DEPARTMENT OF ECONOMICS

A Note On The Loewenstein-Prelec THEORY OF INTERTEMPORAL
 Choice

Ali al-Nowaihi, University of Leicester, UK Sanjit Dhami, University of Leicester, UK

A Note On The Loewenstein-Prelec Theory Of Intertemporal Choice

Ali al-Nowaihi*
Sanjit Dhami ${ }^{\dagger}$

July 2005

Abstract

In one of the major contributions to behavioral economics, Loewenstein and Prelec (1992) set the foundations for the behavioral approach to decision making over time. We correct a number of errors in Loewenstein and Prelec (1992). Furthermore, we provide a correct, more direct and simpler derivation of their generalized hyperbolic discounting formula that has formed the basis of much recent work on temporal choice.

Keywords: Anomalies of the DU model, Intertemporal choice, Generalized hyperbolic discounting.

JEL Classification Codes: C60(General: Mathematical methods and programming); D91(Intertemporal consumer choice).

[^0]
1. Introduction

It is well known that the discounted utility model of intertemporal choice (henceforth, DU) is contradicted by a relatively large body of empirical and experimental evidence; see for instance Thaler (1981). Furthermore, it appears that these anomalies are not simply mistakes; see for instance, Frederick, Loewenstein and O'Donoghue (2002). If we wish to develop models that better explain economic behavior, then we have no choice but to take account of these anomalies. Furthermore, certain types of behavior, and several institutional features, can be explained by decision makers attempting to deal with timeinconsistency problems that arise from non-exponential discounting ${ }^{1}$.

Loewenstein and Prelec (1992) (henceforth LP) give a formal statement of the known anomalies of the DU model. Of the anomalies mentioned in LP, the subsequent literature has focussed largely on the evidence for and implications of declining discount rates (DU in contrast assumes constant discount rates). The importance of LP's contribution ${ }^{2}$ is that it remains, as far as we know, the only theoretical contribution that provides an explanation of the other anomalies of the DU model, in particular, the magnitude effect and the gainloss asymmetry; we give definitions below. Furthermore, LP give the first statement and axiomatic derivation of the generalized hyperbolic discounting formula which has been the main, but not the only, alternative to the exponential discounting model ${ }^{3}$.

The purpose of our note is two-fold. First, we correct a number of errors in LP (1992) which have potentially serious implications ${ }^{4}$. Second, we provide a correct, more direct and simpler derivation of their generalized hyperbolic discounting formula.

2. Loewenstein-Prelec theory of intertemporal choice

Consider a decision maker who, at time t_{0}, formulates a plan to choose c_{i} at time t_{i}, $i=1,2, \ldots, n$, where $t_{0}<t_{1}<\ldots<t_{n}$. LP assume that the utility to the decision maker, at time t_{0}, is given (LP (9), p579) by :

$$
\begin{equation*}
U\left(\left(c_{1}, t_{1}\right),\left(c_{2}, t_{2}\right), \ldots,\left(c_{n}, t_{n}\right)\right)=\sum_{i=1}^{n} v\left(c_{i}\right) \varphi\left(t_{i}\right) \tag{2.1}
\end{equation*}
$$

[^1]We get the standard DU model for the special case of exponential discounting:

$$
\begin{equation*}
\varphi\left(t_{i}\right)=e^{-\beta t_{i}}, \beta>0 \tag{2.2}
\end{equation*}
$$

Aside from its tractability, the main attraction of DU is that it leads to time-consistent choices (at least, in none game-theoretic situations). If the plan $\left(c_{1}, t_{1}\right),\left(c_{2}, t_{2}\right), \ldots,\left(c_{n}, t_{n}\right)$ is optimal at time t_{0}, then at time t_{k} the plan $\left(c_{k+1}, t_{k+1}\right),\left(c_{k+2}, t_{k+2}\right), \ldots,\left(c_{n}, t_{n}\right)$ is also optimal. But this may no longer be true for more general specifications of the discount factor φ.

