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1 Introduction

This manual will introduce you to SCEP which is a computer software system for

econometric estimation of stochastic coefficients models.1 This program searches

for a stable solution and uses an algorithm that is both numerically efficient and

stable.2 A set of questions which you can answer using this program is given in

Appendix A to this manual.

Section 2 explains what a stochastic coefficients model is and how it differs from

a regression model. Section 3 explains how to set up SCEP files. Section 4 describes

the command you need to issue to execute SCEP. Section 5 describes the different

levels of output that can be produced by constructing a stochastic coefficients model

in SCEP. Section 6 presents the flow diagram for SCEP. An example is given in

Section 7.

2 Statement of the Problem

Given a set of observations, a random coefficient model can be estimated to fit this

set of observation. By one observation we shall mean a set of numerical values of the

form {yt, x1t, . . . , xKt, z1t, . . . , zpt}, where t is an index sequencing the observations.

The first value yt is a value the dependent variable ỹ of the model, the next sequence

of x-values are data for the independent variables {x̃j , j = 1, 2, . . . ,K} of the model,

and the final z-values are the for the concomitant variables {z̃l, l = 1, 2, . . . , p} of

the model.

Two methods for constructing a random coefficient model are available in SCEP.

If the number of observations does not exceed 250, a model can be calculated directly

and efficiently from the entire set of observations. We call such a model a Single-
1This model was developed by Swamy, P.A.V.B. and P.A. Tinsley (1980), “Linear Prediction

and Estimation Methods for Regression Moels with Stationary Stochastic Coefficients,” Journal of
Econometrics, 12, 103-142.

2The basic set of algebraic formulas that are coded in SCEP for a single group are given in
Chang, I-Lok, C. Hallahan and P.A.V.B. Swamy (1992), “Efficient Computation of Stochastic
Coeffcients Models,” in: H.M. Amman, D.A. Belsley and L.F. Pau, eds., Computational Economics
and Econometrics, Kluwer Academic Publishers, Boston, 43-53.
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Group Random Coeefficient Model (SGRCM). If the data set is large, with the

number of observations exceeding 250, sometimes as many as 15,000, then the data

set must be partitioned into groups so that computation will be possible when using

a desktop computer with no more than 64 megabytes of RAM. The size of each

group of data is to be kept within the upper limit of 250 observations. SCEP

executes two passes of calculation through this partitioned data set. In the first

pass, a local random coefficient model is estimated for each group. The second

pass then follows by combining the local models to obtain a global model for the

entire data set. We call this model a Multiple-Group Random Coefficient Model

(MGRCM). Computer hardware is not necessarily the only factor in choosing the

mehtod of MGRCM. A data set sometimes can yield more statistical information

if it is partitioned into groups and MGRCM is used to give insight into local and

global statistics.

2.1 Single-Group Random Coefficient Model

In this model, SCEP permits you to estimate the following equation:

ỹt =
∑K

j=1 xjtβ̃jt = x′
tβ̃t, t = 1, 2, . . . , T,

(1× 1) (1×K)(K × 1)
(1)

where ỹt is a dependent variable, x′
t = (x1t, x2t, . . . , xKt) is a vector of independent

variables, and β̃t = (β̃1t, β̃2t, . . . , β̃Kt)′ is a vector of coefficients. Here and in the

sequel the symbols with a curl over them represent random variables and the same

symbols without a curl represent the values of those random variables. For example,

ỹt is a random variable and yt is its value.

We call the equation ỹt =
∑K

j=1 xjtβj + ũt a fixed-β regression. Equation (1)

differs from this regression in that all the coefficients are assumed to be stochastic.

Note that in the fixed-β regression, if you set x1t = 1 for all t, then β1 is the

intercept which can be distinguished from the disturbance ũt, provided the latter

has mean zero. This is not the case with equation (1). If you set x1t = 1 for all t in

equation (1), then you cannot identify ũt and a stochastic intercept term separately
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and should combine both specifications into a single term, β̃1t.

Quite possibly, each coefficient of equation (1) is the sum of two parts, a direct

effect of an explanatory variable on ỹt, and an indirect or proxy effect (or omitted

variables bias) due to the fact that the explanatory variable affects or proxies for

omitted variables and the omitted variables, in turn, affect ỹt.3 You can separate

these two effects by assuming that β̃t satisfies the equation

β̃t = Πzt + Lε̃t,
(K × 1) (K × p)(p× 1) (K ×m)(m× 1)

(2)

where the elements of zt = (z1t, z2t, . . . , zpt)′ with z1t ≡ 1 are called concomitants

and L is a known matrix. The conditions under which the concomitants separate

proxy effects from direct effects are given in Swamy et al.4

The matrix L is completely in your control and you can use it to impose a priori

restrictions on the covariance matrix of ε̃t. For example, if you set the jth row

of L equal to a null vector, then the jth element of β̃t becomes an exact linear

deterministic function of zt. Alternatively, if you set L = IK , an identity matrix

of order K, then every coefficient of equation (1) is partly deterministic and partly

random. If you tell SCEP to use the default value for L, then SCEP sets

L = IK .

