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THE CLASSICAL ECONOMETRIC MODEL

by D.S.G. Pollock (University of Leicester)
Email: stephen pollock@sigmapi.u-net.com

A compendium is presented of the various approaches that may be taken

in deriving the estimators of the simultaneous-equations econometric model

according to the principle of maximum likelihood. The structural equations

of the model have the character both of a regression equation and of an

errors-in-variables equation. This partly accounts for way in which the

various approaches that have been followed appear to differ widely. In the

process of achieving a synthesis of the methods of estimation, some elements

that have been missing from the theory are supplied.

1. Introduction

Recently, interest in the classical simultaneous-equations model of econometrics
has been revived through a paper by Anderson (2005) concerning the origins
of the LIML and 2SLS estimators. The paper tells how Anderson and Rubin
(1950) derived the asymptotic distribution of LIML estimator by finding the
asymptotic distribution of what is essentially the 2SLS estimator.

For many years, the classical model served as a paradigm for econometric
theory and it continues to exercise a strong influence. However, the contri-
butions to the theory are disparate and widely scattered, and it seems that
it would be helpful if an account were given that summarises this theory and
provides some of the missing elements. This is the purpose of the present paper.

The classical simultaneous-equations econometric model has had a long
and complicated history. The statistical problems to which it is addressed began
to interest economists in the 1920’s, who were considering how to untangle
estimates of equations of supply and demand from market data.

The fundamental difficulty of determining the two functions from obser-
vations on prices and quantities sold was highlighted by the brothers Holbrook
Working, 1895–1985 and Elmer Joseph Working, 1900–1968. Whereas the el-
der brother was the first to grapple with the perplexities of the problem (in
H. Woking, 1925), it was the younger brother who discovered the true nature
of the so-called identification problem in econometrics and who suggested the
solution to it (in E. Woking, 1927).

The full solution of the identification problem, and the provision of the ap-
propriate statistical estimators, had to wait until the late 1940’s and the early
1950’s. These results were primarily the work of members of the Cowles Com-
mission for Research in Economics, located at the University of Chicago. The
statistical methods that were employed in solving the estimation problem of the
classical model owed much to the pioneering work of Harold Hotelling (1933),
(1936), in connection with principal components and canonical correlations.

Economists had difficulty in assimilating the work of the Cowles Commis-
sion. Nor did the theory result in any significant body of empirical work, given
the inadequacy of the contemporary computing facilities. However, by the end
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of the 1950’s, there had emerged, from a Dutch–American school of economet-
rics, an alternative framework for understanding the problems of estimating
the simultaneous-equations model.

Within this framework, were developed the two-stage least-squares esti-
mator of Basmann (1957) and Theil (1958) and the three-stage least-squares
estimator of Zellner and Theil (1962). These were to become the mainstay of
most of the empirical studies that invoked the classical model. The estimators
were depicted as elaborations of the familiar methods of least-squares regres-
sion; and there was virtually no rapprochement with the kindred estimators of
the Cowles Commission.

Nevertheless, in an influential book, Malinvaud (1966), who was an erst-
while member of the Cowles Commission, did assert the commonality of the ri-
val estimators, and he placed them firmly within the context of the linear errors-
in-variables model. Indeed, the affinity of an isolated structural equation of the
classical model to the equation of an error-in-variables model had long been ap-
parent from the nature of the limited-information maximum-likelihood (LIML)
estimator. Theil (1961) had already achieved a partial synthesis by defining the
k-class of estimators that comprised both the two-stage least-squares estimator
and the limited-information maximum-likelihood estimator.

Latterly, methods that are closely related to those of the Cowles Commis-
sion have been used by econometricians in estimating systems of co-integrated
dynamic equations—see Johansen (1995). The maximum likelihood estimator
of such systems owes much to Hotelling’s method of canonical correlations.
Moreover, in the form developed by Anderson and Rubin (1949), which is that
of a reduced-rank regression (Anderson 1951), the LIML estimator is essentially
the same as the one that is employed in estimating a cointegrating vector.

It is clear that the methods that have been engendered by the classical
model have a protean complexion; and it is a challenging exercise to show
how their various aspects are related to those of estimators which serve other
purposes, which seem, at first sight, to be quite different. However, this will
not be the task of the present paper. Instead, the paper aims at achieving
a retrospective synthesis of the estimators of the classical model that has not
hitherto been available in any accessible form.

In the process, an element that has been missing from the Cowles Com-
mission’s exposition will be supplied. This is a formulation of the estimator
of multi-equation subsystems. Such an estimator stands midway between the
full-information maximum-likelihood estimator (FIML) of a complete system
and the limited-information maximum-likelihood estimator (LIML) of a single
structural equation. Since it can accommodate either of the special cases, this
estimator has the greatest generality.