LP adopt the utility function (2.1) taking v to be the value function introduced by Kahneman and Tversky (1979). Thus v satisfies (among other properties)
$v:(-\infty, \infty) \longrightarrow(-\infty, \infty)$ is continuous, strictly increasing,

$$
\begin{equation*}
v(0)=0 \text { and is differentiable except at } 0 \tag{2.3}
\end{equation*}
$$

They define the elasticity of v (LP (16), p583) by:

$$
\begin{equation*}
\epsilon_{v}(c)=\frac{c}{v} \frac{d v}{d c}, c \neq 0 \tag{2.4}
\end{equation*}
$$

LP introduce five assumptions, all with good experimental basis (LP, II pp574-578). The first four of these are:

A0 (impatience). $\varphi:[0, \infty) \longrightarrow(0, \infty)$ is strictly decreasing (in an arbitrarily small interval).

A1 (gain-loss asymmetry). If $0<x<y$ and $v(x)=v(y) \varphi(t)$, then $v(-x)>$ $v(-y) \varphi(t)$.

A2 (the magnitude effect). If $0<x<y, v(x)=v(y) \varphi(t)$ and $a>1$, then $v(a x)<$ $v(a y) \varphi(t)$.

A3 (common difference effect). If $0<x<y, v(x)=v(y) \varphi(t)$ and $s>0$, then $v(x) \varphi(s)<v(y) \varphi(s+t)$.

A0 is only implicit in LP, however, it is essential for Theorem 3 (below). In this note, we make no use of their fifth assumption: delay-speedup asymmetry (LP, p578).

To derive the LP formula for generalized hyperbolic discounting (LP (15), p580), a specialized form of A3 is needed. We adopt:

A3a (common difference effect with quadratic delay). If $0<x<y, v(x)=v(y) \varphi(t)$ and $s>0$, then $v(x) \varphi(s)=v(y) \varphi(s+t+\alpha s t), \alpha>0$.

Note that $\mathrm{A} 3 \mathrm{a} \Longrightarrow \mathrm{A} 3$ and that $\alpha=0$ gives exponential discounting.
Three theorems follow.
Theorem 1 : A1 implies that the value function is more elastic for losses than for gains: $x>0 \Longrightarrow \epsilon_{v}(-x)>\epsilon_{v}(x)$.

Theorem 2 : A2 implies that the value function is less elastic for outcomes of larger absolute magnitude:

$$
(0<x<y \text { or } y<x<0) \longrightarrow \epsilon_{v}(x)>\epsilon_{v}(y) .
$$

Theorem 3 : A0 and A3a imply that the discount factor is a generalized hyperbola: $\varphi(t)=(1+\alpha t)^{-\frac{\beta}{\alpha}}, \beta>0, t \geq 0(\alpha$ is as in A3a).

Corollary 1 : A0 and A3a imply that $-\frac{\dot{\varphi}}{\varphi}=\frac{\beta}{1+\alpha t}$. Hence, the discount rate is positive and declining.

We discuss the errors in LP more fully in the Appendix. For the moment we indicate the main errors. Theorem 2 is stated incorrectly in LP and their proof contains an error (LP pp583-584, V3 p584). The generalized hyperbola given in Theorem 3 does not follow from the assumptions made in LP. Our A3a is a corrected version of the one that appears in LP (LP (11), p579) and enables us to derive the required generalized hyperbola. There are further errors in an example of intertemporal consumption-savings choice. We correct and sharpen the LP results. We also give a more direct, simpler and correct ${ }^{5}$ proof of Theorem 3. In Section 3 we give the correct proofs.