The elements of Π, L, and ε̃t may be depicted as

Π =


π11 π12 · · · π1p

π21 π22 · · · π2p
...

...
...

πK1 πK2 · · · πKp

 ,

L =


l11 l12 · · · l1m

l21 l22 · · · l2m
...

...
...

lK1 lK2 · · · lKm

 , (3)

3For additional discussion of these effects, see Appendix A to this manual and Swamy, P.A.V.B.,
J.S. Mehta, R.N. Singamsetti (1992), “Circumstances in Which Different Criteria of Estimation Can
be Applied to Estimate Policy Effects,” Discussion Paper, Federal Reserve Board, Washington, DC
20551.

4Swamy, Mehta and Singamsetti, op. cit.
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and

ε̃t =


ε̃1t

ε̃2t
...

ε̃mt

 .

Equation (1) may be neither too broad nor too narrow if you assume that ε̃t

satisfies the equation

ε̃t = Φε̃t−1 + ãt,
(m× 1) (m×m)(m× 1) (m× 1)

(4)

where Eãt = 0 for all t, Eãtã′s =


σ2

a∆a if t = s
(m×m)
0 if t 6= s,

Φ =


φ11 φ12 · · · φ1m

φ21 φ22 · · · φ2m
...

...
...

φm1 φm2 · · · φmm

 , ãt =


ã1t

ã2t
...

ãmt

 ,

and

∆a =


δ11 δ12 · · · δ1m

δ21 δ22 · · · δ2m
...

...
...

δm1 δm2 · · · δmm

 .

The eigenvalues of Φ which are either real or complex are restricted to be less than

1 in absolute value. A rationale for this restriction is given in Swamy et al.5 and an

important generalization of assumption (3) is given in Swamy and Tinsley.6

If you think that equations (2) and (3) are too broad relative to your data set,

then you can restrict either Φ or ∆a or both to be diagonal.7 Or you can impose
5Swamy, Mehta and Singamsetti, op. cit.
6Swamy and Tinsley, op. cit., p. 106.
7We will explain later how to impose these restrictions.
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the following linear restrictions other than the diagonality restrictions:

Re
Πvec(Π) = re

Π,
(`e

Π ×Kp)(Kp× 1) (`e
Π × 1)

Ri
Πvec(Π) ≥ ri

Π,
(`i

Π ×Kp)(Kp× 1) (`i
Π × 1)

RΦvec(Φ) = rΦ,
(`Φ ×m2)(m2 × 1) (`Φ × 1)

R∆avec(Λa) = r∆a ,
(`∆a × m̄)(m̄× 1) (`∆a × 1)

(5)

where for any matrix P , vec(P ) denotes its column stack, Λa is a triangular ma-

trix consisting of only the diagonal and below diagonal elements of ∆a, and m̄ =

m(m + 1)/2. For example, vec(Π) = [(π11, π21, . . . , πK1), (π12, π22, . . . , πK2)′, . . . ,

(π1p, π2p, . . . , πKp)]′ and vec(Λa) = [(δ11, δ21, . . . , δm1), (δ22, δ32, . . . , δm2), . . . , (δmm)]′.

Thus, you can impose three types of restrictions: (i) some elements of β̃t are the

exact linear functions of zt, (ii) Φ = 0 or either Φ or ∆a or both are diagonal, and

(iii) some linear combinations of the elements of Π, Φ, and ∆a are equal to known

values.

Examples of (4): The matrix Π is symmetric; some columns of Φ and ∆a are

null.

If xt = zt, then it is correct to constrain Π to be a symmetric matrix. To show

this, substitute the right-hand side of equation (2) for β̃t in equation (1). This gives

ỹt = x′
tΠzt + x′

tLε̃t. (6)

You can impose the restrictions that all the elements of ε̃t except the first element

are degenerate at zero using equation (4). You can also impose the constraints that

L = IK and xt = zt. When xt = zt, the restriction that the matrix Π be symmetric

is not a serious one, as is shown in the literature. An example of an equation which

satisfies all these restrictions is a translog cost function. However, translog and

other flexible functional forms may give better approximations to the true functions
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if all the elements of ε̃t are assumed to be nondegenerate and SCEP permits you to

estimate them under such an assumption.

Indeed, equation (4) can depict all the restrictions under which equations (1)-

(3) reduce to the fixed-β regression of ỹt on xt. These and other restrictions are

depicted in Appendix B to this manual.

