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ABSTRACT

While some improper priors have attractive properties, it is generally claimed that

Bartlett’s paradox implies that using improper priors for the parameters in alternative

models results in Bayes factors that are not well defined, thus preventing model com-

parison in this case. In this paper we demonstrate, using well understood principles

underlying what is already common practice, that this latter result is not generally

true and so expand the class of priors that may be used for computing posterior odds

to two classes of improper priors: the shrinkage prior; and a prior based upon a nest-

ing argument. Using a new representation of the issue of undefined Bayes factors,

we develop classes of improper priors from which well defined Bayes factors result.

However, as the use of such priors is not free of problems, we include discussion on

the issues with using such priors for model comparison.

Key Words: Improper prior; Bayes factor; marginal likelihood; shrinkage prior;

measure.
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JEL Codes: C11; C52; C15; C32.

1 Introduction.

In empirical economic analysis, a natural extension of the concern for uncertainty

associated with stochastic variables and parameter estimators is concern for uncer-

tainty associated with the statistical or economic model used. While a common

approach to data analysis is to select the ‘best’ of a set of competing models and then

condition upon a that model, ignoring the uncertainty associated with that model,

an attractive feature of the Bayesian approach is the natural way in which model

uncertainty may be assessed and incorporated into the analysis via the posterior

model probabilities. An important method of incorporating this uncertainty that has

attracted much attention in recent years is Bayesian model averaging (BMA). The

benefits of BMA for prediction, for example, are outlined in several papers such as

Min and Zellner (1993), Raftery, Madigan and Hoeting (1997) and Bernardo (1979).

Another attractive feature of Bayesian analysis is the ability to incorporate the

prior distribution. This allows the researcher to reflect in the analysis a range of prior

beliefs - from ignorance to dogma - that may reflect personal preferences or improve

inference in some way. Improper priors have played an important part in many stud-

ies for reasons other than being convenient and commonly employed representations

of ignorance. Some priors, such as the Jeffreys’ prior, have information theoretic jus-

tifications and invariance properties, while others result in admissible or at least low
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(frequentist) risk estimators important for practical exercises such as forecasting or

impulse response analysis. Being able to use some of these priors when calculating

posterior model probabilities would allow us to retain these benefits while accounting

for model uncertainty. However, since Bartlett (1957) it has generally been accepted

that improper priors on all of the parameters result in ill-defined Bayes factors and

posterior probabilities that prefer (with probability one) the smaller model regardless

of the information in the data. This is commonly termed Bartlett’s paradox. For

practice, Bartlett’s paradox implies improper priors are used only for the common (to

all models) parameters and proper priors must be specified for the remaining parame-

ters when computing posterior model probabilities. A recent example of this principle

is Fernándes, Ley and Steel (2001) and further examples of authors comfortable with

this approach are listed in Kass and Raftery (1995). The adoption of this principle

has precluded the general use of improper priors in computing posterior probabilities.

Our aim is to present a simple result which demonstrates that the class of priors

that may be used to obtain posterior probabilities is wider than previously thought

and includes some improper priors. We do this by demonstrating that Bartlett’s

paradox does not hold for all improper priors - contrary to conventional wisdom.

Decomposing the parameter vector into its norm and a unit vector, we provide a

new representation of Bartlett’s paradox in terms of the rate of divergence of the

measure for the norm. We then use this representation in two further ways. First, we

3



demonstrate that the improper shrinkage prior results in well defined Bayes factors

and, second, we develop a prior that results in well defined Bayes factors and has

properties similar to some priors already in use. Using the commonly employed

Jeffreys prior as an example, we discuss a limitation of the method used to prove the

result.

We emphasise that it is not the primary aim of this paper to produce another

method of obtaining inference on model uncertainty that may be regarded as objective

or as a reference approach. In fact we provide in the discussion a caveat on the use

of these improper priors relating to an important role of the prior measure for the

parameters in model comparison that is lost when improper priors are used. We give

a simple suggestion how to regain some of this benefit of proper priors.

Much of the literature on BMA in econometrics has focused upon the Normal

linear regression model with uncertainty in the choice of regressors (for a good intro-

duction to this large body of literature, see Fernàndes, Ley and Steel 2001). Another

contribution of this paper, therefore, is to extend the class of models and problems

that may be considered with BMA. For much of the discussion we leave the form of

alternative models largely unspecified except for their dimensions. We demonstrate

an application of the priors to a relatively complex but economically useful set of

models. This application gives some indication of the relative performance of the

alternative priors and treatments of the prior measure.

4



The structure of the paper is as follows. In Section 2 we outline the explanation

for why the posterior distribution is well defined when a Uniform prior measure for

the parameters with unbounded support is employed, while the Bayes factors are

not. We also explain why some improper priors on common parameters can be em-

ployed in estimating posterior probabilities of the models and this may be regarded

as the principle underlying the result in this paper. As mentioned, this is already a

reasonably well understood issue, but we present it using the decomposition of the

differential term to motivate the approach in the rest of the paper. In Section 3

we discuss approaches to obtaining model inference with improper priors as well as

‘minimal information’ or reference priors that have been presented in the literature.

The main result is presented in Section 4 where the improper priors are developed.

In Section 5 we provide discussion using the Jeffreys prior to demonstrate a limitation

on the focus we take and show how the role of the prior measure for the parameter

space is affected by the form of the priors discussed. Here we introduce an approach

to using proper priors on supports of arbitrarily large diameter such that the Bayes

factors are informed by the data and easily obtained, and link these to the use of

particular improper priors. In Section 6 these priors are applied to a simple empirical

example relating to the term structure of Australian interest rates. Section 7 contains

some concluding comments and suggestions for further research.

Some notation for vector spaces and measures on these spaces with be useful for
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use in developing the discussion. The background theory is found in Muirhead (1982)

(for further discussion see Strachan and Inder (2004) and Strachan and van Dijk

(2004)). The r×r orthogonal matrix C is an element of the orthogonal group of r×r

orthogonal matrices denoted by O (r) = {C (r × r) : C 0C = Ir}, that is C ∈ O (r) .

The n× r semi-orthogonal matrix V is an element of the Stiefel manifold denoted by

Vr,n = {V (n× r) : V 0V = Ir}, that is V ∈ Vr,n. If r = 1, then V is a vector which we

will denote by lower case such as v and v ∈ V1,n. When we refer to the diameter of a

space A we refer to d = diam (A) = sup {|x− y| : x, y ∈ A} which will be finite only

if A is compact. Finally, let λ (A) denote the Lebesgue of the collection of spaces A,

and λ (A) =∞ to denote that A has infinite Lebesgue measure.

An entity of central interest in this paper is αd
n =

R d
0
τn−1dτ = dn

n
with limit

αn = limd→∞
dn

n
=∞ but we also use variants of the rather simple result

αn

αn
= lim

d→∞

R d
0
τn−1dτR d

0
νn−1dν

= lim
d→∞

ndn

ndn
= 1. (1)

Further we will use the result where for q > 0

lim
d→∞

αd
n+q

αd
n

=∞. (2)

Despite the apparent simplicity of these results, their implications for model compar-

ison with improper priors seems to have been overlooked.