3. Proofs

Proof of Theorem 1: See LP, V2 p583.
Proof of Theorem 2: Let

$$
\begin{equation*}
0<x<y \tag{3.1}
\end{equation*}
$$

Assume a consumer is indifferent between receiving the increment x now and receiving the increment y, t-periods from now. Then, letting v be the value function and φ the discount factor, we get

$$
\begin{equation*}
v(x)=v(y) \varphi(t) \tag{3.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
a>1 \tag{3.3}
\end{equation*}
$$

[^2]then the magnitude effect, A2, predicts that
\[

$$
\begin{equation*}
v(a x)<v(a y) \varphi(t) \tag{3.4}
\end{equation*}
$$

\]

(3.2) gives

$$
\begin{equation*}
\frac{v(x)}{v(y)}=\varphi(t) \tag{3.5}
\end{equation*}
$$

Since y, a are positive, it follows that $a y$, and hence, $v(a y)$ are also positive. Hence, (3.4) gives

$$
\begin{equation*}
\frac{v(a x)}{v(a y)}<\varphi(t) \tag{3.6}
\end{equation*}
$$

(3.5) and (3.6) give

$$
\begin{equation*}
\frac{v(x)}{v(y)}>\frac{v(a x)}{v(a y)}, 0<x<y ; a>1 \tag{3.7}
\end{equation*}
$$

It follows from (3.7) that the value function, v, is subproportional ${ }^{6}$. It also follows that $\ln (v)$ is a concave function of $\ln (x)$ (for $x>0)$ and that the derivative of $\ln (v)$ with respect to $\ln (x)$ is decreasing. It then follows that the value function is less elastic for outcomes that are larger in absolute magnitude:

$$
(0<x<y \text { or } y<x<0) \longrightarrow \epsilon_{v}(x)>\epsilon_{v}(y)
$$

Proof of Theorem 3: Let

$$
\begin{equation*}
0<x<y \tag{3.8}
\end{equation*}
$$

Assume a consumer is indifferent between receiving the increment x now and receiving the increment y, t-periods from now. Then, letting v be the value function and φ the discount factor, we get

$$
\begin{equation*}
v(x)=v(y) \varphi(t) \tag{3.9}
\end{equation*}
$$

Multiply (3.9) by $\varphi(s)$, where $s>0$, to get

$$
\begin{equation*}
v(x) \varphi(s)=v(y) \varphi(s) \varphi(t) \tag{3.10}
\end{equation*}
$$

A3a, (3.8) and (3.9) give

$$
\begin{equation*}
v(x) \varphi(s)=v(y) \varphi(s+t+\alpha s t), \alpha>0 \tag{3.11}
\end{equation*}
$$

(3.10) and (3.11) give

$$
\begin{equation*}
\varphi(s+t+\alpha s t)=\varphi(s) \varphi(t) \tag{3.12}
\end{equation*}
$$

[^3]Let

$$
\begin{equation*}
X=1+\alpha s, Y=1+\alpha t \tag{3.13}
\end{equation*}
$$

Hence

$$
\begin{equation*}
s=\frac{X-1}{\alpha}, \quad t=\frac{Y-1}{\alpha}, \quad s+t+\alpha s t=\frac{X Y-1}{\alpha} \tag{3.14}
\end{equation*}
$$

Define the function $G:[1, \infty) \longrightarrow(0, \infty)$ by

$$
\begin{equation*}
G(X)=\varphi\left(\frac{X-1}{\alpha}\right) \tag{3.15}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
G(Y)=\varphi\left(\frac{Y-1}{\alpha}\right), G(X Y)=\varphi\left(\frac{X Y-1}{\alpha}\right) \tag{3.16}
\end{equation*}
$$

From (3.12),(3.14),(3.15),(3.16)

$$
\left.\begin{array}{rl}
G(X Y)=\varphi\left(\frac{X Y-1}{\alpha}\right)=\varphi(s+t+ & \alpha s t)
\end{array}\right)=\varphi(s) \varphi(t), ~=\varphi\left(\frac{X-1}{\alpha}\right) \varphi\left(\frac{Y-1}{\alpha}\right)=G(X) G(Y)
$$

Define the function $h:[0, \infty) \rightarrow(0, \infty)$ by

$$
\begin{equation*}
h(x)=G\left(e^{x}\right), x \geq 0 \tag{3.18}
\end{equation*}
$$

Hence, and in the light of A0, h satisfies:
$h:[0, \infty) \rightarrow(0, \infty)$ is strictly decreasing (in an arbitrarily small interval)

$$
\begin{equation*}
\text { and } h(x+y)=h(x) h(y) \tag{3.19}
\end{equation*}
$$