Since equations (1)-(3) are more general than their fixed-β version, they can be

justified on the grounds that general cases can be true even when the particular

cases are false. In any case, it is a good practice to consider equations (1)-(3) and

their special cases and compare the results.

Note that if the vector zt is null, then the coefficient vector of equation (1) is

pure noise with mean zero. For this reason, you may not want to assume that zt is a

null vector and p is equal to zero. In situations, where the relevant nonconstant zjt

are unknown, you can set z1t = 1 and zjt = 0 with j 6= 1 for all t, p = 1 and L = IK ,

in which case equation (2) becomes β̃t = π1 + ε̃t, where π1 is the first column of

Π. You can use this value for zt by telling SCEP to use the default value

for zt.

You can also set Φ = 0 if you are estimating equation (1) from cross-section

data.

However, you cannot set Φ = Im because of the restriction on the eigenvalues of

Φ.8

When equations (3) and (5) hold, SCEP uses the appropriate formulas to esti-

mate the covariance matrices of the weighted and unweighted least squares estima-

tors of Π. These formulas are presented in Appendix C to this manual.

A stochastic coefficient approach to forecasting the values of ỹt is described in

Appendix D to this manual. It accounts for more forecast error sources than its

fixed-β counterpart.

PARAMETERS TO BE ESTIMATED
8The value Im for Φ has serious econometric implications which are discussed in Case X of

Appendix B to this manual.
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Π, Φ, ∆a, σ2
a

SCEP uses an iterative method to estimate these parameters and, therefore,

needs some initial values for Φ and ∆a. If you do not know what values to use as

the initial values for these parameters, then SCEP lets you use the default values

Φ = 0 and ∆a = Im as the initial values.

STABILIZATION CONDITIONS

The sequence of parameter estimates generated by SCEP may stabilize at a value

because

(1) Φ is estimated subject to the restriction that its eigenvalues are less than or

equal to an upper bound EVLTOL (assigned by you, e.g., 0.995) in absolute value

and

(2) the matrix ∆a is estimated subject to the restrictions that it is nonnegative

definite and its Frobenius norm ‖ ∆a ‖=
√∑m

i=1

∑m
j=1 |δij |2 is less than or equal

to the Frobenius norm ‖ ∆̂a ‖, where ∆̂a is a nonnegative definite estimate of ∆a

obtained in iteration 1.

The upper bound on the eigenvalues of Φ in condition (1) above can be changed

by assigning a positive real value that is less than 1.0 to the parameter EVLTOL in

the data file PARAMTR. Sometimes changing EVLTOL from 0.995 to 0.99 can lead

to a more stable overall approximation of the model. The diagonality restriction

on Φ can sometimes provided more stability in the calculation, unless the elements

of ∆̂a get very small, in which case certain parameters used in the estimation of Φ

need to be changed to increase the likelihood of stabilization. If you need help in

making these changes, you can contact

I-Lok Chang

Department of Mathematics and Statistics

Gray Hall, American University

4400 Massachusetts Avenue NW
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Washington, DC 20016-8001, U.S.A.

Home Phone Number: 301-530-5865

Work Phone Number: 202-885-3132.

VALUES TO BE FORECASTED

εt, βt, and yt, for t = T + 1, T + 2, . . . , T + F (7)

MODEL FITTING AND VALIDATION

SCEP permits you to do the following:

• Select a subset of the observations on ỹt, x̃t and z̃t to be used in estimating

model (5) and its special cases.

• Hold out the remaining subset of the observations on these variables for these

models’ validation.

• Forecast the latter values of ỹt with the fitted models, and compare the actuals

with the forecasts.

2.2 Multiple-Group Random Coefficient Model

If the entire set of observations is partitioned into G groups, the groups are identified

with an integer index g, where 1 ≤ g ≤ G. The data and the computed parameters

for the different groups are now distinguished with the index g.

The global model (pooled model) is given by the following set of equations

ỹtg =
K∑

j=1

xjtgβ̃jtg = x′tgβ̃tg
(g = 1, 2, . . . , G; t = 1, 2, . . . , Tg) , (8)

where x1tg = 1. The coefficients β̃jtg is given the following decomposition

β̃jtg = βj +
p−1∑
l=1

πjlz̃ltg + µ̃jg +
M∑
i=1

ljiε̂itg , (9)
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where L = [lji] is a K × m matrix in (3), now serving as a global weighting

matrix. The indices in (9) vary over the range g = 1, 2, . . . , G, t = 1, 2, . . . , Tg,

j = 1, 2, . . . ,K, i = 1, 2, . . . ,m. In matrix forms, (9) can be expressed as

β̃
tg

= β + Π̂ z̃tg + µ̃
g

+ L ε̃tg ,

K × 1 K × 1 K × (p− 1) p− 1)× 1 K × 1 K ×m m× 1

β̃
tg

=



β̃1tg

β̃2tg

...