Before this conclusion can be reached, it is necessary to expose the sta-
tistical structure of the simultaneous-equations model and to reveal the fun-
damental basis of the estimators. In doing so, we shall be able to join the
Cowles Commission estimators seamlessly with the two-stage and three-stage
least-squares estimators and to show how some strikingly different formulations
of the LIML estimator are the same thing in various disguises.
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2. The Classical Model

The classical model describes a stochastic relationship between a set of K ex-
ogenous variables contained in the vector x0 = [x1, . . . , xK ] and a set of G
endogenous variables contained in the vector y0 = [y1, . . . , yG]. A single reali-
sation of the model can be written as

y0Γ+x 0B = ε0, (1)

where ε0 = [ε1, . . . , εG] is a normally distributed disturbance vector which has
an expected value of E(ε) = 0 and a dispersion matrix of D(ε) = Ψ. The
vectors x and ε are assumed to be uncorrelated, so that their covariance matrix
is C(x, ε) = 0.

The diagonal elements of the nonsingular parameter matrix Γ are assumed
to be all equal to minus one, and this indicates that yj is to be regarded as the
dependent variable of the jth equation. If ej is the vector with a unit in the
jth position and zeros elsewhere, then these restrictions, which are called the
normalisation rules, can be written as e0jΓej = −1; j = 1, . . . , G.

In addition, we assume that certain of the elements of Γ and B are zeros.
Thus, if γj = Γej and βj = Bej are the parameter vectors of the jth equation,
we can write the full set of restrictions affecting them as

∑
R0

γj 0
0 R0

βj

∏∑
γj

βj

∏
=

∑
rj

0

∏
or

∑
R0

γj 0
0 R0

βj

∏∑
γj + ej

βj

∏
=

∑
0
0

∏
, (2)

where Rβj comprises a selection of columns from the identity matrix IK of
order K, Rγj = [ej ,Hγj ] comprises, likewise, a set of columns from the identity
matrix IG of order G, and rj is a vector containing zeros and a single element
of minus one corresponding to the normalisation rule.

We can represent the general solution to the combined restrictions by
∑

γj

βj

∏
=

∑
Pγj 0
0 Pβj

∏∑
γ¶j

β¶j

∏
−

∑
ej

0

∏
, (3)

where γ¶j and β¶j are composed of the Gj and Kj unrestricted elements of γj

and βj respectively, and where Pγj and Pβj are the complements of Rγj and
Rβj within IG and IK respectively.

On taking account of the so-called exclusion restrictions, which set some
of the parameters to zeros, and by using the normalisation rule to isolate the
dependent variable, we may write the jth structural equation of the system,
which has hitherto been represented by y0γj + x0βj = εj , as

yj = y0¶jγ¶j + x0¶jβ¶j − εj . (4)

This is the regression form of the structural equation.
The essential departure of the structural equation from an ordinary regres-

sion equation lies in the fact that the so-called endogenous regressors within
y¶j are statistically correlated with the structural disturbance term εj . This
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relationship is manifest in equation (1), which depicts the system as a whole.
The starting point of Basmann (1957) and Theil (1958) in their derivation of
the two-stage least-squares estimator was to ask what needs to be done to purge
the endogenous regressors of their dependence on the disturbance term.

The reduced form of equation (1) is written as

y0 = −x0BΓ−1 + ε0Γ−1

= x0Π + η0,
(5)

where Π = −BΓ−1 and η0 = ε0Γ−1 with D(η) = Γ0−1ΨΓ−1 = Ω. We shall
denote the dispersion matrices of the data vectors by D(x) = Σxx, D(y) = Σyy

and their covariance matrix by C(x, y) = Σxy, and we shall assume that all of
these attain the maximum rank.

Substituting the reduced form expression for y0 into the structural equation
y0γj + x0βj = εj gives (x0Π + η0)γj + x0βj = εj . But η0γj = εj . Therefore, on
setting x0Π = y0 − η0, the equation can be written as

(y − η)0γj + x0βj = 0. (6)

The equation may be reduced by elimination the parameters that are know to
be zeros, but the normalisation rule may be held in abeyance.

It appears from (6) that the structural equation is a species of errors-
in-variables equation in which the errors extend over the set of endogenous
variables within y but fall short of the exogenous variables in x. The errors-
in-variables formulation is the one that was adopted preponderantly by the
Cowles Commission in their development of the limited-information maximum-
likelihood estimator. This is apparent in the expositions of Anderson and Rubin
(1949) and Koopmans and Hood (1953).

From the existing assumptions regarding the system as a whole, it follows
that ∑

Γ0 B0

0 I

∏∑
Σyy Σyx

Σxy Σxx

∏∑
Γ 0
B I

∏
=

∑
Ψ 0
0 Σxx

∏
, (7)

and, from this, equivalent expressions may be obtained in the forms of

∑
Σyy Σyx

Σxy Σxx

∏ ∑
Γ 0
B I

∏
=

∑
Γ0−1 Π0

0 I

∏ ∑
Ψ 0
0 Σxx

∏

=
∑

ΩΓ Π0Σxx

0 Σxx

∏ (8)

and ∑
Σyy Σyx

Σxy Σxx

∏
=

∑
Γ0−1 Π0

0 I

∏ ∑
Ψ 0
0 Σxx

∏ ∑
Γ−1 0
Π I

∏

=
∑

Π0ΣxxΠ + Ω Π0Σxx

ΣxxΠ Σxx

∏
.