As is well known, see for example Corollary 1.4.11 in Eichhorn (1978), the solution of (3.19) is the exponential function

$$
\begin{equation*}
h(x)=e^{c x}, x \geq 0, c<0 \tag{3.20}
\end{equation*}
$$

(3.13), (3.15), (3.18), (3.20) give

$$
\begin{equation*}
\varphi(t)=(1+\alpha t)^{c} \tag{3.21}
\end{equation*}
$$

Let

$$
\begin{equation*}
\beta=-\alpha c \tag{3.22}
\end{equation*}
$$

(3.21), (3.22) give

$$
\begin{equation*}
\varphi(t)=(1+\alpha t)^{-\frac{\beta}{\alpha}}, \alpha, \beta>0, t \geq 0 \tag{3.23}
\end{equation*}
$$

where $\beta>0$ because $\alpha>0$ and $c<0$.

4. Optimal consumption plans

LP provide a rich set of applications. However, one of them needs correction (their application 5 pp591-593). The corrected version, given in this section, has sharper conclusions.

Consider a consumer with an exogenously given stream of real income whose present value at time 0 is I. Let the real interest rate, r, be positive and constant. Let the consumer's reference real consumption, \bar{c}, be a non-negative constant. At time 0 the consumer chooses her consumption plan $c(t)=c^{*}(t)$ so as to maximize $\int_{t=0}^{T} v(c(t)-\bar{c}) \varphi(t) d t$ subject to $\int_{t=0}^{T} c(t) e^{-r t} d t \leq I$. Suppose that the consumer is able to commit to this (generally time-inconsistent) plan. Following Kahneman and Tversky (1979), assume that the consumer's value function, v, is strictly concave for gains but strictly convex for losses, i.e., for $x>0, v^{\prime \prime}(x)<0, v^{\prime \prime}(-x)>0$.

4.1. The consumer is always in the domain of gains: $c(t)>\bar{c}$

Here the value function is strictly concave. The problem can be transformed into a standard control problem as follows. Let $y(t)$ be the exogenously given stream of real income and $s(t)$ the stock of saving at time t. Then $c^{*}(t)$ is the solution to the following problem

$$
\begin{gathered}
\text { Maximize } \int_{t=0}^{T} v(c(t)-\bar{c}) \varphi(t) d t \\
\text { subject to } \dot{s}=y(t)+r s-c ; s(0)=s(T)=0
\end{gathered}
$$

where the dot represents the time derivative. The Hamiltonian is

$$
H(c, s, \lambda, t)=v(c-\bar{c}) \varphi(t)+\lambda(y(t)+r s-c)
$$

where c is the control variable, s is the state variable and λ is the costate variable. $v \varphi(t)$ is strictly concave in c (hence jointly in c and s, since s does not occur in $v \varphi(t)$) and \dot{s} is linear in s and c. Hence, Hamilton's equations are both necessary and sufficient for a global optimum (Kamien and Schwartz, 1981, II.3). Solving Hamilton's equations: $\frac{\partial H}{\partial c}=0, \dot{\lambda}=-\frac{\partial H}{\partial s}, \dot{s}=y(t)+r s-c$, gives

$$
\begin{equation*}
\stackrel{\bullet}{c}^{*}=\left[r-\left(-\frac{\dot{\varphi}}{\varphi}\right)\right] \frac{v^{\prime}}{\left(-v^{\prime \prime}\right)} \tag{4.1}
\end{equation*}
$$

(4.1) gives:
(i) If $r(0) \geq\left(-\frac{\dot{\varphi}}{\varphi}\right)_{t=0}$ then, since $-\frac{\dot{\varphi}}{\varphi}$ is declining (by Corollary 1), we get $r>-\frac{\dot{\varphi}}{\varphi}$ for all $t>0$. Hence, $\stackrel{\rightharpoonup}{c}^{*}>0$ for all $t>0$.
(ii) Suppose $r(0)<\left(-\frac{\dot{\varphi}}{\varphi}\right)_{t=0}$. Here we have two sub-cases:
(iia) $r<-\frac{\dot{\varphi}}{\varphi}$ for all $t<T$. Then $\stackrel{\bullet}{c}^{*}<0$ for all $t<T$.
(iib) $r\left(t_{0}\right)=\left(-\frac{\dot{\varphi}}{\varphi}\right)_{t=t_{0}}$ for some $t_{0}, 0<t_{0}<T$. Then $\stackrel{\bullet}{c}^{*}<0$ for $t<t_{0}$ and $\stackrel{\bullet}{c}^{*}>0$ for $t>t_{0}$.
4.2. The consumer is always in the domain of losses: $c(t)<\bar{c}$

