zeros to the end of the array.
Then, by replacing z by LT in the polynomial operators, we get

R(LT ) =
[
Q′

∗R
Q′

R

]
and Σ(LT ) =

[
Q′

∗Σ
Q′

Σ

]
. (14)

These are banded lower-triangular Toeplitz matrices with units on the diag-
onals. Since the matrices Q′

∗R and Q′
∗Σ suffer from end effects, they are liable

to be discarded leaving Q′
R and Q′

Σ, which are of order (T − s + 1) × T .
With these matrices, the following equation is formed, which is the matrix

analogue of (11):
Q′

Σg = Q′
Rν + Q′

Ση. (15)

Here, ν is a vector of order T of white noise elements from the sequence ν(t).
A demonstration by Pollock (2007) serves to show that the minimum-mean-
square-error estimate of the vector η is given by

h = QΣ(Q′
ΣQΣ + λ−1Q′

RQR)−1Q′
Σg. (16)

The matrix of the transformation mapping from g to h is seen to be the
analogue of the filter function βC(z) of (12).

A simple procedure for calculating the estimates of h is to solve the fol-
lowing equations in succession:

(Q′
ΣQΣ + λ−1Q′

RQR)b = Q′
Σg and h = QΣb. (17)

Since Q′
ΣQΣ and Q′

RQR correspond to the narrow-band dispersion matrices
of moving-average processes, the solution to the first equation of (17) may be
found via a Cholesky factorisation that sets Q′

ΣQΣ+λ−1Q′
RQR = GG′, where

G is a lower-triangular matrix with a limited number of nonzero bands. The
system GG′b = Q′

Σg may be cast in the form of Gp = Q′
Σg and solved for p.

Then, G′b = p can be solved for b.
In dealing with trended economic data, there are two approaches that

can be taken. The first approach depends upon eliminating the trend by
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applying a twofold differencing operator to the data. The difference operator
is obtained by replacing the polynomial argument z of ∇2(z) = 1 − 2z + z2

by the matrix lag operator LT . The result is the matrix

∇2(LT ) =
[
Q′

∗
Q′

]
. (18)

Here, the sub-matrix Q′
∗ of order 2×T is liable to be discarded. The inverse

of ∇2(LT ) is the summation operator

∇−2(LT ) = [ S∗ S ] . (19)

We observe that, if g∗ = Q′
∗y and g = Q′y are available, then y can be

recovered via the equation

y = S∗g∗ + Sg. (20)

The two columns of the matrix S∗ provide a basis for the set of all linear
functions defined over the set of integers t = 0, 1, . . . , T − 1. Therefore,
f = S∗g∗ is the vector of the ordinates of a linear trend, whilst the elements
of g∗ may be regarded as the parameters of the trend. If the elements of the
vector δ′ = [g′

∗, g
′] have a nonzero mean value δ̄, such that δ = δ̄ιT +(δ− δ̄ιT ),

where ιT = [1, 1, . . . , 1]′ is the summation vector of order T , then the twofold
summation ∇2(IT )ιT δ̄ will give rise to a quadratic sequence.

If g within equation (16) represents the vector of differenced data and if
h is the seasonally-adjusted version, then h requires to be reinflated in order
to provide a seasonally-adjusted version of the original data vector. This
can be denoted by x = S∗h∗ + Sh, where h∗ contains the appropriate initial
conditions or constants of integration.

The way to determine h∗ is to find the value that minimises the function

(y − x)′(y − x) = (y − S∗h∗ − Sh)′(y − S∗h∗ − Sh). (21)

The effect should be to make the seasonally-adjusted data adhere as closely
as possible to the original data. The solution is

h∗ = (S ′
∗S∗)

−1S ′
∗(y − Sg). (22)

The alternative procedure depends upon estimating a trend function,
which can be removed from the data to create a set of residual values that
are to be subjected to the process of seasonal adjustment. We shall denote
the vector of the residual sequence also by g.