2 The posterior and Bartlett’s paradox.

In this section we provide an alternative representation of Bartlett’s paradox. To
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do this, we begin with a discussion of the definition of the posterior with improper

priors as this explanation is well understood, generally accepted, and leads directly

to an understanding of the paradox and of why some improper priors result in well

defined Bayes factors. We also provide a justification for the common practice of using

the same improper priors on common parameters (such as variances and intercepts)

when computing posterior model probabilities and this provides an interpretation for

our main result.

Let the n vector of parameters θ have support defined by θ ∈ Θ ⊆ Rn with λ (Θ) =

∞. We ignore parameters with compact supports with finite Lebesgue measure as

they do not generally cause problems with the interpretation of the Bayes factor.

Therefore when we refer to a model having a particular dimension, we mean by this

the dimension of the space Θ of the model. If the prior density on θ is π (θ) = h (θ) /c

where c =
R
h (θ) dθ is the unnormalised prior measure for the parameter space, and

the likelihood function is L (θ) , the posterior density is defined as

π (θ|y) = L (θ)π (θ)R
Θ
L (θ)π (θ) dθ

=
L (θ)h (θ) /cR

Θ
L (θ)h (θ) dθ/c

= L (θ)h (θ) /p

where p =
R
Θ
L (θ)h (θ) dθ. Even if we use an improper prior such as with h (θ) = 1

and λ (Θ) = ∞ such that c = ∞, the posterior is considered well defined (see for

example Kass and Raftery 1995 or Fernándes et al. 2001) so long as the integral

p converges. We assume this is the case throughout the paper such that we only

consider proper posteriors.
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We restrict ourselves in the remainder of this section to the Uniform prior as used

in Bartlett’s original example as this is sufficient to demonstrate the issue and provides

a useful base upon which we can build to investigate the properties of alternative prior

measures.

Consider the investigation of the properties of a vector of data y where we have

two or more models and denote model i by Mi and the ni vector of parameters for

this model as θi. The posterior probability of the model given by P (Mi|y) is a useful

measure of the evidence in y for Mi. For comparison of two models Mi and Mj we

can use the posterior odds ratio written as

Pr (Mi|y)
Pr (Mj|y)

=
Pr (Mi)

Pr (Mj)

mi

mj
=
Pr (Mi)

Pr (Mj)
Bij

where Bij = mi/mj is the Bayes factor (in favour of model i against model j) and

mi = pi/ci is the marginal density of y under model i. Therefore, Bij = pi/pj × cj/ci.

The data inform the Bayes factor through the p0s and if the two models are considered

a priori equally likely, the posterior odds ratio is equal to the Bayes factor. As we

only consider proper posteriors (such that the ratio pi/pj will be well defined) and our

interest is in Bartlett’s paradox which is concerned with the influence of the prior on

the Bayes factor, of real importance for our discussion is the ratio of the unnormalised

prior measures for the parameter spaces for the two models, cj/ci. If a proper prior

is used for each model such that ci < ∞ and cj < ∞ are well defined - and possibly

known or able to be estimated - the Bayes factor is well defined as the ratio cj/ci is
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also defined.

The ratio cj/ci reflects our relative prior measure for Θj to that for Θi and plays an

important role in weighting the support for the two models. This ratio incorporates

a penalty for the relative dimensions as well as our uncertainty about the parameter

values. Either of these features of the model will tend to increase c. For example,

if we reflect greater prior uncertainty by a larger prior variance1 and give θ a prior

density with the form of a multivariate normal with zero mean and covariance σ2In,

then the prior measure for the space is c = (2π)
n
2 σn. c will therefore increase with

dimension n and uncertainty σ. A general observation, then, of relationship between

the normalising constant, c, and the dimension, n, and measures of certainty, σ, is

that ∂c
∂n

> 0 and ∂c
∂σ

> 0. This relationship holds for a wide range of distributions

commonly used for priors e.g., Normal, Wishart, Inverted Wishart.

If, however, we use an improper prior of the form hj (θj) = 1 with λ (Θj) = ∞

for Mj and a proper prior for Mi, then cj will be infinite such that the ratio cj/ci

is ∞ so that the Bayes factor is also infinite and not well defined. In this case the

penalty for uncertainty is absolute and Pr (Mi|y) = 1 and Pr (Mj|y) = 0, but these

posterior probabilities are not well defined in the sense that their values do not reflect

any information in the data, only prior uncertainty. Further, if we use an improper

1In many circumstances, restricting the diameter of the support might be regarded as reflecting

a measure of certainty in place of σ.
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prior of the form hk (θk) = 1 for both k = 1, 2, then the ratio cj/ci is either 0, 1

or ∞ depending only upon the relative dimensions of the two models. In the first

and last cases in which the same degree of prior uncertainty is expressed, the poster

probabilities will assign probability one to the smallest model and zero to all other

models considered such that the penalty for dimension is absolute. In each of these

cases the data are unable to inform the posterior probabilities. The exception when

cj/ci = 1 (see Poirier 1995 and Koop 2003) holds when the dimensions of the models

match.

As these same results can be shown to occur with other improper priors, and

regardless of whether one regards this as a paradox or a natural outcome in probability

of using improper priors, there is clearly then a limitation to inference when employing

improper priors. The conventional wisdom is that improper priors cannot be used for

model comparison by posterior probabilities.

One generally accepted exception to the conventional wisdom is as follows. If we

partition θk into γk and γ where γ are common to all models we can show in the

case where improper priors of the same form are used only on γ,2 the Bayes factors

will be well defined as assumed in, for example, Fernándes et al. (2001). In this case

ck = cγkcγ where cγk =
R
hk (γk|γ) (dγk) ≤ M < ∞ and cγ =

R
g (γ) dγ = ∞ thus

2Of course the prior for θk is then improper. When we say that improper priors are only used on

γ, we mean that the prior for γk conditional upon γ is proper.
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cj/ci = cγj/cγi since the cγ cancels. This result could be thought of as the basis of

this paper as we reparameterise to isolate a common parameter, the norm of θ, upon

which an improper is used. However, this in no way requires that the interpretation

of the norms are the same, rather only that they have the same support, R+.

To explore this issue further, we assume Θi ≡ Rni and use the decomposition of

the ni× 1 vector θi into θi = viτ i where the ni× 1 vector vi is a unit vector, ν 0iνi = 1,

which defines the direction of θi and τ i > 0 defines the vector length. The vector vi

is an element of a Stiefel manifold V1,ni , vi ∈ V1,ni . The compact space V1,ni has a

measure dvni1 and volume

'ni =

Z
V1,ni

dvni1 = 2π
ni/2/Γ (ni/2) <∞ (3)

(Muirhead, 1982). We can therefore decompose the differential term for θi into dθi =

τni−1i (dτ i) dv
ni
1 .