(9)
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The above identities provide us with the fundamental equations that relate
the structural parameters γj , βj ; j = 1, . . . , G to the moment matrices of the
data variables. We can write these equations in two alternative forms:

∑
0
0

∏
=

∑
Σyy − Ω Σyx

Σxy Σxx

∏ ∑
γj

βj

∏

=
∑

Π0Σxy Π0Σxx

Σxy Σxx

∏ ∑
γj

βj

∏
.

(10)

The first of these follows directly from (8). The second is obtained via the
identities Σyy = Π0ΣxxΠ + Ω and Σxy = ΣxxΠ that are contained in (9).

It is clear, from the second expression under (10), that all the information
relating to γj and βj that is provided by that equation is contained in its con-
stituent part Σxyγj +Σxxβj = 0. On substituting the solutions γj = Pγj γ¶j−ej

and βj = Pβj β¶j from equation (3) into this expression, we get

ΣxyPγjγ¶j + ΣxxPβjβ¶j = Σxyej . (11)

This is a set of K equations in Gj + Kj unknowns; and, given that the
matrix [Σxy , Σxx] is of full rank, it follows that the necessary and sufficient
condition for the identifiability of the parameters of the jth equation is that
K ≥ Gj + Kj . If this condition is fulfilled, then any subset of Gj + Kj of the
equations of (11) will serve to determine γ¶j and β¶j . However, we shall be
particularly interested in a set of Gj + Kj independent equations in the form
of ∑

P 0
γjΠ0ΣxyPγj P 0

γjΠ0ΣxxPβj

P 0
βjΣxyPγj P 0

βjΣxxPβj

∏∑
γ¶j

β¶j

∏
=

∑
P 0

γjΠ0Σxyej

P 0
βjΣxyej

∏
(12)

which are derived by premultiplying equation (11) by the matrix [ΠPγj , Pβj ]0.
These equations, which we have derived solely by considering the relationship
between the parameters of the model and the moments of the data vectors x
and y, must be the basis of any reasonable estimator of the parameters of the
individual structural equations, regardless of the principles from which it is
derived.

3. The Maximum-Likelihood Estimator of Single Equations

In describing the procedures by which inferences can be made about the param-
eters of the model, we shall assume that there is a set T ≥ G + K observations
on the data vectors which may be denoted by xt, yt; t = 1, . . . , T . From these
observations, a set of moment matrices can be constructed in the forms of
Sxx =

P
t xtx0t/T, Sxy =

P
t xty0t/T and Syy =

P
t yty0t/T which are assumed

to have full rank. These are the empirical counterparts of the moment matrices
Σxx, Σxy and Σyy which characterise the distribution of the population.

The principle of estimation known as the method of moments suggests
that we should obtain the estimating equations by replacing the population
moments within the equations (9) and (11) by the empirical moments. Accord-
ing to this principle, equation (9) yields an estimate S−1

xx Sxy of the reduced-form
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parameter matrix Π which is simply the unrestricted least-squares estimator.
Likewise, in the case where Gj + Kj = K, equation (11) yields the so-called
indirect least-squares estimators of the structural parameters γ¶j and β¶j .

However, the simple method of moments is not adequate in the case of
the overidentified model where Gj + Kj < K. For then the restrictions on
the vectors γj and βj imply restrictions on Σxy and Σyy; and the effect is
that, in the context of the set of all values that might be assumed by Sxy and
Syy, the subset consisting of the values that will render the equations in (11)
algebraically consistent has a zero measure.

There are two alternative approaches that may be followed in the attempt
to overcome the problem of overidentification. The first approach is to resolve
the algebraic inconsistency of the equations

SxyPγjγ¶j + SxxPβjβ¶j = Sxyej . (13)

via a method of least-squares regression. Thus, by using a regression metric
defined in terms of the matrix S−1

xx , we may derive the two-stage least-squares
estimator of Theil (1958) and Basmann (1957). What is rather remarkable
is the fact that this is precisely the estimator which is also derived from the
equation (12) when Σxy and Σyy are replaced by Sxy and Syy respectively and
Π is represented by its unrestricted ordinary least-squares estimator.

Another way of overcoming the problem of overidentification is to find a
set of admissible and mutually conformable estimates of Σxy, Σyy, γj and βj

which satisfy equation (11) exactly. This is what the method of maximum
likelihood achieves.

3.1 The Π Method

There are a number of different yet equivalent criteria from which the
maximum-likelihood estimators of the structural parameters can be derived.
We shall begin, as the author has done in Pollock (1984), (1985), by using, as
the criterion function, an expression of the likelihood function which is in terms
of the reduced-form parameters:

L(Π,Ω) =(2π)−GT/2|Ω|−T/2×

exp
Ω
−T

2
Trace (Syy − SyxΠ−Π0Sxy + Π0SxxΠ)Ω−1

æ
.

(14)

This is also the starting point for the classical derivation of Anderson and Rubin
(1949).