Often it is appropriate to represent the trend by an ordinary polynomial
function of time. In the case of the U.K. consumption, which provides our
first example, it is sufficient to interpolate a straight line through the loga-
rithms of the data. Pollock (2007) has shown that an appropriate formula
for the vector of residuals is

g = Q(Q′Q)−1Q′y. (23)
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Figure 4: The quarterly sequence of the logarithms of consumption in the U.K., for
the years 1955 to 1994, together with a linear trend interpolated by least-squares
regression.
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Figure 5: The periodogram of the first differences of the U.K. logarithmic con-
sumption data.
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Figure 6: The periodogram of the residual sequence obtained from the linear
detrending of the logarithmic consumption data. The shaded bands contain the
elements of the seasonal component.
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It is notable that this vector contains exactly the same information as does
the vector Q′y of the second differences of the data. The difference operator
has the effect of nullifying the element of zero frequency and of attenuating
radically the adjacent low-frequency elements. This is true even of the first-
difference operator. Therefore, the low-frequency spectral structures of the
data are not perceptible in the periodogram of the differenced sequence.
Figure 5 provides evidence of this.

However, the periodogram of the residuals of the polynomial regression
can be relied upon to reveal the spectral structures at all frequencies. Figure
6 shows that the low-frequency structure of the U.K. consumption data is
fully evident in the periodogram of the residuals from fitting a linear trend
to the logarithmic data.

Once the residual sequence has been seasonally adjusted, it can be added
back to the interpolated polynomial. The effects of this procedure are indis-
tinguishable from those of the seasonal-adjustment procedure that employs
the operations of differencing to eliminate the trend and anti-differencing or
summation to restore it.

Figure 7 shows the plot of the seasonally-adjusted data that would be
obtained from either of the two procedures. Figure 8 shows the seasonal com-
ponent that is extracted in the process of seasonal adjustment, and Figure
9 shows the periodogram of the residual sequence of the linearly detrended
data after it has been subjected to seasonal adjustment. The removal of sea-
sonal spikes from the periodogram is evident from the comparison of Figure
9 with of Figure 6.

The seasonal-adjustment filter eliminates from the data the elements at
the seasonal frequencies, and it takes little else from the data. It is for this
reason that the estimated seasonal component has the regular appearance
that is see in Figure 8, for it is synthesised, in the main, from a strictly
limited number of sinusoidal elements.

However, the periodograms of Figures of 6 and 9 suggest that the true
seasonal component of the data comprises a wider range of elements, includ-
ing some at frequencies that are the adjacent to the seasonal frequencies.
Contributions from such elements can be included in the estimated seasonal
component, to some extent, by widening the notches of the comb file. This
can be done by reducing the value of the parameter ρ; but this is not a wholly
satisfactory recourse.

The alternative method of seasonal adjustment that we propose in the
next section requires the elements that constitute the seasonal component
to be identified by inspecting the periodogram of the detrended data. Once
these elements have been identified, the seasonal component can be synthe-
sised and subtracted thereafter from the original data.
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Figure 7: The plot of a seasonally-adjusted version of the logarithmic consumption
data of Figure 4.
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Figure 8: The seasonal component extracted from the logarithmic consumption
data.
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Figure 9: The periodogram of the residuals from a linear detrending the
seasonally-adjusted logarithmic consumption data, with the frequency response
function of the filter superimposed. The shaded band contains the elements of the
business cycle.
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3 Seasonal Adjustment in the Frequency

Domain

In a Fourier analysis, an arbitrary function is resolved into a weighted combi-
nation of sine and cosine functions or, alternatively, of complex exponential
functions. The domain of such periodic functions is either the perimeter of
a circle, or else it is the entire real line.

A data sequence that is subject to a Fourier analysis must be regarded
as a single cycle of a periodic function. The periodicity is achieved either by
mapping the sequence onto the circumference of a circle, or else by extending
it indefinitely by successive replications.

If a data sequence contains a significant trend, then there will be a sharp
disjunction at the point on the circle where the beginning of the sequence
joins its end. Alternatively, there will be successive disjunctions in the peri-
odic extension of the sequence at points where the end of one replication of
the data joins the start of the next replication. Then, the effect will be to
create the appearance of the serrated edge of a saw blade.

The spectrum of a saw tooth function has a one-over-f profile in the form
of a rectangular hyperbola that extends from a high point adjacent to the
zero frequency to a low point at the limiting Nyquist frequency of π radians
per sample interval. Such a profile is liable to mask the spectral information
that is of genuine interest. Therefore, for a spectral analysis to be successful,
the trend must be eliminated from the data at first.