The expression for the differential term leads to the following explanation for

Bartlett’s paradox and therefore why, although the posterior is well defined, the Bayes

factors are not well defined when we use improper priors and models of different

dimension. Using the above decomposition of the differential term we can decompose

the integral ci into a convergent (finite) part, 'ni, and the divergent part, αni. That

is,

ci =

Z
Rni

dθi =

Z
R+

τni−1 (dτ)

Z
V1,ni

dvni1 = αni'ni (4)
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where

αni =

Z
R+

τni−1 (dτ) =∞. (5)

Next consider an nj dimensional model with parameter vector θj = vjτ with differ-

ential term dθj = τnj−1 (dτ) dv
nj
1 and, similarly, with cj =

R
Rnj dθj = αnj'nj .

Recall that the posterior is well defined even if the integral cj =
R
Rnj hj (θj) dθj

does not converge because the integrals in the numerator and denominator diverge at

the same rate such that their ratio is one. This same reasoning implies that if ni =

nj = n and hi (θi) = hj (θj) = 1, then the Bayes factor Bij = mi/mj = pi/pj × cj/ci

where since ci = cj = αn'n, Bij = pi/pj is well defined since by (1) cj/ci = 1.

This result does not require that the models nest, simply that they be of the same

dimension, or at least that the number of parameters with supports with infinite

Lebesgue measure are the same.

Note that the integrals αn and 'n do not depend upon the chosen model, only its

dimension, n and, provided the support of θ is unbounded in one direction, then the

term αn is generally not affected by restrictions upon the support. This is because

restrictions to Θ ⊂ Rn will usually restrict the support of v (not τ) and so restrict

only the measure of this support, 'n. For example, m positivity constraints (say for

variances) will reduce 'n to 2−m'n. A possible and rather strange exception is if Θi

is made up of a closed convex space around the origin and some other unbounded

space such that, say, τ ∈ (0, u (v)]× (l (v) ,∞) for some l > u. However, this will not
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change the important feature of the integral over τ which is the rate of divergence.

This can be seen by replacing the lower bounds of the integrals for τ in (1) and (2)

by positive finite numbers. The limits of the integrals and their ratios are unchanged.

When nj > ni, the integrals of τ (the term αn) diverge at different rates and we

have the case in (2) such that the ratio αnj/αni = ∞. The term in Bij due to the

polar part will always be finite and known with value

'nj/'ni = π(nj−ni)/2
Γ (ni/2)

Γ (nj/2)
. (6)

However, the Bayes factor Bij is again undefined. More extensive discussion of this

issue can be found in, for example, Bartlett (1957), Zellner (1971), O’Hagan (1995),

Berger and Perrichi (1996) and Lindley (1997). It is conceivable then that by building

upon the Uniform prior measure we may find other improper prior measures exist

which result in a divergent part of the integral, the αn, that diverges at the same rate

for all models using this prior such that the ratio αnj/αni is finite (usually one) and

Bij is well defined. This is effectively using an common form of improper prior on τ .

We present some examples in Section 4. Before we present this result, the following

section gives a very brief overview of the literature on this topic and the variety of

approaches that have been developed to deal with it. This literature is quite extensive

and we do not pretend to give it a complete treatment. We mention this literature

to demonstrate the importance this topic has been given and the calibre of authors

that have attempted to address it in some way. However, we emphasis again that we
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do not aim to contribute to this wealth of approaches with another method. Rather,

we present the result that the issue (Bartlett’s paradox) that generated this body of

work is not a general as perceived.

3 Related literature.

As posterior model probabilities can be sensitive to the prior used, much effort

has been devoted in the literature to obtaining inference with objective or reference

priors with the general aim of producing posterior model probabilities that contain no

subjective prior information. An early approach to developing an approximation to

the Bayes factors with minimal prior information is presented by Schwarz (1978) who

uses an asymptotic argument to let the data dominate the prior as the sample size

increases. For a fixed sample size in the linear model with Normal priors, Klein and

Brown (1984) use limits of measures of information based upon those developed by

Shannon (1948) to formalise the concept of ‘minimising information’. Interestingly,

for the particular model and prior they consider, they obtain the same expression as

Schwarz to approximate the posterior odds ratio. These approaches assume proper

priors, but use limiting arguments to allow the information in the sample to dominate

that prior information.

A significant advance in asymptotic theory of Bayesian model selection by estima-

tion of the marginal likelihood is made in Phillips and Ploberger (1996) and Phillips

(1996). These papers also consider approximations to the marginal likelihood for a
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wide class of likelihoods and priors, again using asymptotic domination of the prior

by the data, but they extend the class of models to those to include possibly nonsta-

tionary time series data, discrete and continuous data as well as multivariate models.

A number of authors have suggested that the undefined ratio cj/ci may be re-

placed with estimates based upon some minimal amount of information from the

sample. Examples of such approaches are Spiegelhalter and Smith (1982), O’Hagan

(1995), and Berger and Pericchi (1996). This approach has an intuitive appeal and

has been supported by asymptotic arguments. However, as discussed in Fernándes,

Ley and Steel (2001), the use of the data to attribute a value to cj/ci involves an

invalid conditioning such that the posterior cannot be interpreted as the conditional

distribution given the data.

An alternative approach that has been proposed which maintains a valid interpre-

tation of the posterior is to use proper priors. The rationale here is to compare Bayes

factors for models with the same amount of prior information. To this end, Fernández

et al. (2001) propose reference priors for the Normal linear regression model which al-

low such comparison of results. They use improper priors on the common parameters

- the intercept and the variance - and a Normal prior on the remaining coefficients

based upon the g-prior of Zellner (1986). This approach is supported by the argument

of Lindley (1997), who used model comparison as one motivating example, that only

proper priors should be employed to represent uncertainty.
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Each of the methods discussed to this point have either removed the prior from

the calculation of posterior probabilities or been limited in the class of prior or model

or both. As we have argued, some improper priors have attractive properties and

do result in well defined Bayes factors and posterior probabilities. One approach

with improper priors is given in Kleibergen (2004) using the Hausdorff measure and

Hausdorff integrals rather than the Lebesgue measure and integrals to develop prior

probabilities for models and prior distributions for parameters within models nested

within an encompassing linear regression model. A feature common to both Klein and

Brown (1984) and Kleibergen (2004) is that the prior model probabilities are given

limiting behaviour that offsets the divergent term in the Bayes factor (resulting in

well defined Bayes factors). While Kleibergen (2004) presents an approach that holds

for a very general form for the prior, the approach of Klein and Brown (1984) and the

result we present (we do not present an approach) are only relevant for specific forms

of the prior. However, this paper’s result is more general in the sense that we make

no assumptions about the forms of the models or their relationship to each other.

The result does not require models to nest, nor does it place any restriction upon the

specification of the prior probabilities for the models. As far as we are aware, this is

a direction that has not been considered previously in the literature.