In order to convey to the reduced-form parameters the effects of the
structural-form restrictions under (2), we must use the condition Πγj + βj = 0
which comes directly from the identity Π = −BΓ−1 by which the reduced-form
parameters have been defined. The appropriate criterion function is given by
the expression

C(Π,Ω, γj ,βj) = log L(Π,Ω)− κ0(Πγj + βj)− µ0
°
Q0

γjγj + Q0
βjβj

¢
, (15)
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where Qγj = [Rγj , 0], Qβj = [0, Rβj ], and where κ and λ are vectors of La-
grangean multipliers.

By differentiating the criterion function with respect to Π, Ω and κ and
setting the results to zero for a maximum, the conditions are obtained from
which we may derive the estimating equations for Π and Ω. The latter are
respectively

Π = S−1
xx Sxy − S−1

xx (Sxyγj + Sxxβj)
°
γ0jWγj

¢−1
γ0jW (16)

and
Ω = W + Wγj

°
γ0jWγj

¢−1 °
γ0jSyx + β0

jSxx

¢
S−1

xx

× (Sxyγj + Sxxβj)
°
γ0

j Wγj

¢−1
γ0jW,

(17)

where W = Syy − SyxS−1
xx Sxy is the ordinary unrestricted estimate of Ω =

Σyy −Π0ΣxxΠ. It is straightforward to confirm that the restricted estimator of
Π does satisfy the condition Πγj + βj = 0.

Given that Σxx is always estimated by Sxx, regardless of the restrictions
on γj and βj , it follows that the restricted estimator of Σxy = ΣxxΠ is given
by SxxΠ, where Π stands for the expression in (16). When these estimates are
used to represent Σxy and Σxx within the expression under (11), we get

SxxΠPγjγ¶j + SxxPβjβ¶j = SxxΠej . (18)

This expression represents nothing more than an algebraic identity. Therefore,
unlike the equation (13) upon which the two-stage least-squares estimator is
based, there is no question of any algebraic inconsistency when K > Kj + Gj .

To obtain the maximum-likelihood estimating equations for the structural
parameters, we differentiate the criterion function in respect of γj and βj and set
the results to zero. Then, by substituting for κ = (Sxyγj + Sxxβj)(γ0jWγj)−1,
we obtain the equation

∑
Π0Sxy Π0Sxx

Sxy Sxx

∏∑
γj

βj

∏
+

∑
Rγj 0
0 Rβj

∏∑
φγ

φβ

∏
=

∑
0
0

∏
, (19)

where [φ0γ ,φ0β ]0 = φ = µ(γ0jWγj) is a vector related to the lagrangean multipli-
ers. On substituting γj = Pγjγ¶j − ej and βj = Pβj β¶j from equation (3) into
this expression, and by premultiplying it by the transpose of the matrix in (3),
we get

∑
P 0

γjΠ0SxyPγj P 0
γjΠ0SxxPβj

P 0
βjSxyPγ j P 0

βjSxxPβj

∏∑
γ¶j

β¶j

∏
=

∑
P 0

γjΠ0Sxyej

P 0
βjSxyej

∏
. (20)

This is precisely what one derives from the equation (12) when Σxx and Σxy

are replaced by Sxx and Sxy respectively and Π is represented by its restricted
estimator from (16).

If we take the above equation together with equation (16) for the restricted
estimator of Π, then we have a complete estimating system for γj = Pγj γ¶j −

7
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ej and βj = Pβj β¶j which can be solved iteratively. That is to say, given
an initial value Π0, we can obtain first-round estimates of γ¶j and β¶j from
equation (20). On taking these values to equation (16), we can obtain a revised
estimate for Π for use in the second round; and we can extend this procedure
through an indefinite number of iterations in the expectation, that, eventually,
the estimates from successive rounds will become virtually identical. We shall
describe this procedure as the Π method of estimation.

3.2 The Ω Method

To obtain the second version of the estimating equations, we use the iden-
tity

(Syy − Ω)γj + Syxβj = Π0Sxyγj + Π0Sxxβj (21)

which holds when Ω and Π are represented by the expressions in (16) and (17).
This identity enables us to rewrite the estimating equations for γ¶j and β¶j as

∑
P 0

γj(Syy − Ω)Pγj P 0
γjSyxPβj

P 0
βjSxyPγj P 0

βjSxxPβj

∏∑
γ¶j

β¶j

∏
=

∑
P 0

γj(Syy − Ω)ej

P 0
βjSxyej

∏
. (22)

This form corresponds to the first of the two equations under (10) which
describe the relationship between the moments of the data variables and the
parameters of the jth equation. If we take these equations (22) together with
equation (17) for the restricted estimate of Ω, then we have an alternative
estimating system that can be solved iteratively for Ω, γj and βj . Thus we
have what we shall call the Ω method of estimation.