The data can be detrended by differencing. Alternatively, a trend function
can be interpolated into the data and the residual deviations can be subjected
to the analysis. In the context of the seasonal adjustment of the data, the
latter approach is preferable, since the pattern of seasonal fluctuations can
be obscured by taking differences. For the present, we shall assume that the
detrended data are available in the vector g. Later, we shall describe various
devices that can accompany the process of polynomial detrending, which are
intended to minimise the problem of the disjunctions.

It is more convenient to work with complex Fourier coefficients and with
complex exponential functions in place of sines and cosines. In these terms,
the Fourier transform and its inverse are given by

γj =
1

T

T−1∑
t=0

gte
−iωjt ←→ gt =

T−1∑
j=0

γje
iωjt, (24)

where ωj = 2πj/T is the jth Fourier frequency, which, in the case of j <
T/2, relates to a sinusoidal element that completes j cycles in the period
spanned by the data. The conjugate frequencies ωT−j are to be found within
cos(ωj) = {exp(ωj)+exp(ωT−j)}/2 and cos(ωj) = i{exp(ωj)−exp(ωT−j)}/2),
wherein exp(ωT−j) = exp(ω−j).

For a matrix representation of these transforms, one may define

U = T−1/2[exp{−i2πtj/T}; t, j = 0, . . . , T − 1], (25)

Ū = T−1/2[exp{i2πtj/T}; t, j = 0, . . . , T − 1],
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Figure 10: The seasonal component extracted from the logarithmic consumption
data by the frequency-domain method.

which are unitary complex matrices such that UŪ = ŪU = IT . Then,

γ = T−1/2Ug ←→ g = T 1/2Ūγ, (26)

where g = [g0, g1, . . . gT−1]
′ and γ = [γ0, γ1, . . . γT−1]

′ are the vectors of the
data and of their spectral ordinates, respectively.

This notation can be used to advantage for representing the process of
estimating the seasonal component. Let J be a diagonal selection matrix of
order T of zeros and units, wherein the units correspond to the frequencies
of the pass band and the zeros to those of the stop band. Then, the selected
Fourier ordinates are the nonzero elements of the vector Jγ. By an applica-
tion of the inverse Fourier transform, the selected elements are carried back
to the time domain to form the filtered sequence, which is the estimated
component w. Thus, there is

w = ŪJUg = Ψg. (27)

Here, ŪJU = Ψ = [ψ◦
|i−j|; i, j = 0, . . . , T − 1] is a circulant matrix of the

filter coefficients that would result from wrapping the infinite sequence of
the coefficients of the ideal bandpass filter around a circle of circumference
T and adding the overlying elements. Thus

ψ◦
k =

∞∑
q=−∞

ψqT+k. (28)

Applying the wrapped filter to the finite data sequence via a circular
convolution is equivalent to applying the original filter to an infinite periodic
extension of the data sequence. In practice, the wrapped coefficients of the
time-domain filter matrix Ψ would be obtained from the Fourier transform
of the vector of the diagonal elements of the matrix J . However, it is more
efficient to perform the filtering by operating upon the Fourier ordinates in
the frequency domain, which is how the program operates.

The periodogram of Figure 6 shows evidence of some minor spectral el-
ements at frequencies adjacent to the seasonal frequencies. The seasonal
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component of Figure 10 has been synthesised from the five elements in the
interval [π/2− 4π/T, π/2 + 4π/T ] and from the four elements in the interval
[π − 6π/T, π]. These are covered by the highlighted bands. It shows more
variability than the component of Figure 8, which has been extracted by the
comb filter that operates in the time domain.

The method of frequency-domain filtering can be used to mimic the effects
of any linear time-invariant filter, operating upon stationary data in the
time domain, that has a well-defined frequency-response function. All that
is required is to replace the selection matrix J of equation (27), consisting
of zeros and units, by a diagonal matrix containing the ordinates of the
desired frequency response, sampled at points corresponding to the Fourier
frequencies.

Tapering and extrapolations

Various devices are available for ensuring that, when the data sequence is
wrapped around the circumference of a circle, there is no disjunction at the
point where its head joints its tail.