4 Improper priors with well defined Bayes factors: Exceptions to Bartlett’s

paradox.
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In this section we present the main result of the paper: the improper priors which

result in well-defined Bayes factors. As has been discussed, many researchers accept

that using improper priors on common parameters does not result in Bartlett’s para-

dox. Here we show that in treating the norm of the parameter vector as a common

parameters, certain improper priors result in well defined Bayes factors.

The improper Shrinkage prior: Normalising the differential term.

The shrinkage prior has been advocated and employed by several authors (see for

example Stein 1956, 1960, 1962, Lindley 1962, Lindley and Smith 1972, Sclove 1968,

1971, Zellner and Vandaele 1974, Berger 1985, Judge et al. 1985, Mittelhammer et

al. 2000, and Leonard and Hsu 2001). An important feature of this prior is that

it tends to produce an estimator with smaller expected frequentist loss than other

standard estimators as may result from flat or proper informative priors (see for

example, Zellner 2002 and Ni and Sun 2003). Ni and Sun (2003) provide evidence of

this improved performance for estimating the parameters of a VAR and the impulse

response functions from these models. Although this prior does not appear to have

been considered for model comparison by posterior probabilities, as we now show, it

does result in well defined Bayes factors.

The form of the shrinkage prior is kθk−(n−2) = (θ0θ)−(n−2)/2 . To demonstrate our

claim that the Bayes factor will be well defined, we again use the decomposition
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θ = vτ such that (θ0θ)1/2 = τ . Thus differential form of the prior is

(θ0θ)
−(n−2)/2

(dθ) = τ−(n−2)τn−1 (dτ) (dvn1 ) = τ (dτ) (dvn1 )

and this form holds for all models. The normalising constant for model Mi of dimen-

sion n is then

ci =

Z
Rn

(θ0θ)
−(n−2)/2

(dθ) =

Z
R+

τ (dτ)

Z
V1,n

(dvn1 ) = α2'n

such that the ratio of the normalising constants for the shrinkage priors for models of

different dimensions is always finite and well defined as the same term α2 in the nor-

malising constants cancel. Consider two models - the first model Mi with dimension

ni and the secondMj with dimension nj. The Bayes factor for comparison of the two

models with the shrinkage priors will contain the ratio of the normalising constants in

the priors. This ratio will be 'nj/'ni which is given in (6) and is finite and known.

Augmenting the differential term.

A number of methods developed for inference have nested models within a ‘largest’

model to produce sensible prior measures for the nested models. Kleibergen (2004)

gives a careful specification of how to restrict from an encompassing model to an

encompassed model, with examples, in such a way that the posterior odds are well

defined even with improper priors. Using only proper priors, Fernández et al. (2001)

point out that priors for nested models can be obtained from a prior on the full model

so long as the priors (for the variance) for the nested models incorporate the term
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(n− ni) /2 to account for the difference between the dimension of the largest model,

n, and the nested model, ni.

As the lack of definition of the Bayes factor for models of different dimensions

results from the different rates of divergence in the integrals αnk k = i, j, which

in turn results from the different dimensions of the two models, one approach to

resolving this issue which suggests itself, is to match the dimensions of the models by

augmenting the smaller model with a fictitious vector of parameters of appropriate

size and to impose a restriction within the differential to achieve a measure for the

smaller model. This augmenting does not require the models to nest, nor do we

restrict the augmenting parameter in the same way, however clearly nested models can

be accommodated. Therefore, this provides an alternative to the approach developed

by Kleibergen (2004) for nesting models.

To proceed, let the modelM have vector of parameters θ of dimension n whileM0

has parameter vector θ0 of dimension n0 = n − n1, n1 > 0, such that the difference

in the dimensions is n1. Let θ2 = {θ00, θ01} where θ1 is a n1-dimensional vector. The

measure for the prior h (θ) = h (θ2) = 1 is given in (4) as c = αn'n. To obtain the

measure for θ0 in the modelM0 we give it the vector of parameters θ2 and impose the

restriction θ1 = 0. This does not require the models to nest nor that the parameters

even have the same interpretation. It can be shown that it is not even necessary that

the parameter vectors have the same support, simply that they have support with
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infinite Lebesgue measure. The resulting prior on θ0 is (θ00θ0)
n1/2 (dθ0) (see Appendix

I). As shown in the Appendix, the ratio of the normalising constants becomes

c

c0
=

αn'n

αn'n0

=
'n

'n0

= πn1/2
Γ (n0/2)

Γ (n/2)

Note that for the posterior to be proper requires
R
Rn0

(θ00θ0)
n1/2 L0 (θ0) dθ0 = q <

∞ where q is finite. The convex form of the prior is similar to the form of the Jeffreys’

prior for many models and to the prior of Kleibergen and Paap (2002). Use of these

priors also requires existence of a similar function of the parameters.

As the proof of the above result uses a ‘conditioning upon a measure zero event’

argument, it is necessary to comment upon an important paradox which arises in

this case: the Borel-Kolmogorov paradox. Our comment is deliberately brief and

restricted stating why this paradox is not really an issue in the above case. The

Borel-Kolmogorov paradox is encountered when different representations of the same

measure zero event appear in different parameterisations. With the transforma-

tion from (θ0, θ1) to (θ0, ϕ) where ϕ = (θ0, θ1) with transformation of measures is

ν (θ0, θ1) = ν0|1 (θ0|θ1) ν1 (θ1) = ε (θ, ϕ) = ε1|ϕ (θ1|ϕ) εϕ (ϕ) .

The paradox implies that even if θ1 = 0 =⇒ ϕ = c, it is not always true that

ν0|1 (θ0|θ1 = 0) = ε1|ϕ (θ1|ϕ = c). However, the case we give involves a vector θ0 of

model parameters and a vector θ1 of artificial parameters. Any transformations that

might sensibly be considered would be of θ0, ϕ = ϕ (θ0), not ϕ = ϕ (θ1). Thus we

have ν0|1 (θ0|θ1 = 0) = εϕ|1 (ϕ|θ1 = 0) and the paradox does not arise. While it is
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not out of the question that some transformation could be imagined that involved

both θ0 and θ1, it is difficult to imagine how such a transformation could be regarded

as sensible. The vector θ1 is purely artificial and does not enter into the model.

Notwithstanding the comments above, the result presented does not depend upon

the justification given. The discussion on this point in the paper was given to provide

some intuition for the result.

5 Discussion.

In this section we discuss issues related to the analysis of improper priors using

the above results including some important limitations of using these improper priors

for model comparison.

The analysis of nonsymmetric priors: The Jeffreys prior for the Normal

linear model.

In the above discussion we have focussed upon the term in the prior measure

associated with the parameter τ with unbounded support as this term resulted in

the divergent component in the integral. However, it was possible to ignore the term

involving the unit vector v only because the above priors are symmetric. When

considering non-symmetric priors it is necessary to consider the terms involving v

also.