3.3 The λ Method

To obtain the third estimating system, we use an identity which can be
written as

Ωγj = λWγj , (23)

where W is the unrestricted estimator of Ω and where

λ =
°
γ0jSyyγj + γ0jSyxβj + β0

jSxyγj + β0
jSxxβj

¢°
γ0jWγj

¢−1
. (24)

On substituting the identity into (22), the estimating equations for γ¶j and
β¶j become

∑
P 0

γj(Syy − λW )Pγj P 0
γjSyxPβj

P 0
βjSxyPγj P 0

βjSxxPβj

∏∑
γ¶j

β¶j

∏
=

∑
P 0

γj(Syy − λW )ej

P 0
βjSxyej

∏
. (25)

The sequence of estimates of γj and βj is now obtained by solving the equations
(24) and (25) in successive rounds. This constitutes the λ method of estimation.

The equations of the λ method come closest to the limited-information
maximum-likelihood estimating equations that are common to the expositions
of Anderson and Rubin (1949) and Koopmans and Hood (1953). The out-
standing difference is that the latter equations are written in a homogeneous
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form which results from the suppression of the normalisation rule γjej = −1.
In consequence of this difference, the factor λ assumes the role of a latent root
which can be extracted by the power method.

When λ assumes the role of a latent root, an alternative interpretation of
the structural equation is engendered. For then the estimating equations come
to resemble those of an errors-in-variables model. In this context, it is appro-
priate to seek to estimate γj and βj by minimising the function λ subject to the
restrictions in (3). This approach to the derivation of the estimating equations,
which may, of course, be subsumed under the maximum-likelihood principle,
is what Koopmans and Hood have described as the minimum variance-ratio
method.

3.4 Computations

In order to specify completely any of the foregoing methods of estimation,
we need to choose the initial conditions with which to begin the various it-
erative procedures. The natural choices for the initial values of Π and Ω are
their unrestricted estimates which are given by S−1

xx Sxy and Syy − SyxS−1
xx Sxy

respectively. The natural choice for a starting value for λ is unity, since this
is the value to which it must tend asymptotically as the sample moments tend
to the values of the population moments. It is remarkable that, with these
choices, the first rounds of the Π, Ω and λ methods of estimation give rise to
identical estimates of γj and βj which are simply the two-stage least-squares
estimates of Theil (1958) and Basmann (1957).

4. The Maximum-Likelihood Estimation of Subsystems

One of the more surprising aspects of the development of the theory of the
classical model has been the lack of a complete treatment of the problem of
estimating subsystems of the model which comprise more than one equation.
This state of affairs prevailed in spite of the fact that, in their seminal account
of the single-equation estimator, Koopmans and Hood (1953) had provided
a criterion function from which the estimating equations of a multi-equation
subsystem may be derived directly.

The advantage of the subsystem estimator is that it can be specialised
easily in either direction to provide, on the one hand, the estimator of a single
equation and, on the other hand, the estimator of the system as a whole. Thus,
a full theory of estimation can be articulated by considering only the case of
subsystems.

4.1 The Π Method for Subsystems

It transpires that the procedure which we have used in deriving the esti-
mating equations for the Π method can be generalised very easily to cope with
subsystems. The only complication is that, in order to derive the estimating
equations of multi-equation subsystems, we have to deal in terms of the vec-
torisation operator and the algebra of Kronecker products. An account of this
algebra was given in Pollock (1979).

9
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Let us assume that the subsystem of interest has a total of G1 = G−G2

equations whose parameters are contained in the matrices Γ1 = ΓJ1 and B1 =
BJ1, where J1 is a matrix consisting of G1 columns selected from the identity
matrix of order G. Then the restrictions on these parameters, including the
normalisation rules, may be written as

R0
∑

Γ1 + J1

B1

∏c

= 0 and (Γ1 ⊗ I)Σc
xy + (B0

1 ⊗ I)Sc
xx, (26)

where the superscript c denotes the vectorisation operator. We can proceed
to form a Lagrangean expression which is a straightforward generalisation of
the expression under (15). Then, from the first-order conditions optimising the
Lagrangean, we can obtain the following estimators of Π and Ω:

Π = S−1
xx Sxy − S−1

xx (SxyΓ1 + SxxB1)(Γ0WΓ1)−1Γ0
1W, (27)

Ω = W + WΓ1(Γ0
1WΓ1)

−1×

(Γ0
1Syx + B0

1Sxx)S−1
xx (SxyΓ1 + SxxB1)(Γ0

1WΓ1)
−1Γ0

1W.
(28)

These are the natural generalisations of the expressions under (16) and
(17). The estimating equations for Γ1 and B1, which are obtained in the same
manner as in the single-equation case, are given by

Ω∑
Π0Sxy Π0Sxx

Sxy Sxx

∏∑
Γ1

B1

∏
(Γ0

1ΩΓ1)
−1

æc

+ Rµ = 0, (29)

where µ is a vector of Lagrangean multipliers associated with the restrictions on
Γ1 and B1. This is just a generalisation of equation (19). Notice, however, that,
whereas, in the single-equation case, we were able to absorb the scalar factor
γ0jΩγj in the multiplier φ, in the multi-equation case, we have to represent the
corresponding matrix factor Γ0

1ΩΓ1 explicitly. To find a compact form of the
estimating equations to compare with those under (19), we solve the first set
of restrictions under (26) to obtain