Here the value function is strictly convex. Hence, it is optimal for the consumer to consume all her income at one point in time. This point has to be at the upper boundary, $t=T$. There are two reasons for this. First, the value of real life-time income at time t is $I e^{r t}$, which is increasing with time. Hence, postponing consumption as long as possible pushes consumption closer to reference consumption and, hence, reduces loss. Second, because of discounting, postponing consumption reduces this loss even further.

Here is a formal derivation. If the consumer consumes all her income at time t, its present value in utility terms will be $u(t)=v\left(I e^{r t}-\bar{c}\right) \varphi(t)$. The consumer will postpone consumption as long as $\dot{u} \equiv \dot{\varphi} v+\varphi r I e^{r t} v^{\prime}>0$. But this quantity is always positive, since $\dot{\varphi}<0, v<0, \varphi>0, r>0, I>0, e^{r t}>0, v^{\prime}>0$. It follows that the consumer will consume all her income at the last possible moment, i.e., at $t=T$.

5. Conclusions

Lowenstein and Prelec (1992) is a foundational paper in economics. To the best of our knowledge, it provides the first and only available theoretical framework to explain several important anomalies to the DU model. Furthermore, it provides an axiomatic derivation of the generalized hyperbolic discounting formula that forms the basis of much recent research in temporal choice.

We correct several errors in the paper, some with potentially serious implications. We also provide direct and simple proofs of some their most important results and sharpen others.

6. Appendix : Errors in Loewenstein and Prelec (1992)

Error 1. LP state Theorem 2 incorrectly. What they state (LP, V3 p584) is equivalent to:
Theorem 2: A2 implies that the value function is more elastic for outcomes of larger absolute magnitude:
$(0<x<y$ or $y<x<0) \longrightarrow \epsilon_{v}(x)<\epsilon_{v}(y)$.(more should be less and the last $<$ should be $>$).

In the course of their proof, LP derive, incorrectly, the formula (LP (18) p583) :

$$
\begin{equation*}
\frac{v(x)}{v(y)}<\frac{v(a x)}{v(a y)}, 0<x<y ; a>1(\text { the first }<\text { should be }>) \tag{6.1}
\end{equation*}
$$

They then conclude that the value function is subproportional. This is correct, but it follows from (3.7), not (6.1). They follow this with the two incorrect statements that $\ln (v)$ is a convex function of $\ln (x)$ (for $x>0)$ and that the derivative of $\ln (v)$ with respect to $\ln (x)$ is increasing. Of course, what they should have said is that $\ln (v)$ is a concave function of $\ln (x)$ (for $x>0$) and that the derivative of $\ln (v)$ with respect to $\ln (x)$ is decreasing.
Error 2. To derive the formula for generalized hyperbolic discounting, a specialized form of A3 is needed. What LP adopt (LP, (11) p579) is equivalent to:

A3b (common difference effect with linear delay). If $0<x<y, v(x)=v(y) \varphi(t)$ and $s>0$, then $v(x) \varphi(s)=v(y) \varphi(k s+t)$, where $k=k(x, y)$ is a function of x and y but not of s or t. (Note that $\mathbf{A 3 b} \Longrightarrow \mathbf{A 3}$).

We will now show that generalized hyperbolic discounting implies that $k=1+\alpha t$. Hence, k depends on t but is independent of x and y.