β̃Ktg


=



β1

β2

...

βK


+



∑p−1
i=1 π1iz̃itg

∑p−1
i=1 π2iz̃itg

...

∑p−1
i=1 πKiz̃itg


+



µ̃1g

µ̃2g

...

µ̃Kg


+



∑m
i=1 l1iε̃itg∑m
i=1 l2iε̃itg

...

∑m
i=1 lKiε̃itg


.

Stochastic assumptions on ε̃tg and µ̃
g

are given by the equations

ε̃tg = Φg ε̃(t−1)g + ãtg ,

where

E(ãtg) = 0 , E(µ̃
g
) = 0 , and E(µ̃

g
ε̃tg) = 0

for all t and g, and

E(ãtgã
′
t′g′) =

{
σ2

g∆ag if g = g′ and t = t′

0 if g 6= g′ or t 6= t′
,

E(µ̃
g
µ̃′

g′
) =

{
σ2

g∆ if g = g′

0 if g 6= g′
.

The matrices Φg, ∆ag, and ∆ have the dimensions

Φg ∆ag ∆
m×m m×m K ×K

.

The eigenvalues of each matrix Φg have moduli less than 1. The matrices ∆ag and

∆ are positive semi-definite matrices.
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In the first pass of the calculation, linear constraints can be specified for each

local model. The specification is global in the sense that the constraints in (5) are

specified only once, to be applied identically to each group in the calculation of its

local model. At this point, no corresponding linear constraints can be imposed on

the global model (8)calculated in the second pass.

Forecasting within each group assumes the same format as (7). The upper bound

T is now Tg, and the upperbound F is now Fg. For each group, forecasts are made

relative to its local model, and then recomputed relative to the final global model.

3 Setting Up Data Files for SCEP

SCEP is a FORTRAN program that is currently running on Intel Pentium desktop

computers under Windows 2000, or Windows XP. To run the program, place all the

necessary data files and the executable modulein the same directory on the hard

disk. Then enter the name of the executable module to run the program. The

output of the program is saved on two files SCEPOUT and SCEPLOG in the same

directory.
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INPUTS REQUIRED BY SCEP

Data required to construct
a single-group model (with
G = 1) or a multiple-group
model(with G > 1):

ytg,xtg, ztg, g = 1, 2, . . . , G, t = 1, 2, . . .,
. . . Tg, L, initial values of Φg and ∆ag, the
values of Tg,K, p, and m. (Repetition:
IK is the default value of L, the default
values of ztg are: for all t and g, zjtg = 1
if j = 1 and = 0 if j 6= 1. The estimation
method coded in SCEP is iterative and
the values Φg = 0 and ∆ag = Im are
taken as the default initial values.)

Data required to compute
the out-of-sample values of
ỹtg:

xtg, ztg, g = 1, 2, . . . , G, t = Tg +1, Tg +2,
. . . , Tg + Fg, and the value of Fg, where
Fg is the number of out-of-sample periods
for which the forecasts of ytg are needed.
(This information is, of course, not needed
if Fg = 0.)

Out-of-sample values of ỹtg

for comparison with their
forecasts:

ytg, g = 1, 2, . . . , t = Tg + 1, Tg + 2,
. . . , Tg + Fg. (If these values are unknown
to you at the time of forecasting them,
then code the value −9999.99 for each of
them.)

Data to impose the restric-
tions (4):

Re
Π re

Π `e
Π

Ri
Π ri

Π `i
Π

RΦ rΦ `Φ

R∆a r∆a `∆a

LIMITATIONS OF SCEP

Tg ≤ 150, K ≤ 15, p ≤ 15, m ≤ 15

Number of groups ≤ 120

If you need to run a job that some of the upper limits above need to be changed,

you may conntact I-Lok Chang.

DATA FILES REQUIRED BY SCEP
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The following list is a comprehensive list of data files that SCEP uses. Only three

files must be present in any run of SCEP: PARAMTRS, YXDKEY, and YXDATA1.

The other files are for data that will be needed for certain specified options in the

calculation of the model. In each run of SCEP, all the required data files must reside

in the same disk directory as the executable module of SCEP.