The conventional means of avoiding such disjunctions is to taper a de-
trended and mean-adjusted sequence so that both ends decay to zero. (See
Bloomfield 1976, for example.) The disadvantage of this recourse is that it
falsifies the data at the ends of the sequence, which is particularly inconve-
nient if, as is often the case in economics, attention is focussed on the most
recent data. To avoid this difficulty, the tapering can be applied to some
extrapolations, which can be added to the data, after it has been subject to
a preliminary detrending.

The preliminary detrending can be achieved by interpolating a polynomial
function of time of by using the Leser or Hodrick–Prescott filter. (This
filter, which is commonly attributed by economists to Hodrick and Prescott
(1980, 1997), was expounded by Leser (1961) in an earlier publication.) The
interpolated function should be a stiff one containing only periodic elements
of the lowest frequencies. It is also desirable that the function should pass
through the midst of the scatters of points at either end of the data sequence.
For this purpose, a method of weighted least-squares polynomial regression
can be used that allows extra weight to be placed upon the initial and the
final runs of observations.

The method of weighted least-squares can also be used in the context of
the Leser filter. Here, an additional flexibility is available by allowing the
value of the smoothing parameter to vary. By attributing a low value to the
parameter within the appropriate locality, a sharp turn in the data or an
evident structural break can be absorbed by the trend, thereby allowing the
residual sequence to maintain its normal behaviour.

A tapered sequence, based on successive repetitions of the ultimate sea-
sonal cycle, can be added to the end of the data sequence, and a similar
sequence, based on the first cycle, can be added before the start. However,
such extrapolations tend to misrepresent the seasonal fluctuations by impos-
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Figure 11: The logarithms of U.S. total retail sales from January 1953 to December
1964 with an interpolated trend-cycle function.

ing gradual reductions in their amplitude. The amplitudes can be preserved
by inserting a segment into the circular data sequence in which the seasonal
pattern in the final year is transformed gradually into the pattern of the first
year. This process can be described as one of morphing the data, which is
an allusion to a popular technique in computer graphics.

Let s be the number of months or seasons in the year, and let the data be
supplemented by a sequence of points, indexed by j = 0, 1, . . . , Ns − 1 that
correspond to an integral number of years. To avoid the use of subscripted
indices, let the (detrended) sample points be denoted by g[t]; t = 0, 1, . . . , T−
1. Then, the first year and the final year are replicated N times in sequences
in which the elements are defined, respectively, by

gS[j] = g[j mod s] and gF [j] = g[T − s + (j mod s)]. (29)

A convex combination of these sequences with varying weights is given by

gE[j] = λjg
F [j] + (1 − λ)gS[j], with

λj =
1

2
{cos(θj) + 1}, where θj =

πj

Ns
. (30)

The weights λj are described by a half-cycle of a raised cosine function.
The resulting sequence can be added to the end of the linear data sequence,
which means that it will be interpolated between the finish and the start of
the circular sequence.

The various devices described in this section are illustrated in a sequence
of graphs. Figure 11 shows the logarithms of 144 monthly observations on
retail sales in U.S. for the period from January 1953 to December 1964.
The data have been taken from the monograph of Siskin et al. (1967) that
described the X-11 program for seasonal adjustment. Interpolated through
these data is a trend line, which is one of the eventual products of the analysis.

Figure 12 contains the residual deviations obtained by interpolating a
linear trend through the data of Figure 11. The residuals from the mid
point of the sample to its end are displayed on the left of the figure. They
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Figure 12: The residuals from a linear detrending of the sales data, with an
interpolation of four years length inserted between the end and the beginning of
the circularised sequence, marked by the shaded band.
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Figure 13: The sequence of residual deviations of the sales data from their trend,
which may be regarded as the seasonal component.
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Figure 14: The periodogram of the residual deviations of the sales data from their
trend.
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are followed by a segment of artificial data, of four years duration, in which
the pattern of the fluctuations of the final year of the data is gradually
transformed into the pattern of the first year. This is followed by the residuals
from the beginning of the sample to its mid point.

An inspection of the periodogram of the residuals of Figure 12 would show
that they posses a low-frequency component falling in the interval [0, π/8].
By removing this component, discarding the artificial elements and adding
the remainder to the linear trend, the revised trend of Figure 11 is generated,
which is apt to be described as the trend-cycle component. The deviations of
the data from the revised trend are shown in Figure 13 and their periodogram
is displayed in Figure 14.