One important example is the Jeffreys prior for the multivariate Normal linear

model y = Xβ+ ε in which y is a T ×m random data matrix, X is the T × k matrix
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of regressors, β is a k×m matrix of unknown coefficients and vec (ε) ∼ N (0,Σ⊗ IT ).

The symmetric covariance matrix Σ = T 0T is positive definite and T is the upper

triangular Choleski decomposition of Σ with the (i, j)th nonzero element denoted as

tij and so has ith diagonal element tii = viiτ > 0. Collect the n = km+m (m+ 1) /2

parameters into the n× 1 vector θ =
¡
vec (β)0 , vech (T )0

¢0
.

We assume that the dimension of the systemm is fixed and any zero restrictions of

interest will be upon β or on the covariances in the off diagonal of Σ (if we consider,

for example, certain exogeneity restrictions). This excludes the case where one or

more variances are involved in linear restrictions (such as equalling zero) in which the

following results are not valid. The following results are quite general as they will

hold in all but this rather exceptional case.

The exact Jeffreys prior is the square root of the information matrix which in this

case has the form (see Appendix II)

p (β,Σ) d (β,Σ) ∝ |Σ|−(k+m+1)/2 d (β,Σ) (7)

= 2mΠm
i=1t

−(k+i)
ii d (β, T ) = 2mΠm

i=1v
−(k+i)
ii dvn1 τ

−1dτ.

The prior measure for the parameter space will be cn =
R
dθ = 2m e'n

kα0 where

e'n
k =

R
vn1
Πm
i=1v

−(k+i)
ii dvn1 . Thus all models will have the term α0 which will cancel

in the Bayes factor, however e'n
k is a divergent integral resulting in ill-defined Bayes

factors. The divergence results from the limits of the integrals in the regions where

the vii approach zero. Here the rate of divergence is governed not only by k - the

22



dimension of β and most frequently the object of interest - but also by the dimension

n. This last point means even if two models have the same number of regressors but

a covariance (say exogeneity) restriction imposed, then integrals
R
vn1
Πm
i=1v

−(k+i)
ii dvn1

and
R
vn−11

Πm
i=1v

−(k+i)
ii dvn−11 diverge at different rates.

If we consider using the embedding approach in the previous section, this can lead

to a specification for the Jeffreys prior that results in well defined Bayes factors. Spec-

ify the Jeffreys prior for the augmented model with parameters (β,Σ) of dimension

n as in (7). Partition β as β = [β00, β
0
1]
0 and we are interested in the nested model

implied by setting the mk1 elements of β1 to zero. Next we consider the point where

a subset of mk1 elements of β = [β
0
0, β

0
1]
0 are set to zero . If vec (β1) is a k1×1 vector,

then at β1 = v1τ = 0, the form of the prior for (β0,Σ) becomes

p (β0,Σ) d (β0,Σ) = p (β,Σ) |β1=0d (β,Σ) |β1=0 ∝ |Σ|
−(k+m+1)/2 (β00β0)

k1m/2
d (β,Σ) |β1=0.

Alternatively, using the shrinkage argument and let k0 = k − k1, the prior

p (β0,Σ) d (β0,Σ) ∝ |Σ|−(k+m+1)/2 (β00β0)
−k0m/2

d (β0,Σ)

also results in well defined Bayes factors if k is set to some common value (such as

the maximum) for all models. Notice that in neither of these cases an adjustment for

the volume of the Steifel manifolds of differing dimensions relevant, since the integral

over this space is also divergent.

The effect of the divergence in e'n
k could be removed and Bayes factors computed
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if we were to restrict the elements of the unit vector v for the variances, the vii,

to have positive minimums ci > 0. As the ith variance can be expressed as σ2i =

Σi
j=1t

2
ji = τ 2Σi

j=1v
2
ji and the support of τ is unrestricted, this restriction on vii would

not imply a restriction upon the marginal support of each element of θ, however,

the supports would no longer be variation free. If we consider the case m = 1, for

example, large values of β would mean a larger lower bound upon σ2 = v2k+1τ
2 since

τ 2 = θ0θ = σ2 + β0β. Of course, as the conditional distribution for σ2 in this model

will tend to have little mass around zero for large values of β, this is not likely to be

a serious restriction. The question of choice of ci, however, remains. We conducted

a number of simulations to determine values of ci that gave values of e'n
k that might

result in useful Bayes factors. Although more work needs to be done in this direction

to gain a clearer picture of the implications of this restriction, we were able to get

an early impression of the effect of varying ci. Our conclusion is, however, that the

penalty in the prior measure for being large remains very significant such that there

will remain too strong a preference in the Bayes factors for small models which is

overcome only if there is a lot of support in the data for larger models.

In concluding this subsection we mention the most commonly used form of the

Jeffreys prior which is the approximation suggested by Jeffreys himself. This prior

assumes independence of β and Σ and has the form

p (β,Σ) d (β,Σ) ∝ |Σ|−(m+1)/2 d (β,Σ) = 2mΠm
i=1t

−i
ii d (β, T ) = 2

mΠm
i=1v

−i
ii dv

n
1 τ

km−1dτ.
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In this case cn =
R
dθ = 2m e'kαkm where e'k =

R
vn1
Πm
i=1v

−i
ii dv

n
1 is still a divergent

integral but common to all models and so will cancel in the Bayes factor. However,

the term αkm now enters which will result in the smallest model being selected.

The role of the prior measure.

We limit the aim of this paper to presenting the result that the Bayes factors are

well defined for the priors considered, and not presenting a new model selection strat-

egy because an important function of the prior measure is lost with these improper

priors. As discussed in Section 2, with proper priors the ratio cj/ci brings into the

posterior analysis penalties for greater model dimension and greater prior parame-

ter uncertainty. With the shrinkage and augmented improper priors, the penalty for

uncertainty is removed (effectively matched for each model). The ratio is then only

a function of the dimensions of the models via the ratio cj/ci = 'nj/'ni. Interest-

ingly, this same ratio would result if we were to use a spherical support centred at

the origin of arbitrarily large diameter d such that all integrals pj =
R
Θj

L (θj) dθj

have converged for all models. This same ratio would also result if we were to use

Uniform proper priors over a spherical support centred at the origin and of arbitrarily

large diameter di, but where we chose the diameters by the rule d
ni
i /ni = d

nj
j /nj or

dj =
³
nj
ni
dnii

´1/nj
. Note we need only choose the smallest di to be some arbitrarily

large number such that all of the integrals pj have converged. Thus we never need

to actually assign a value to d, so long as we adjust the Bayes factor by the correct
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value 'nj/'ni.

These cases is will not produce the same Bayes factor, however, as the ratios pi/pj

will differ, but they provide useful comparisons for discussion. For the Uniform prior,

this choice of di ensures that the models with larger dimension have smaller diameter

for the support.