∑
Γ1

B1

∏c

= PP 0
∑

Γ1

B1

∏c

−
∑

J1

0

∏c

, (30)

where P is the complement of R within the identity matrix of order G1(G+K)
and [Γ0

1, B
0
1]0cP is a vector of the unrestricted elements of Γ1 and B1. On

Substituting this solution into (29) and on premultiplying that equation by P 0,
we get

µ
P 0

Ω
(Γ0

1ΩΓ1)
−1 ⊗

∑
Π0Sxy Π0Sxx

Sxy Sxx

∏æ
P

∂
P 0

∑
Γ1

B1

∏c

=
µ

P 0
Ω

(Γ0
1ΩΓ1)

−1 ⊗
∑

Π0Sxy Π0Sxx

Sxy Sxx

∏æ
P

∂
P 0

∑
J1

0

∏c

. (31)

10
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4.2 The Estimating Equations of the Ω Method

To derive the estimating equations of the Ω method directly, we may begin
by reconsidering the likelihood function that is given under (14). The exponent
in this expression can be written as

(Syy −Π0Sxy − SyxΠ−Π0SxxΠ)Ω−1

=
°
Syy − SyxS−1

xx Sxy

¢
Ω−1 +

°
SyxS−1

xx Sxy −Π0Sxy − SyxΠ + Π0SxxΠ
¢
Ω−1.
(32)

Using Σxy = SxxΠ to denote the restricted estimator Σxy, we can write the
second term on the RHS as

°
SyxS−1

xx Sxy−Π0Sxy − SyxΠ + Π0SxxΠ
¢
Ω−1

= (Syx − Σyx)S−1
xx (Sxy − Σxy)Ω−1. (33)

If our object is to find an estimator of Σxy that is admissible with respect
to the various restrictions on Γ1 and B1, then it is appropriate to find the value
that minimises the following Lagrangean criterion function:

C(Γ1, B1,Ω) =
1
2
(Sxy − Σxy)c0(Ω⊗ Sxx)(Sxy − Σxy)c

+ Φc0©°
Γ1

0 ⊗ I
¢
Σc

xy + (B0
1 ⊗ I)Sc

xx

™
. (34)

By differentiating the function with respect to Σc
xy and setting the result

to zero, we obtain the condition

(Sxy − Σxy)c0(Ω⊗ Sxx)−1 − Φc0(Γ0
1 ⊗ I) = 0. (35)

This gives us

(Sxy − Σxy)c0(Ω⊗ Sxx)−1(Sxy − Σxy)c = Φc0(Γ0
1ΩΓ1 ⊗ Sxx)Φc, (36)

as well as
Φc0 = (Sxy − Σxy)c0(Γ1 ⊗ I)(Γ0

1ΩΓ1 ⊗ Sxx)−1
. (37)

However, the condition, ΣxyΓ1 + SxxB1 = 0, can be used to rewrite the latter
as

Φc0 = (SxyΓ1 + SxxB1)
c0 (Γ0

1ΩΓ1 ⊗ Sxx)−1 (38)

On substituting this into (35) and rearranging the result, we get,

Σxy = Sxy − (SxyΓ1 + SxxB1) (Γ0
1ΩΓ1)

−1 Γ0
1Ω. (39)

This is the restricted estimator of Σxy and, of course, in the form of Π =
S−1

xx Σxy, it provides us again with the restricted estimator of Π.
On substituting the expression from (38) into (36), we get

(Sxy − Σxy)c0(Ω⊗ Sxx)(Sxy − Σxy)c

= (SxyΓ1 + SxxB1)
c0(Γ0

1ΩΓ1 ⊗ Sxx)−1(SxyΓ1 + SxxB1)
c. (40)

11
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The function on the RHS is essentially a generalisation of the criterion
function used by Keller (1975) in his derivation of the single-equation estimator.
To derive the criterion for estimating Γ1 and B1, we subject the function to the
restrictions in (26). By differentiating the resulting Lagrangean expression with
respect to Γ1 and B1 and setting the results to zero, we obtain the condition

Ω∑
SyxS−1

xx Sxy Syx

Sxy Sxx

∏∑
Γ1

B1

∏
(Γ0

1ΩΓ1)
−1 +

∑
Q
0

∏æc

+ Rµ = 0, (41)

wherein

Q = ΩΓ1(Γ0ΩΓ−1
1 (Γ0

1Syx + B0
1Sxx)S−1

xx (SxyΓ1 + SxxB1)(Γ0ΩΓ1)−1

= (WΓ1 − ΩΓ1)(Γ0
1ΩΓ1)−1. (42)

Here the second equality follows from equation (28) via the identity

WΓ1(Γ0
1WΓ1)−1 = ΩΓ1(Γ0

1ΩΓ1)−1.

On substituting the expression for Q back into (41) and using W = Syy −
SyxS−1

xx Sxy, we get the estimating equation of the Ω method:

Ω∑
Syy − Ω Syx

Sxy Sxx

∏∑
Γ1

B1

∏
(Γ0

1ΩΓ1)
−1

æc

+ Rµ = 0. (43)

4.3 The λ Method for Subsystems

As in the cases of the Π method and the Ω method, the estimating equa-
tions of the λ method can be derived directly from their own version of the
maximum-likelihood criterion function. This is the concentrated likelihood
function of Koopmans and Hood (1953). The process by which these authors
derived their concentrated function is lengthy and difficult, and we shall give
only a brief summary of it.