INPUT FILES FOR EXECUTING SCEP

PARAMTRS

YXDKEY

YXDATA1

YXDATA2

ZDATA1

ZDATA2

LDATA1

LDATA2

PDATA1

PDATA2

DDATA1

DDATA2

RCFPH

RVCPH

RCFDT

RVCDT

RCFPI

RVCPI

PSAVE.(GROUP ID)

DSAVE.(GROUP ID)

13



A RULE IN SETTING UP A DATA FILE

In all the data files, with the exception of PSAVE.(GROUP ID) and DSAVE.(GROUP ID),

the final two lines of the file must be the following two lines:

END OF DATA

//

SETTING UP THE PARAMTRS FILE

In this file, you specify the dimensions of your data matrices and your computational
and printing options. The maximum length of each line is 80 characters, starting
from the first space of the line. A blank line or a line starting with an exclaimation
mark “!” is ignored by the program. All global options – options to be applied to
every group – must be entered between the two lines “BEGIN GROUP(ALL)” and
“END GROUP(ALL)”. An option that is to be applied only to Group K must be
entered between the two lines “BEGIN GROUP(K)” and “END GROUP(K)”. Such
a local option overides any corresponding global option. The only local option that
may be applied at this writing is the option of assigning the number of iterations
for computing a local model. The following example is a PARAMTRS FILE for a
problem analyzed at the U.S. Office of the Comptroller of the Currency. BEGIN
GROUP(ALL)
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T = 108
M = 2
K = 2
P = 3
AUTOMATIC CONSTANT 1 = NO
SAVE BETA = NO
ZERO PHI = NO
DIAGONAL PHI = YES
DIAGONAL DELTA = YES
INITIAL PHI MATRIX = DEFAULT
INITIAL DELTA MATRIX = DEFAULT
Z-VECTORS = USER’S
NUMBER OF ROWS IN LINEAR EQUALITY RESTRICTION ON PHI = 0
NUMBER OF ROWS IN LINEAR EQUALITY RESTRICTION ON PI = 6
NUMBER OF ROWS IN LINEAR INEQUALITY RESTRICTION ON PI = 1
NUMBER OF ROWS IN LINEAR EQUALITY RESTRICTION ON DELTA = 0
SAVE PHI MATRIX = NO
SAVE DELTA MATRIX = NO
NUMBER OF ITERATIONS = 30
PRINT LEVEL = 5
DATA COLUMN WIDTH = 10
OLS = NO
GLS = NO
PROGRAM TITLE = SWAMSLEY DEFICITS DATA
EVLTOL = 0.995

END GROUP(ALL)
!
BEGIN GROUP(2)

NUMBER OF ITERATIONS = 5
END GROUP(2)
!
!BEGIN GROUP(1)
! NUMBER OF ITERATIONS = 10
!END GROUP(1)
END OF DATA
//

Detailed instructions for creating the PARAMTRS FILE are given below:

T = [Enter here the total number of obser-
vations on ỹtg,x′

tg, and z′tg. T is (T1 +
F1)+ . . .+(Tg +Fg)+ . . .+(TG +FG).]
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K = [Enter here the number of explanatory
variables including the constant term
in equation (1).]

m = [Enter here the column dimension of
L in equation (2). This dimension is
K if L is an identity matrix.]

p = [Enter here the number of explanatory
variables including the constant term
in equation (2). This number is equal
to 1 when for all t and g, z1tg = 1 and
zjtg = 0 with j 6= 1.]

AUTOMATIC CONSTANT 1 FOR X
AND Z =

[Enter here YES if you want to set
x1tg = z1tg = 1 for all t and g, but
do not want to type a vector of 1’s
in the YXDATA1 and ZDATA1 files.
Enter NO otherwise. You should also
enter NO here if you do not want to
set x1tg = 1 for all t and g but want
to type a vector of 1’s in the ZDATA1
file.]

Z-VECTORS = [Enter here DEFAULT if you want to
set z1tg = 1, zjtg = 0 for j 6= 1 and all
t and g. Enter USER’S otherwise.]

L-MATRIX = [Enter here DEFAULT if you want to
set L = IK . Enter USER’S otherwise.]

SAVE BETA = [Enter here YES if you want to save
the βtg vectors obtained in each itera-
tion of in the calculation of each local
model and all the βt vectors of the
final global model (for a MSRCM).
Enter NO otherwise. To conserve
disk space, the β-vectors are saved in
binary format.]

ZERO PHI = [Enter here YES if you want to
restrict each Φg to be 0 and NO
otherwise.]

DIAGONAL PHI = [Enter here YES if you want to
restrict each Φg to be diagonal and
NO otherwise.]
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DIAGONAL DELTA = [Enter here YES if you want to
restrict each ∆ag to be diagonal and
NO otherwise.]

INITIAL PHI MATRIX = [Enter here DEFAULT, USER’S, or
SWAMSLEY SAVE-FILE according
as the initial value of Φg you want
to use is equal to 0, your own value,
or the estimate obtained in the last
iteration of a previous run.]

INITIAL DELTA MATRIX = [Enter here DEFAULT, USER’S, or
SWAMSLEY SAVE-FILE according
as the initial value of ∆ag you want
to use is equal to Im, your own value,
or the estimate obtained in the last
iteration of a previous run.]

NUMBER OF ROWS IN LINEAR
EQUALITY RESTRICTION ON
PHI =

[Enter here the value of `Φ if you want
to impose the restrictions described
in (5) and 0 otherwise.]