The periodogram of Figure 14 contain virtually nothing that cannot be
attributed to the seasonal fluctuations. Therefore, the complement, within
the original data, of the sequence of Figure 13, which is the trend line of
Figure 11, can be regarded as the seasonally-adjusted data. It should be
recognised that these seasonally-adjusted data has been obtained by cleansing
the original data of all components of frequencies in excess of π/8.

4 Resampling Band-limited Data

We now consider the means of generating a continuous function to represent
the trajectory of the business cycle that underlies the sampled data. We
may assume that the data in the vector g = [g0, g1, . . . , gT−1]

′ is the residual
sequence from fitting a polynomial trend to the original data.

Since its frequency content resides within a sub interval of the Nyquist
range, the business cycle trajectory has a minimal discrete-time represen-
tation comprising a set of points whose number is a fraction of the original
sample size. These points are obtained by sampling the continuous trajectory
at regular intervals. The estimate of a discrete-time ARMA model, intended
to represent the business cycle, should be based on the minimal discrete-time
representation.

When the value of t is allowed to vary continuously in the interval [0, T ),
the formula for the Fourier synthesis of a finite sequence will generate a
continuous periodic function that interpolates the ordinates of the sequence.
The formula in question, which is from (24), can be written as

g(t) =
T∑

j=0

γje
iωjt = α0 +

[T/2]∑
j=1

{αj cos(ωjt) + βj cos(ωjt)} , (31)

where α0 = γ0 and αj = γj + γT−j and βj = i(γj − γT−j) for j > 0, and
where [T/2] is the integral part of T/2. It simplifies matters to assume that
T/2 = n is a whole number, which we shall do hereafter. (Observe that the
segment of g(t) that falls in the interval (T − 1, T ) bridges the gap in the
circular sequence between the final sample point gT−1 and the initial point
gT = g0.)
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Imagine that the maximum frequency within the business cycle compo-
nent is ωd = 2πd/T < π. In that case, there will be N = 2d Fourier coeffi-
cients, and the continuous function that is limited to the frequency interval
[0, ωd] will be given by

h(t) = α0 +
d∑

j=1

{
αj cos

(
2πjt

T

)}
+

d−1∑
j=1

{
βj sin

(
2πjt

T

)}

= α0 +
d∑

j=1

{
αj cos

(
2πjτ

N

)}
+

d−1∑
j=1

{
βj sin

(
2πjτ

N

)}
. (32)

Here, τ = tN/T varies continuously in [0, N), whereas t varies continuously
in [0, T ). Thus, on the RHS, there is a new set of Fourier frequencies {�j =
2πj/N ; j = 0, 1, . . . , d}, relative to a lower rate of sampling, of which the
maximum value is now the limiting Nyquist frequency of 2πd/N = π radians
per sample interval.

The N coefficients {α0, α1, β1, . . . , αd−1, βd−1, αd} bear a one-to-one cor-
respondence with the set of N ordinates {hτ = h(τT/N); τ = 0, . . . , N − 1}
sampled at intervals of π/ωd = T/N from h(t). The consequence is that h(t)
is fully represented by the resampled data hτ ; τ = 0, . . . , N − 1, from which
it may be derived by Fourier interpolation. Since the spectral support of the
resampled data is the full Nyquist interval, the data should now be amenable
to ARMA modelling, on the condition that the underlying processes is sta-
tistically stationary.

Non-stationary integrated processes of various orders can be derived from
a stationary continuous processes. The generic integrals are

∫ t

0
cos(ωjτ)dτ =

[
sin(ωjτ)

ωj

]t

0

=
sin(ωjτ)

ωj

(33)

and ∫ t

0
sin(ωjτ)dτ =

[
− cos(ωjτ)

ωj

]t

0

=
1

ωj

− cos(ωjτ)

ωj

. (34)

Let g(t) of (32) stand for any continuous function derived by the Fourier
interpolation of T data points. Then, it follows that the first integral of g(t)
is

g(1)(t) =
n−1∑
j=1

βj

ωj

+ α0t +
n∑

j=1

αj

ωj

sin(ωt) −
n−1∑
j=1

βj

ωj

cos(ωt). (35)

This is a combination of a linear function and a sum of trigonometrical func-
tions. A further integration will produce a combination of a quadratic func-
tion and a trigonometrical sum.