Let

$$
\begin{equation*}
0<x<y \tag{6.2}
\end{equation*}
$$

Assume that a consumer is indifferent between receiving the increment x now and receiving the increment y, t-periods from now. Then, letting v be the value function and φ the discount factor, we get equation (10) of LP :

$$
\begin{equation*}
v(x)=v(y) \varphi(t) \tag{6.3}
\end{equation*}
$$

The common difference effect, A3, then implies that the consumer, now, strictly prefers y, $(s+t)$-periods ahead to x, s-period ahead. LP say (p579 just above (11)) "We now derive a ... general functional form, by postulating that the delay that compensates for the larger outcome $[y]$ is a linear function $[t+k s]$ of the time $[s]$ to the smaller, earlier outcome $[x]$ (holding fixed the two outcomes x and y)". Hence, their equation (11) :

$$
\begin{equation*}
v(x)=v(y) \varphi(t) \Rightarrow v(x) \varphi(s)=v(y) \varphi(t+k s) \tag{6.4}
\end{equation*}
$$

LP continue: "for some constant k, which, of course depends on x and y ".
From the above equation they prove that the discount factor φ must be given by their equation (15), reproduced immediately below.

$$
\begin{equation*}
\varphi(t)=(1+\alpha t)^{-\frac{\beta}{\alpha}}, \alpha, \beta>0 \tag{6.5}
\end{equation*}
$$

We shall show that if the discount factor, φ, is given by their equation (15) ((6.5), above), then,

$$
\begin{equation*}
k=1+\alpha t \tag{6.6}
\end{equation*}
$$

(From (6.6) it is clear that k is a function of t but not of x or y.)
Multiplying (6.3) by $\varphi(s)$ gives

$$
\begin{equation*}
v(x) \varphi(s)=v(y) \varphi(s) \varphi(t) \tag{6.7}
\end{equation*}
$$

Comparing (6.4) and (6.7), we see that

$$
\begin{equation*}
\varphi(t+k s)=\varphi(s) \varphi(t) \tag{6.8}
\end{equation*}
$$

From (6.5) and (6.8), we get

$$
\begin{equation*}
(1+\alpha(t+k s))^{-\frac{\beta}{\alpha}}=(1+\alpha s)^{-\frac{\beta}{\alpha}}(1+\alpha t)^{-\frac{\beta}{\alpha}} \tag{6.9}
\end{equation*}
$$

Successive simplifications of (6.9) give

$$
\begin{align*}
(1+\alpha t+\alpha k s)^{-\frac{\beta}{\alpha}} & =[(1+\alpha s)(1+\alpha t)]^{-\frac{\beta}{\alpha}} \tag{6.10}\\
(1+\alpha t+\alpha k s)^{-\frac{\beta}{\alpha}} & =\left[1+\alpha s+\alpha t+\alpha^{2} s t\right]^{-\frac{\beta}{\alpha}} \tag{6.11}\\
1+\alpha t+\alpha k s & =1+\alpha s+\alpha t+\alpha^{2} s t \tag{6.12}\\
\alpha k s & =\alpha s+\alpha^{2} s t \tag{6.13}\\
k & =1+\alpha t \tag{6.14}
\end{align*}
$$

It follows that, to get their equation (15) ((6.5) above) k must be given by (6.14). Hence, their equation (11) ((6.4) above) has to be written as

$$
\begin{equation*}
v(x)=v(y) \varphi(t) \Rightarrow v(x) \varphi(s)=v(y) \varphi(s+t+\alpha s t) \tag{6.15}
\end{equation*}
$$

Error 3. (The optimal consumption plan when the consumer is always in the domain of gains) LP's equation (23) p592 is incorrect. What they state is equivalent to:

$$
\begin{equation*}
\stackrel{\bullet}{c}^{*}=r-\left(-\frac{\dot{\varphi}}{\varphi}\right) \frac{v^{\prime}}{\left(-v^{\prime \prime}\right)} \tag{6.16}
\end{equation*}
$$

The correct equation is given by (4.1) above. However, their conclusions are correct but follow from (4.1), not (6.16).
Error 4. LP derive the incorrect equation (LP (24) p592):
The consumer will postpone consumption as long as $r<\frac{-\dot{\varphi} / \varphi}{\epsilon_{v}\left(I e^{r t}\right)}$