NUMBER OF ROWS IN LINEAR
EQUALITY RESTRICTION ON PI
=

[Enter here the value of `e
Π if you want

to impose the restrictions described
in (5) and 0 otherwise.]

NUMBER OF ROWS IN LINEAR
INEQUALITY RESTRICTION ON
PI =

[Enter here the value of `i
Π if you want

to impose the restrictions described
in (5) and 0 otherwise.]

NUMBER OF ROWS IN LINEAR
EQUALITY RESTRICTION ON
DELTA =

[Enter here the value of `∆ag if you
want to impose the restrictions de-
scribed in (5) and 0 otherwise.]

SAVE PHI MATRIX = [Enter here YES if you want to save
the estimate of Φg obtained in the last
iteration in the calculation of a local
model. Enter NO otherwise. You
have to say, “YES,” here if you want
to say, “SWAMSLEY SAVE-FILE,”
on the right-hand side of the equation,
INITIAL PHI MATRIX =, in the
PARAMTRS file for a subsequent
run.]
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SAVE DELTA MATRIX = [Enter here YES if you want to save
the estimate of ∆ag obtained in the
last iteration in the calculation of a
local model. Enter NO otherwise.
You have to say, “YES,” here if you
want to say, “SWAMSLEY SAVE-
FILE,” on the right-hand side of the
equation, INITIAL DELTA MATRIX
=, in the PARAMTRS file for a
subsequent run.]

NUMBER OF ITERATIONS = [You may enter here a number less
than or equal to 50. This number is
the number of iterations executed in
the calculation of a local model. In
cases where Φg is diagonal, conver-
gence of the iterative scheme coded
in SCEP may not require more than
50 iterations. The first iteration is
always labeled 0. This global upper
limit may be overridden in specifying
local options for individual groups.]

PRINT LEVEL = [Enter here any one of the integers
1, 2, 3, 4, 5. Each of these integers
denotes a particular level of SCEP’s
output in the file SCEPOUT. A
detailed description of these levels is
given in Section 5 below.]

STATISTICS LEVEL = 1 [The right entry here is always 1
because this option is not currently
operative.]

DATA COLUMN WIDTH = [Enter here the number of horizontal
spaces (column width)in each column
of data in a input file. Data in all the
input files except the PARAMTRS
FILE and the YXDKEY FILE must
be entered in columns of this width.]

PROGRAM TITLE = [Enter here any name which is up to
60 characters long.]
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OLS = [Enter here YES if you are using
SCEP to obtain the least squares
estimates of the fixed-β version of
equation (1) and NO otherwise.]

GLS = [Enter here YES if you are using
SCEP to obtain the generalized least
squares estimates of the fixed-β
version of equation (1) with AR (1)
errors and NO otherwise.]

EVLTOL = [Enter here a positive real number
strictly less than 1.0. This number
is the upper bound for the absolute
values of the eigenvalues of the matrix
Φg.]

SETTING UP THE YXDKEY FILE

The data files YXDATA1, YXDATA2, ZDATA1, and ZDATA2 contains obser-
vations in the form of one observation occupying one row in a file. There is no
desingnation alongside each row to indicate the group where this row of data is to
reside, nor any designation on whether the row of data is to be used for model calcu-
lation or for forecasting. The role of the file YXDKEY is to provide such association
information for all the observations. The following example is a simple YXDKEY
file.

1
1
1
1
2
2
2
1
2
2
2 YF
1 YF
1 YF
2 F
1 F
END OF DATA
//
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Each row contains an positive integer followed possibly by a character string
consisting of F or YF. At least one blank space separates the integer and any char-
acter string that follows. The entries in each row must appear within the first 80
spaces of the row. There is no further restricion on the positition of each entry in a
row.

The integer in a row is the group identification number of the corresponding
row in a data file containing observations. The characters YF indicates that the
row of observation is to be used in forecasting calculation and comparison y-value is
provided in the observation. The characters F indicates the row of observation is to
be used for forecasting but no comparison y-value is provided. If the character strings
F and YF are absent, the row of observation is to be used for model calculation.
The forecasting method implemented in SCEP require that within each group, all
the forecasting observations must be a final segment of the data sequence. In the
example above, GROUP 1 is assigned 4 observations for model calculation and
3 observations for forecast calculation. For GROUP 2, the numbers are 5 and 2
respectively.

SETTING UP SCEP DATA SETS

The information and options written out to the PARAMTRS file and the YXDKEY
file do not provide all the numerical inputs needed by SCEP. You need to set up these
files next. Data and prior information about the observables and unobservables,
respectively, of equations (1) and (2) are brought into SCEP from the input (data)
files other than the PARAMTRS file and the YXDKEY file. They are organized as
follows:

• You have to write your data series for the ỹt and xjt to the YXDATA1 and
YXDATA2 files.