In general, an integrated frequency-limited process of any order of in-
tegration can be reconstituted for its sampled ordinates by subtracting the
appropriate discrete polynomial sequence, by applying the process of Fourier
interpolation to the residuals and then by adding the resulting function back
to the continuous version of the polynomial function.
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For an example of the techniques of this section, we may revert to the
logarithmic data on U.K. consumption that are represented in Figure 4. A
seasonally-adjusted version of the data sequence is represented in Figure 7
and the periodogram of the residual sequence from a linear detrending of
these seasonally-adjusted data is shown in Figure 9.

Figure 9 shows that the essential component of the seasonally-adjusted
data resides in the frequency band [0, π/8], which is highlighted in the dia-
gram. Elsewhere in the frequency range, there are spectral traces of minor
elements of noise. These have the effect of roughening the profile of the sea-
sonally adjusted data of Figure 7. It seems reasonable to cleanse the data
of this noise and to see the result as representative both of the non-seasonal
component and of the trend-cycle component.

Figure 15 shows the effects of synthesising a continuous function from
the Fourier ordinates of the residual sequence that lie in the interval [0, π/8].
The function is superimposed upon the deviations of the original data from
the interpolated linear trend that is depicted in Figure 4. In our judgement,
this continuous function is a fair representation of the business cycle, since
the linear trend provides a good benchmark against which to measure its
fluctuations. The sum of the continuous function of Figure 15 and the trend
of Figure 4 is the continuous trend-cycle component that is displayed in
Figure 16.

The trend-cycle component will not be affected by varying the way in
which its cyclical elements are shared between the trend and the cycle. There-
fore, for the purpose of estimating the component, one need not insist on a
particular definition of the trend. Nevertheless, there may be firm opinions
on how the component should be divided into its two parts.

In the opinion of many economists it is appropriate to represent the trend
by a function that is more flexible than a polynomial of low degree. The Leser
or Hodrick–Prescott filter is often chosen for the purpose. Figure 17 shows
a residual trajectory that has been obtained by applying the filter to data
sampled at quarterly intervals from the continuous function of Figure 16. The
trajectory of Figure 17 has been created by using a cubic spline to interpolate
a continuous function through the points of the resulting residual sequence.

A smoothing parameter with the conventional value of 1600 has been used
within the Leser filter. This generates a trend curve that is sufficiently flexible
to absorb the greater part of the departures of the trend-cycle trajectory
from the linear trend. As a result, the residual trajectory of Figure 17, which
purports to represent the business cycles, show a remarkable regularity.

The purpose of this example is to show how easy it is to obtain spurious
results in analysing business cycles. The spurious nature of the results would
be less evident, and the results would seem more plausible, if we were to
allow the cycles of Figure 17 to be obscured by the minor elements of noise
that we have chosen to remove from the data at the outset.

There are liable to be problems of spurious regularity in the residue when-
ever a flexible trend is fitted to the data. The problems are not peculiar to
the Hodrick–Prescott or Leser filter, as some authors have suggested. (See
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Figure 15: The residual sequence from fitting a linear trend to the logarithmic
consumption data with an interpolated function representing the business cycle.
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Figure 16: The trend-cycle component of U.K. consumption determined by the
frequency-domain method, superimposed on the logarithmic data.
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Figure 17: The business cycle determined by the Hodrick–Prescott filter.
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Cogley and Nason 1995 and Harvey and Jaeger 1993)
There are undoubtedly instances where the smooth trajectory of a poly-

nomial of low degree is inappropriate to the underlying dynamics of the econ-
omy. Examples are provided by the disruptions at the ends of the two world
wars, the circumstances at the beginning of the great interwar depression
and, perhaps, the effects of the present financial crises.

Such disruptions can be reflected in the trend function by making it suffi-
ciently flexible in the appropriate localities. A device for this purpose, which
is available in th IDEOLOG computer program, takes the form of a Leser
filter with a variable smoothing parameter.