This choice of a common limit on the norm (or a common rule for choosing d in

the case of the Uniform prior) for all models is therefore innocuous in this case and

holds as d→∞. Choosing d by such rules to remove the effect of the prior measure

may seem like a useful simplification, however this process results in posterior odds

with odd and undesirable properties.

Because of the behaviour of the 'n over n, the penalty for dimension with these

priors is largely inverted as smaller models tend to be more heavily penalized. Figure

(1) plots 'n for n = 1, ..., 30, and shows the measure for V1,n is not monotonic in

n, increasing up to around n = 9 and decreasing thereafter. The effect on the ratio

cj/ci = 'nj/'ni is shown in Figure (2) which plots ln ('gn)− ln ('n) for n = 1, 2, 3, 4

and 5 and g = 1, ..., 20. Recall that the larger the prior measure for a model, the more

a model is penalized so that the more negative is ln ('gn)− ln ('n) the greater is the

penalty for the model of dimension n relative to the model of dimension gn. We see

that very small models (small n) are given less penalty than slightly larger models

(small g > 1), but are heavily penalized relative to very large models (large g). As
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the dimension of the numerator (in the Bayes factor) modelMi increases, the penalty

for being small becomes very large very quickly.

It would therefore seem sensible to use a different rule for selecting di. It is not

recommended that the prior measures be completely ignored or dropped by assuming

cj
ci
= 1, however, as the role this ratio plays in the model selection or comparison

is then unfulfilled. Ideally we would prefer a term that reintroduces a penalty for

the dimension of the model, with a smooth increase in the measure as n increases,

but results in a well defined term in the Bayes factor that does not give unmitigated

support for the smallest (or largest) model. Although detailed discussion of strategies

to adjust for this loss of penalty is beyond the scope of this paper, we mention one that

immediately suggests itself. That is to set d by the rule ci =
d
ni
i

'nini
= δT

ni
2 such that

for all d we obtain the Bayes factor Bij = pi/pjT
(nj−ni)/2 where T is the sample size

and so common to all models, but d increases as δ increases and at a rate determined

by n such that larger models have smaller diameter supports. For the Uniform prior,

this converges as δ → ∞ to the posterior odds ratio suggested by Klein and Brown

(1984) and so replaces the prior measure for the parameter space with the penalty

used by Schwarz (1978) in his asymptotic approximation to the marginal likelihood.

Thus this is equivalent to using the proper Uniform prior of arbitrarily large diameter

where the relative diameters are chosen to match the unnormalised prior measures to

the ratio of the BIC penalties.
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6 Application.

In this section we investigate evidence on the rational expectations theory for

the term structure of interest rates (Campbell and Shiller, 1987) in which we expect

that interest rates are I (1) while the spreads between rates of different maturity are

I (0) , thus forming cointegrating relations and implying these rates share one common

stochastic trend. Although for these variables we might accept that the cointegrating

relations may have non-zero means, we would not expect there to be trends in either

the levels or the cointegrating relations. We use a vector error correction model

(VECM) which has several other features about which we are uncertain. We use a

p = 4 dimensional time series vector, yt = (y1t, . . . ypt) for t = 1, . . . , T. The data for

this example is 94 monthly observations of the 5 year and 3 year Australian Treasury

Bond (Capital Market) rates and the 180 day and 90 day Bank Accepted Bill (Money

Market) rates from July 1992 to April 2000. This data was previously analyzed in

Strachan (2003) and Strachan and van Dijk (2003).

With a maximum of 3 lags and differencing, we have an effective sample size of

T = 90 observations. The VECMof the 1×p vector time series process yt, conditioning

on the l observations t = −l+1, . . . , 0, is ∆yt = yt−1βα+dtµ+Σl
i=1∆yt−iΓi+ εt. The

matrices β and α0 are p× r and assumed to have rank r. We will define dtµ shortly.

Collect the above parameters, except β, into

b =
¡
vec (α)0 , vec (µ)0 , vec (Γ1)

0 , . . . , vec (Γl)
0¢0 .
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Common features of economic and statistical interest relating to this model are:

the number of lags (l) required to describe the short-run dynamics of the system; the

form of the deterministic processes in the system (indexed by d); the number of sto-

chastic trends in the system (p−r); and the form of the long-run equilibrium relations

or the space spanned by the cointegrating vectors (indexed by o). Parameterisation

of models with different l and r is thus obvious and in the following paragraphs we

explain the parameterisation of models with different d and o.

We consider a range of deterministic processes such that ∆yt may have a nonzero

mean or trend (implying a drift in yt) and ytβ may have a nonzero mean or trend.

For specification of the restrictions that induce these behaviours we refer to Johansen

(1995 Section 5.7). Although a wider range of models are clearly available, the five

most commonly considered may be stated as follows, where d denotes the model of

deterministic terms at given rank r. For the interest rate data, we would most likely

expect d = 4 or d = 5.

d = 1 d = 2 d = 3 d = 4 d = 5

E (∆yt) µ1 + δ1t µ1 µ1 0 0

E (ytβ) µ0 + δ0t µ0 + δ0t µ0 µ0 0

The aim of cointegration analysis is essentially to determine the dimension (r)

and the direction of the cointegrating space, ρ = sp (β). We therefore compare three

models for the spaces of interest. When no restriction is placed upon the space and ρ

29



is free to vary over all of the Grassman manifold we denote the model by o = 1. For

the second set of models (o = 2), we refer to the expectations theory which implies the

spreads should enter the cointegrating relations and so we are interested in the model

with cointegrating space spanned by H2 = (h2,1 h2,2 h2,3 ) where h2,1 = (1,−1, 0, 0)0 ,

h2,2 = (0, 1,−1, 0)0 , and h2,3 = (0, 0, 1,−1)0 . In this model we have β = H2ϕ where

ϕ is 3× r for r ∈ [1, 2, 3] . As the interest rates come from different markets, market

segmentation suggests our third set of models of the cointegrating space (o = 3) in

which we have spaces of interest spanned by β = H3ϕ where ϕ is 2× r for r ∈ [1, 2]

and H3 = (h2,1 h2,3 ) . The models o = 2 and o = 3 restrict the cointegrating space to

subspaces of the space in o = 1.

To sum up, we have the following models in our model set. The rank parameter

is an element of r ∈ [0, 1, 2, 3, 4], the indicator for the deterministic process d ∈

[1, 2, 3, 4, 5], the lag length l ∈ [0, 1, 2], and the indicator for overidentification of

cointegrating vectors o ∈ [1, 2, 3]. This gives a total of 226 models. Taking account of

observationally equivalent or a priori impossible models, we need only compute the

marginal likelihoods for some 135 models.