Furthermore they claim, incorrectly, that $\epsilon_{v}\left(I e^{r t}\right)$ is increasing. In fact, $\epsilon_{v}\left(I e^{r t}\right)$ is decreasing (see Theorem 2). They merely conclude that, in the domain of losses, consumption will be concentrated at a single point in time, which could be anywhere in the interval $[0, T]$. The correct form of (6.17) is:

$$
\begin{equation*}
\text { The consumer will postpone consumption as long as } r>\frac{-\dot{\varphi} / \varphi}{\frac{I e^{r t}}{I e^{r t}-\bar{c}} \epsilon_{v}\left(I e^{r t}-\bar{c}\right)} \tag{6.18}
\end{equation*}
$$

Since the right hand side of (6.18) is negative, the inequality in (6.18) always holds. Hence, we get the sharper result that the consumer will consume all her income at the last possible moment, i.e., at $t=T$. However, we gave a simpler proof of this result in section 4.2, above.

References

[1] Eichhorn W. (1978). Functional Equations in Economics. Addison-Wesley.
[2] Frederick, S., Loewenstein, G., \& O'Donoghue, T. (2002) "Time Discounting and Time Preference: A Critical Review." Journal of Economic Literature, 40, 351-401.
[3] Kahneman D. and Tversky A. (1979) "Prospect Theory : An Analysis of Decision Under Risk" Econometrica, 47, 263-291.
[4] Kahneman D. and Tversky A. (2000) Choices, Values, and Frames (Cambridge University Press: Cambridge).
[5] Laibson, D. (1997) "Golden Eggs and Hyperbolic Discounting" Quarterly Journal of Economics, 112, 443-477.
[6] Loewenstein G. and Prelec D. (1992) "Anomalies in Intertemporal Choice : Evidence and an Interpretation." The Quarterly Journal of Economics, 107, 573-597.
[7] Phelps, E.S. and Robert Pollak. (1968) "On Second-Best National Saving and GameEquilibrium Growth." Review of Economic Studies, 35, 185-199.
[8] Thaler (1981) "Some Empirical Evidence on Dynamic Consistency" Economic Letters, 8, 201-207.
[9] Kamien M.I. and Schwartz N.L. (1981). Dynamic Optimization (North-Holland: New York).

[^0]: *Department of Economics, University of Leicester, University Road, Leicester. LE1 7RH, UK. Phone: +44-116-2522898. Fax: $+44-116-2522908$. E-mail: aa10@le.ac.uk.
 ${ }^{\dagger}$ Department of Economics, University of Leicester, University Road, Leicester. LE1 7RH, UK. Phone: +44-116-2522086. Fax: +44-116-2522908. E-mail: Sanjit.Dhami@le.ac.uk.

[^1]: ${ }^{1}$ Time inconsistency problems can lead individuals to make suboptimal decisions about, for instance, savings, pensions, retirement etc. The existence of madatory pension plans, retirement age, compulsory insurance of several sorts etc. are possible institutional responses to these time inconsistency problems; see, for instance, Frederick, Loewenstein and O'Donoghue (2002).
 ${ }^{2}$ It is fair to characterize LP's work as seminal in the behavioral economics literature. This is reflected in the citations count. Our check of the social sciences citations database revealed 134 citations of their paper.
 ${ }^{3}$ The simpler quasi-hyperbolic formulation, due to Phelps and Pollack (1968) and later popularized by Laibson (1997) often tends to be used in applied theoretical work on account of its tractability. However, LP's formulation is the most general form of the hyperbolic discounting function.
 ${ }^{4}$ We have checked a more recent reprint of the LP article in Kahneman and Tversky (2000) but the same errors remain.

[^2]: ${ }^{5}$ In the Appedix we show that LP's generalised hyperbolic discounting formula contradicts their specialized form of A3. Hence, it cannot follow from it.

[^3]: ${ }^{6}$ See Kahnman and Tversky (1979, p282) for the definition of subproportionality. Note that our, and LP's, $a>1$ corresponds to their $0<r<1$.