5 Detecting Turning Points

The choice of a method for detrending a macroeconomic data sequence
greatly affects the determination of the turning points of the business cy-
cle. So crucial is this choice that some economists have advised that it is
best to avoid detrending altogether and to concentrate on the task of find-
ing the turning points in the original data. (See, for example, Harding and
Pagan 2002.)

The locations of the turning points in a trending sequence are affected by
its rate of growth. In an economy that is growing more rapidly than another
that is subject to the same cyclical influences, the peaks of the business cycle
will be delayed and the troughs will be advanced, thereby shortening the
periods of recession. Therefore, if the timing of the cycles of economies that
are growing at different rates are to be compared, then it will be necessary
to remove the trends from their data.

If detrending the data is unavoidable in a comparative analysis, then it
is important to have a clear idea of the effects of the different methods of
detrending. One advantage of representing the business cycle by the band-
limited function of equation (31) lies in the fact that the function is differen-
tiable. Therefore, the turning points of the business cycle are identified by
the points where the derivative function cuts the horizontal axis.

Figure 18 shows the function that is obtained by differentiating the busi-
ness cycle function of Figure 15. The turning points of the business cycle are
marked by dots on the horizontal axis. Also plotted on the diagram is a line
that is parallel to the horizontal axis at a distance that corresponds to the
slope of the log-linear trend line of Figure 6, which represents the underly-
ing rate of growth of U.K. consumption. The intersection of the derivative
function with this line indicates the turning points in the seasonally-adjusted
data of Figure 16, which represent the trend-cycle component.

The derivative of the Leser (Hodrick–Prescott) trend function that un-
derlies Figure 17 is available from the derivatives of the cubic spline. Its
intersections with the derivative business-cycle function would serve to iden-
tify the turning points of Figure 18.

Figure 19 shows a sequence that has been derived from the detrended
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Figure 18: The turning points of the business cycle marked on the horizontal axis
by black dots. The solid line is the business cycle of Figure 15. The broken line is
the derivative function.
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Figure 19: A sequence derived from the detrended data of Figure 15 via the
time-domain method of seasonal adjustment.

data of Figure 15 via the time-domain method of seasonal adjustment. This
is, in effect, a linearly detrended version of the sequence of Figure 7. On the
horizontal axis are the turning points from Figure 18. Although a careful
analysis of the data of Figure 19 would probably identify similar turning
points, the potential for being misled by the such data, which is full of pitfalls
and spikes, is manifest.

6 Conclusion

The empirical analysis of this paper has been based on a careful inspection
of the periodograms of the detrended data. The periodograms have revealed
data components that fall within well segregated frequency bands. Experi-
ence had shown that such spectral structures are common amongst economic
data sequences.

These findings have clear implications for how one should set about the
task of extracting the data components. In particular, they suggest that
the estimates of the components should be purged of all elements of noise
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that lie in the spectral dead spaces. Then, the estimated components will be
band-limited in frequency. To make the resulting business cycle component
amenable to the usual techniques of ARMA modelling, its sequence will need
to be subjected to the resampling procedures that are described in section 4
of the paper.

A discrete Fourier analysis, on which a periodogram is based, embodies
the theoretical fiction that the data sequence corresponds to a single cycle of
a periodic function. Contrary to a naive supposition, this has no implications
for what we expect to observe beyond the limits of the sample. However, a
Fourier analysis does require a careful detrending of the data. In particular,
when the detrended data sequence is disposed around a circle, there should
be no disjunction at the point where its head meets its tail. This can be
achieved by the methods of extrapolation, tapering and morphing that have
been incorporated in the computer program that is an adjunct of this paper.

The presence of any disjunctions in the data, including those that
economists describe as structural breaks, will given rise to a slew of spectral
power that will tend to obscure the finer details of their spectral structure.
The resulting periodogram is liable to have the one-over-f profile of a rect-
angular hyperbola, which descends from a high point adjacent to the zero
frequency to a low point at the limiting Nyquist frequency.

Granger (1966) has described such spectra as typical of econometric time
series. His characterisation has greatly influenced the perceptions of econo-
metricians. It has suggested to many of them that the spectral analysis of
economic data is liable to be difficult, if not fruitless. However, in many
cases, such spectra are the products of inadequate detrending. In this pa-
per, we have reaffirmed the practicality and the importance of the spectral
analysis of econometric data.
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