The prior for β is uniform on Vr,p but we adjust the volume to imply a uniform

prior on the support of the cointegrating space (see Strachan and Inder 2004 for

details). The same prior for the covariance matrix, the invariant partial Jeffreys prior

for Σ, p (Σ) ∝ |Σ|−(p+1)/2 , is employed for all models. For ith model the prior for the
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ni-dimensional vector b is p (b) ∝ (b0b)Ki/2 whereKi = n∗−ni where n∗ = max (nh) for

the prior using augmentation of the differential and Ki = − (ni − 2) for the shrinkage

prior. The marginal likelihoods are estimated by the MCMC approach of Strachan

and van Dijk (2004) which uses such approaches as those discussed in Gelfand and

Dey (1994).

(b0b)−(n−2)/2 (b0b)(n
∗−n)/2 (b0b)−(n−2)/2 (b0b)(n

∗−n)/2 Prior

d l r o 'n 'n T−n/2 T−n/2 Penalty

4 1 1 1 0.07 0.06 0.075 0.06

5 1 1 1 0.28 0.94 0.287 0.94

5 1 1 2 0.03 - 0.035 -

5 1 1 3 0.59 - 0.597 -

Table 1: Estimated Posterior Model Probabilities (only values of 1% shown)

Table 1 shows the results from Bayesian estimation from the shrinkage prior

((b0b)−(n−2)/2) and the augmenting prior ((b0b)(n
∗−n)/2) and where we have used the

exact form of the Bayes factor ('n) and the adjustment to account for model di-

mension (T−n/2). Overall the results prefer models with low order or no deterministic

processes, no lags of differences and three common stochastic trends. The evidence on

the overidentifying restrictions is less clear with the augmenting prior preferring the

least restricted model while the shrinkage prior shows a slight posterior preference3

3The posterior odds for o = 1 to o = 3 for the shrinkage prior is 2 which is not generally regarded
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for the most restricted, although with considerable support (around 35%) upon the

least restricted model.

This result gives clear evidence for this data set against the main feature of the

Efficient Market Hypothesis that the interest rates share a single common stochastic

trend, although that the spreads are stationary within each market has some sup-

port. This model provides a reasonable description of the deterministic and short-run

dynamic structure.

Although we have not used a particularly large sample, 90 observations seem to

have been sufficient to dominate the effect of the form of the prior and the penalty for

dimension in what is a reasonably complex model set. Interestingly, the form of the

correction to the Bayes factor, either the exact Bayes factor or with the adjustment by

T−n/2 does not seem to have had much effect upon the results. Further, although we

would expect that such different priors as the shrinkage and the augmenting priors to

produce different results - with the shrinkage prior preferring smaller models - again

this did not produce great differences except for the restrictions upon the cointegrating

space. Although we used a common prior in all cases for the cointegrating space, ρ,

and we assumed prior independence of b and ρ, it is not surprising that the prior on b

will affect inference in the posterior upon ρ since the two are not independent in the

posterior which has a different form under each prior.

as strong evidence. See for example, Kass and Raftery (1997), Poirier (1995) or Jeffreys (1961).
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7 Conclusion.

Due to Bartlett’s paradox, Bayesians have not employed improper priors when

obtaining posterior probabilities for models. This is unfortunate, as some improper

priors have attractive features which the Bayesian may like to employ in, say, BMA.

Using a relatively simple and well-understood decomposition of the differential term

for a vector of parameters, we have demonstrated that certain improper priors do

result in well defined Bayes factors. One important class is the shrinkage prior which

has been shown to produce estimates with lower frequentist risk than other approaches

and therefore are more likely to be admissible under quadratic loss. It is possible

that the class of improper priors that permit valid Bayes factors extends beyond

those demonstrated in this paper to those with other attractive properties. This is a

potential area for further investigation.
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9 Appendix I

The restriction θ1 = 0 can be imposed by restricting the direction of v in the

decomposition θ = vτ. First, define the n× n orthogonal matrix

V =

∙
v V⊥

¸
where v =

⎡⎢⎢⎣ v0

v1

⎤⎥⎥⎦ and V⊥ =

⎡⎢⎢⎣ V00,⊥ V01,⊥

V10,⊥ V11,⊥

⎤⎥⎥⎦ (8)

such that V 0V = In (V ∈ O (n)) and v0 is of dimension n0 × 1, V⊥ is of dimension

n× (n− 1) , V00,⊥ is of dimension n0× (n0 − 1) , and the dimensions of the remaining

matrices are thus defined. The differential (dθ) = τn−1 (dτ) (dvn1 ) derives from the

exterior product of the elements of the vector (dθ) = V 0 (dθ) = V 0v (dτ) + V 0 (dv) τ
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or

(dθ) =

⎡⎢⎢⎣ v0v

V 0
⊥v

⎤⎥⎥⎦ (dτ) +
⎡⎢⎢⎣ v0 (dv)

V 0
⊥ (dv)

⎤⎥⎥⎦ τ =
⎡⎢⎢⎣ (dτ)

V 0
⊥ (dv) τ

⎤⎥⎥⎦
since V 0 (dθ) = |V | (dθ) , |V | = 1, and v0 (dv) = − (dv)0 v = 0.

To reduce the dimension of model M from n to n0, we set v1 = 0, which is

equivalent to θ1 = 0. That is, we restrict the direction of the vector θ such that the

subvector θ0 is zero. Since v0v = 1 at all points in V1,n including at v1 = 0, then at

this point v00v0 = 1 and so v0 ∈ V1,n0 and will have the matrix orthogonal complement

V00,⊥ ∈ Vn0−1,n0 . If eV⊥ is any matrix that spans the orthogonal compliment space of
v, then partitioning eV⊥ the same as V⊥ in (8), we have at v1 = 0,

eV 0
⊥v =

⎡⎢⎢⎣ eV 0
00,⊥v0 +

eV 0
01,⊥v1

eV 0
10,⊥v0 +

eV 0
11,⊥v1

⎤⎥⎥⎦ =
⎡⎢⎢⎣ eV 0

00,⊥v0

eV 0
10,⊥v0

⎤⎥⎥⎦ = 0.
This implies that at v1 = 0, then eV⊥ = V⊥κ for κ ∈ O (n− r) will be an orthogonal

rotation of the matrix V⊥ with V10,⊥ = V 0
01,⊥ = 0 and V11,⊥ = In−n0. That is, the

space spanned by eV⊥ will lie in the n1 = n − n0 plane passing through the last

n1 co-ordinate axes and so will have the same differential term as V⊥ since for any

κ ∈ O (n− r) , |κ| = 1. To see this, consider the simple case where n = 3 and n0 = 2.

v = (v11, v21, v31)
0 is a vector in a three dimensional space and each element of the

vector relates to one coordinate. The column vectors in the matrix V⊥ lie in (and

define) the plane spanned by all vectors orthogonal to the vector v. The restriction

v1 = v31 = 0 implies the third coordinate is always zero and so the vector v is restricted
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to the two dimensional plane defined by the first two coordinate axis. The matrix eV⊥
now always lies in the plane passing through the third coordinate axis defined by the

matrix V⊥ =

⎡⎢⎢⎣ v012 v022 0

0 0 1

⎤⎥⎥⎦
0

.