• If you set p = a value greater than 1 and say, “USER’S,” on the right-hand
side of the equation, Z-VECTORS =, in the PARAMTRS file, then you have
to write out your data series for the zjt to the ZDATA1 and ZDATA2 files.

• If you say, “USER’S,” on the right-hand side of the equation, L-MATRIX =,
in the PARAMTRS file, then you have to write out your value of L other than
an identity matrix to the LDATA1 and LDATA2 files.

• If you say, “USER’S,” on the right-hand side of the equation, INITIAL PHI
MATRIX =, in the PARAMTRS file, then you have to write your value of
Φ to the files PDATA1 and PDATA2. The two files are to provide the same
initial Φg for all the groups.

• If you say, “USER’S,” on the right-hand side of the equation, INITIAL DELTA
MATRIX =, in the PARAMTRS file, then you have to write out your value of
∆a to the DDATA1 and DDATA2 files. The two files are to provide the same
initial ∆ag for all the groups.
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You write out data to all these files under the same format. Each row of data
occupies at most the first 80 spaces of the row. If you want to split these spaces
into several columns, then all the columns should have the same width and there
should be no spaces left empty between any two consecutive columns. If the column
width you chose is not equal to a fraction of 80 or if 80 divided by the column width
you chose is not an integer, then you should leave all the spaces between the right
edge of the last column and the right edge of the page empty. For example, if you
decided to mark columns of width equal to 9 spaces each, then you should have
8 columns occupying the first 72 spaces and the last 8 spaces blank in each input
file. The column width is called DATA COLUMN WIDTH (DCW). The product of
DCW and the number of columns into which 80 spaces are split should be less than
or equal to 80. Recall that the value of DCW is entered in the PARAMTRS file. A
data value written to an input (data) file is either a numerical value or a character
label and it must reside completely within a column. There is no restriction on the
position of the value within a column. All the columns in a file must be filled before
going to its continuation file. For example, the data which cannot fit in YXDATA1,
ZDATA1, LDATA1, PDATA1, and DDATA1 files can be written to YXDATA2,
ZDATA2, LDATA2, PDATA2, and DDATA2 files, respectively. The former files
have to be filled out completely first before going to the latter. Examples of these
files are given in the next few pages:
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YXDATA1

� 80 spaces -

�
DCWa

spaces - �
DCWb

spaces - �
DCW
spaces - . . . �

DCWc

spaces -

y-labeld x-label 1d x-label 2d . . . x-label id

y1
e 1 x21 . . . xi1

y2 1 x22 . . . xi2

y3 1 x23 . . . xi3

...
...

... . . .
...

yT 1 x2T . . . xiT

END OF DATA
//

aThe first column should always contain observations on the dependent variable.
If a row of observation is to be used for forecasting and the comparison y-value is
not available, code the y-value as −9999.99. In these cases, SCEP computes the
forecast of the actual value but cannot compute the root mean squared error for
this forecast.
bYou can eliminate this column by writing, “YES,” on the right-hand side of the
equation, AUTOMATIC CONSTANT 1 FOR X AND Z =, in the PARAMTRS
file.
cContinued in YXDATA2 file.
dIf you do not want to type in labels for the variables ỹt, x1t, x2t, . . . , xKt, then
leave this row blank.
e SCEP matches the first row of numerical data in this file with the first row in the
YXDKEY file. The matching process continues to the second row, the third row,
etc..
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YXDATA2

� 80 spaces -

�
DCW
spaces - . . . �

DCW
spaces -

x-label i + 1 . . . x-label K

xi+1,1 . . . xK1

xi+1,2 . . . xK2

xi+1,3 . . . xK3

... . . .
...

xi+1,T . . . xKT

END OF DATA
//
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ZDATA1

� 80 spaces -

�
DCWa

spaces - �
DCW
spaces - . . . �

DCWb

spaces -

z-label 1 z-label 2 . . . z-label i

1 z21 . . . zi1

1 z22 . . . zi2

1 z23 . . . zi3

...
... . . .

...

1 z2T . . . ziT

END OF DATA
//

aYou can eliminate this column by writing, “YES,” on the right-hand side of the
equation, AUTOMATIC CONSTANT 1 FOR X AND Z = , in the PARAMTRS
file.
bContinued in ZDATA2.
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ZDATA2

� 80 spaces -

�
DCW
spaces - . . . �

DCW
spaces -

z-label i + 1 . . . z-label p

zi+1,1 . . . zp1

zi+1,2 . . . zp2

zi+1,3 . . . zp3

... . . .
...

zi+1,T . . . zpT

END OF DATA
//
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LDATA1

� 80 spaces -

�
DCW
spaces - �

DCW
spaces - . . . �

DCWa

spaces -

l11 l12 . . . l1j

l21 l22 . . . l2j

...
... . . .