We may begin by considering the structural form of the likelihood function:

L(Γ, B,Ψ) = (2π)−GT/2|Ψ|−T/2|Γ|T ×

exp
Ω
−T

2
Trace(Γ0SyyΓ + Γ0SyxB + B0SxyΓ + B0SxxB)Ψ−1

æ
. (44)

This is obtained from the reduced form of the likelihood function under
(14) via the identities Π = −BΓ−1 and Ω−1 = Γ0Ψ−1Γ. The matrices of the
structural parameters are partitioned as

∑
Γ
B

∏
=

∑
Γ1 Γ2

B1 B2

∏
and Ψ =

∑
Ψ11 Ψ12

Ψ21 Ψ22

∏
. (45)

In addition to the parameters Γ1, B1 and Ψ11 of the subsystem in which we
are interested, we are now encumbered with the parameters of a complementary

12
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subsystem in which we have no direct interest. These additional parameters
must either have acceptable arbitrary values assigned to them, or else they
must be eliminated somehow from the likelihood function.

We begin by attributing the following form to the structural dispersion
matrix:

Ψ =
∑

Ψ11 0
0 I

∏
; (46)

for, as Koopmans and Hood show, this choice will not affect the estimates
of the sought-after parameters provided that the complementary subsystem is
not rendered overidentified. With this specification, the likelihood function
becomes

L(Γ, B,Ψ) = (2π)−GT/2|Ψ11|−T/2|Γ|T×

exp
Ω
−T

2
Trace

°
Γ1

0SyyΓ1 + Γ1
0SyxB1 + B1

0SxyΓ1 + B0
1SxxB1

¢
Ψ−1

11

−T

2
Trace

°
Γ2

0SyyΓ2 + Γ2
0SyxB2 + B2

0SxyΓ2 + B0
2SxxB2

¢æ
. (47)

This device does not wholly succeed in separating the parameters of the
two subsystems as we might desire, since we cannot resolve the determinant
|Γ| = |Γ1,Γ2| into the product of separate functions of Γ1 and Γ2 . Therefore
we have to eliminate the remaining parameters of the second subsystem by
partially maximising L, or its log, with respect to Γ2 and B2. It can be shown
that, at the maximum, there are

Γ0
2SyyΓ2 + Γ0

2SyxB2 + B0
2SxyΓ2 + B0

2SxxB2 = I and

|Γ1, Γ2|T = |Γ0
1WΓ1|T/2 |W |−T/2 .

(48)

On substituting these values into (47), we obtain a concentrated likelihood
function in the form of

L(Γ1, B1,Σ1) = (2π)−GT/2|Ψ11|−T/2|Γ0
1WΓ1|T/2|W |−T/2

× exp
Ω
−T

2
trace

°
Γ1

0SyyΓ1 + Γ1
0SyxB1

+ B0
1SxyΓ1 + B1

0SxxB1

¢
Ψ−1

11 −
G2T

2

æ
. (49)

On differentiating the latter function with respect to Ψ11 and setting the result
to zero, a condition is obtained that provides the estimating equation

Ψ11 = Γ1
0SyyΓ1 + Γ1

0SyxB1 + B1
0SxyΓ1 + B0

1SxxB1. (50)

A further concentration of the likelihood function is available when (50) is

13
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substituted back into (49) to give

L(Γ1, B1) =

(2π)−GT/2

( ØØΓ1
0WΓ1

ØØ
ØØΓ1

0SyyΓ1 + Γ1
0SyxB1 + B1

0SxyΓ1 + B0
1SxxB1

ØØ

)T/2

× |W |−T/2 exp
µ
−GT

2

∂
.

(51)
Embedded in this concentrated criterion function is a ratio of determinants
which is a generalisation of the ratio λ of (24) whose minimisation leads to a
single-equation version of the estimating equations.

To derive the estimating equations of a multi-equation subsystem, we may
subject the log of the concentrated likelihood function under (49) to the re-
strictions on Γ1 and B1. Then, by evaluating the first-order conditions for
the optimisation of the resulting Lagrangean function, we obtain the following
estimating equations:

Ω∑
Syy Syx

Sxy Sxx

∏∑
Γ1

B1

∏
Ψ−1

11 −
∑

W 0
0 0

∏∑
Γ1

B1

∏°
Γ1

0WΓ1

¢−1
æc

+ Rµ = 0. (52)

At first sight, these do not appear to resemble very closely the equations of the Ω
method given under (43). However, the equivalence of the two sets of equations
is readily established via the identities WΓ1(Γ0

1WΓ1)−1 = ΩΓ1(Γ0
1ΩΓ1)−1 and

Ψ11 = Γ0
1ΩΓ1.