This restriction implies that to obtain the differential term we need only employ

the matrix V⊥ and, at the point v1 = θ1 = 0, we take exterior products of elements

of the vector

(dθ) = V 0 (dθ) = V 0v (dτ) + V 0 (dv) τ

=

⎡⎢⎢⎢⎢⎢⎢⎣
v00v0 + v01v1

V 0
00,⊥v0 + V 0

01,⊥v1

V 0
10,⊥v0 + V 0

11,⊥v1

⎤⎥⎥⎥⎥⎥⎥⎦ (dτ) +
⎡⎢⎢⎢⎢⎢⎢⎣

v0 (dv)

V00,⊥ (dv0) + V 0
01,⊥ (dv1)

V10,⊥ (dv0) + V 0
11,⊥ (dv1)

⎤⎥⎥⎥⎥⎥⎥⎦ τ

=

⎡⎢⎢⎢⎢⎢⎢⎣
(dτ)

V00,⊥ (dv0) τ

(dv1) τ

⎤⎥⎥⎥⎥⎥⎥⎦ at v1 = 0 where V⊥ =

⎡⎢⎢⎣ V00,⊥ 0

0 In1

⎤⎥⎥⎦

and obtain (dθ) |θ1=0 = τn−1 (dτ) (dvn1 ) |ν1=0 = τn−1 (dτ) (dvn01 ) . By conditioning on

(dvn1 ) |ν1=0 = (dvn01 ), we thus obtain the measure

c0 =

Z
Rn0

(dθ) |θ1=0 =
Z
R+

τn−1 (dτ)

Z
V1,n0

(dvn01 ) = αn'n0 .

The ratio of the normalising constants c and c0 for the priors is then

c

c0
=

αn'n

αn'n0

= πn1/2
Γ (n0/2)

Γ (n/2)
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and the Bayes factor is well defined as B = p0/p × c/c0 such that the posterior

probabilities can be obtained.

In the following we develop the prior implied by this augmenting of the differential

for the smaller model. The prior forM is π (θ) = h (θ) /c = 1/c.UnderM0, as θ0 = v0τ

implies (dθ0) = τn0−1 (dτ) (dvn01 ) and θ00θ0 = τ 2, the implied prior for M0 is then

π (θ) |θ1=0 (dθ) |θ1=0 = h (θ) |θ1=0 (dθ) |θ1=0/c0 = τn−1 (dτ) (dvn01 ) /c0

= τn1τn0−1 (dτ) (dvn01 ) /c0 = (θ
0
0θ0)

n1/2 (dθ0) /c0.

As it is the difference in the rates of divergence of the integrals with respect to τ

(i.e., αn) that cause the problems with the Bayes factors, a less formal way of arriving

at the same prior is to consider the two differential forms (dθ) = τn−1 (dτ) (dvn1 )

and (dθ0) = τn0−1 (dτ) (dvn01 ) . Since n = n0 + n1 and θ00θ0 = τ 2, then clearly we

have the same result if in the prior for M0 we replace (dθ0) by (θ00θ0)
n1/2 (dθ0) =

τn1τn0−1 (dτ) (dvn01 ) = τn−1 (dτ) (dvn01 ) .

10 Appendix II

Theorem: The exact Jeffreys prior for the multivariate Normal linear regression

model has the form (see Appendix II)

p (β,Σ) d (β,Σ) ∝ |Σ|−(k+m+1)/2 d (β,Σ) = 2mΠm
i=1t

−(k+i)
ii d (β, T ) = 2mΠm

i=1v
−(k+i)
ii dvn1 τ

−1dτ.

Proof: The multivariate Normal linear model has the form y = Xβ + ε in which

y is a T ×m random data matrix, X is the T × k matrix of regressors, β is a k ×m
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matrix of unknown coefficients and vec (ε) ∼ N (0,Σ⊗ IT ). The information matrix

for eθ = ¡vec (β)0 , vech (Σ)0¢0 has the form
Υ =

⎡⎢⎢⎣ Σ−1 ⊗X 0X 0

0 T
2
D0

m (Σ
−1 ⊗ Σ−1)Dm

⎤⎥⎥⎦
(Magnus and Neudecker, 1988, p. 321). The determinant of this matrix is then

|Υ| =
¯̄
Σ−1 ⊗X 0X

¯̄ ¯̄̄̄T
2
D0

m

¡
Σ−1 ⊗ Σ−1

¢
Dm

¯̄̄̄
= |X 0X|m |Σ|−k T

m(m+1)
2 |Σ|−(m+1)

in which we have used the result |Dm (Σ
−1 ⊗ Σ−1)Dm| = |D+

m (Σ⊗ Σ)D+0
m |
−1 =

2
m(m−1)

2 |Σ|−(m+1) (Magnus and Neudecker 1988, p. 50).

As the square root of the determinant of the information matrix, the Jeffreys

prior will therefore be proportional to |Σ|−(k+m+1)/2 d (β,Σ) . Next, from Muirhead

(1982, p. 62) we have the transformation of the measure from Σ to T as (dΣ) =

2mΠm
i=1t

m+1−i
ii (dT ) and so

|T |−(k+m+1) 2mΠm
i=1t

m+1−i
ii (dT ) (dβ) = 2mΠm

i=1t
−(k+m+1)
ii Πm

i=1t
m+1−i
ii (dT ) (dβ)

= 2mΠm
i=1t

−(k+i)
ii (dT ) (dβ) .

The transformation θ =
¡
vec (β)0 , vech (T )0

¢0
= vτ implies (dT ) (dβ) = dθ = dvn1 τ

n−1dτ

where recall n = km+ m(m+1)
2

. Therefore we can write the Jeffreys prior for (v, τ) for

this model as proportional to

Πm
i=1v

−(k+i)
ii τ−(km+

m(m+1)
2 )dvn1 τ

km+m(m+1)
2

−1dτ = Πm
i=1v

−(k+i)
ii dvn1 τ

−1dτ.
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Beginning with the approximation of the Jeffreys prior as |Σ|−(m+1)/2 d (β,Σ) and

transforming from Σ to T , this becomes

|T |−(m+1) 2mΠm
i=1t

m+1−i
ii (dT ) (dβ) = 2mΠm

i=1t
−(m+1)
ii Πm

i=1t
m+1−i
ii (dT ) (dβ)

= 2mΠm
i=1t

−i
ii (dT ) (dβ) .

The transformation from θ to vτ gives us the Jeffreys prior for (v, τ) for this model

as proportional to Πm
i=1v

−i
ii τ

−m(m+1)
2 dvn1 τ

km+
m(m+1)

2
−1dτ = Πm

i=1v
−i
ii dv

n
1 τ

km−1dτ.
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Figure 1: Plot of 'n, the measure for V1,n, for n = 1, ..., 30.
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Figure 2: Plot of ln ('gn)− ln ('n) for n = 1, 2, 3, 4 and 5 and g = 1, ..., 20.
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