The derivation of Koopmans and Hood owes its difficulty largely to their
use of the structural form of the likelihood function in place of the reduced
form. Let us take the latter function instead, with a given value of Ω, and let
us also use the identity Ψ = Γ0ΩΓ to write the structural dispersion matrix in
the form of

Γ0ΩΓ =
∑

Γ0
1ΩΓ1 0
0 I

∏
. (53)

Then the likelihood function, which is conditional on Ω, can be written as

L(Γ, B|Ω) = (2π)−GT/2|Ω|−T/2×

exp
Ω
−T

2
Trace

°
Γ1

0SyyΓ1 + Γ1
0SyxB1 + B1

0SxyΓ1 + B0
1SxxB1

¢
(Γ0

1ΩΓ1)
−1

−T

2
Trace

°
Γ2

0SyyΓ2 + Γ2
0SyxB2 + B2

0SxyΓ2 + B0
2SxxB2

¢æ
. (54)

It is clear that the estimates of Γ1 and B1 are to be found by minimising the
the first of the trace expressions without reference to other parameters. In this
way, we derive a set of estimating equations in the form of

Ω∑
Syy Syx

Sxy Sxx

∏∑
Γ1

B1

∏
(Γ0

1ΩΓ1)
−1 −

∑
Q
0

∏æc

+ Rµ = 0, (55)

14
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where

Q = ΩΓ1(Γ0
1ΩΓ1)

−1°Γ1
0SyyΓ1 + Γ1

0SyxB1 + B1
0SxyΓ1 + B0

1SxxB1

¢
(Γ0

1ΩΓ1)
−1

(56)
If Ω is given by the expression in (28), then the identity

Γ0
1ΩΓ1 = Γ1

0SyyΓ1 + Γ1
0SyxB1 + B1

0SxyΓ1 + B0
1SxxB1 (57)

prevails, and we obtain exactly the equations of the Ω method given under (43).

5. The Estimation of the System as a Whole

The virtue of the three derivations that we have provided in the previous section
is that the resulting estimating procedures are applicable to subsystems of
all sizes ranging from a single structural equation to the system as a whole.
Therefore, our account of the useful methods could well be concluded at this
point. Nevertheless, it may be interesting to consider the forms of some other
criterion functions that are applicable only to the case of the system as a whole.

The estimating approach of Koopmans, Rubin and Leipnik (1950), which,
for a considerable time, was regarded as the definitive approach to system-wide
estimation, is based directly on the structural form of the likelihood function
given under (44). The derivation of the estimating equations can be simplified
by concentrating this function by substituting for Ψ its maximum-likelihood
estimating equation which is

Ψ = Γ0SyyΓ + Γ0SyxB + B0SxyΓ + B0SxxB. (58)

Then the concentrated likelihood function takes the form of

L(Γ, B) =

(2π)−GT/2 |Γ|T
ØØΓ0SyyΓ + Γ0SyxB + B0SxyΓ + B0SxxB

ØØT/2
exp

µ
−GT

2

∂
.

(59)
The basic criterion is therefore to minimise the function

ØØΓ0SyyΓ + Γ0SyxB + B0SxyΓ + B0SxxB
ØØ

|Γ0Γ| (60)

subject to the restrictions R0[Γ0 − I,B0]0c = 0 affecting Γ and B. This gives
rise to a set of estimating equations in the form of

Ω∑
Γ−10

0

∏
−

∑
Syy Syx

Sxy Sxx

∏∑
Γ1

B1

∏
Ψ−1

æc

−Rµ = 0. (61)

The explicit use of the inverse of Γ in these equations means that they cannot
be used as a model for the estimating equations of a subsystem.
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A variant of the criterion in (60) is to minimise the function
ØØΓ0SyyΓ + Γ0SyxB + B0SxyΓ + B0SxxB

ØØ

|Γ0SyyΓ| . (62)

The inclusion of the factor Syy in the denominator has no effect upon the
minimising values of Γ and B. Nevertheless, the resulting estimating equations
take the altered form of
Ω∑

Syy Syx

Sxy Sxx

∏∑
Γ
B

∏
(Γ0ΩΓ)−1 −

∑
Syy 0
0 0

∏∑
Γ
B

∏
(Γ0SyyΓ)−1

æc

+ Rµ = 0. (63)

These equations, which were originally derived by Chow (1964), are the basis
of a common textbook presentation (See Dhrymes 1970 and Klein 1974, inter
alia). It is easy to see that they are equivalent to the previous equations under
(61).

The final variant of the criterion function that should be considered is one
that has been adopted by Scharf (1976) in deriving what he has described as
the full-information K-matrix class estimator. This function is given by

ØØΓ0SyyΓ + Γ0SyxB + B0SxyΓ + B0SxxB
ØØ

|Γ0WΓ| . (64)

wherein W = Syy−SyxS−1
xx Sxy is the unrestricted estimate of Ω. The estimating

equations that are derivable from this criterion function are nothing but the
full-information version of the estimating equations of the λ method. It helps in
understanding this result to recognise that the function in (64) is generalisation
of the function in (24) from which, we have asserted, one can derive the single-
equation version of the estimating equations.
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