...

lK1 lK2 . . . lKj

END OF DATA
//

aContinued in LDATA2.

LDATA2

� 80 spaces -

�
DCW
spaces - . . . �

DCW
spaces -

l1,j+1 . . . l1m

l2,j+1 . . . l2m

... . . .
...

lK,j+1 . . . lKm

END OF DATA
//
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PDATA1

� 80 spaces -

�
DCW
spaces - �

DCW
spaces - . . . �

DCWa

spaces -

φ11 φ12 . . . φ1j

φ21 φ22 . . . φ2j

...
... . . .

...

φm1 φm2 . . . φmj

END OF DATA
//

aContinued in PDATA2.

PDATA2

� 80 spaces -

�
DCW
spaces - . . . �

DCW
spaces -

φ1,j+1 . . . φ1m

φ2,j+1 . . . φ2m

... . . .
...

φm,j+1 . . . φmm

END OF DATA
//
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DDATA1

� 80 spaces -

�
DCWa

spaces - �
DCW
spaces - . . . �

DCWb

spaces -

σ2
a

δ11 δ12 . . . δ1j

δ21 δ22 . . . δ2j

...
... . . .

...

δm1 δm2 . . . δmj

END OF DATA
//

aThe element at the intersection of the first row and the first column must be the
value of σ2

a. You can use 1.0 as the value of σ2
a.

bContinued in DDATA2.

DDATA2

� 80 spaces -

�
DCW
spaces - . . . �

DCW
spaces -

δ1,j+1 . . . δ1m

δ2,j+1 . . . δ2m

... . . .
...

δm,j+1 . . . δmm

END OF DATA
//
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WRITING RESTRICTION MATRICES TO FILES

The restrictions defined by equations in (5) can be imposed by setting up the fol-
lowing files:

• If you entered a positive integer on the right-hand side of the equation, NUM-
BER OF ROWS IN LINEAR EQUALITY RESTRICTIONS ON PHI =, in
the PARAMTRS file, then you need to set up the RCFPH and RVCPH files.

• If you entered a positive integer on the right-hand side of the equation, NUM-
BER OF ROWS IN LINEAR EQUALITY RESTRICTIONS ON PI =, in the
PARAMTRS file, then you need to set up the RCFPI and RVCPI files.

• If you entered a positive integer on the right-hand side of the equation, NUM-
BER OF ROWS IN LINEAR INEQUALITY RESTRICTIONS ON PI =, in
the PARAMTRS file, then you need to set up the RCFPI and RVCPI files.

• The file RCFPI contains data for the composite matrix

 Re
Π

Ri
Π


• The file RVCPI contains data for the composite vector

 re
Π

ri
Π


• If you entered a positive integer on the right-hand side of the equation, NUM-

BER OF ROWS IN LINEAR EQUALITY RESTRICTIONS ON DELTA =,
in the PARAMTRS file, then you need to set up the RCFDT and RVCDT
files.

The RCFPH file specifies the number of each restriction imposed on the elements
of RΦ (see (5)) and the numbers of the rows of RΦ in which these elements appear
and the coefficients of these elements in the restriction. For example, if the ith
restriction says that the element in the jth row of RΦ, denoted by RΦ(j), is zero,
then enter the value of i in the first column, the value of j in the second column, and
the value 1.0 in the third column of the RCFPH file. (Again, there is no restriction
on the position of a value within a column.)
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RCFPH

� 80 spaces -

�
DCW
spaces - �

DCW
spaces - �

DCW
spaces -

i j Rφ(i, j)

...
...

...

END OF DATA
//

Here i and j should be entered as integers and RΦ(j) as a floating-point number
even when it is an integer. For example, the value 1 of the coefficient of RΦ(j) should
be entered as 1.0. It should also be noted that corresponding to each restriction,
there will be as many rows in the RCFPH file as there are elements of RΦ in the
restriction with nonzero coefficients. For example, if the rth restriction says that
the ith and jth elements of RΦ are equal, i.e., that RΦ(i)−RΦ(j) = 0, then there
will be two rows in the RCFPH file corresponding to this restriction. The value of
r appears in both the rows of the first column, the two rows of the second column
contain the positions of RΦ(i) and RΦ(j) in RΦ, respectively, and the two rows of
the third column contain 1.0 and −1.0, respectively. Consequently, the number of
rows of the RCFPH file may exceed that of RΦ. The values of i should be entered
in the RCFPH file in the same order in which the rows of RΦ are written in (5).

The RVCPH file specifies the elements of rΦ defined in (??). If rΦ(i) denotes
the ith element of rΦ, then the RVCPH file looks as follows:

RVCPH

� 80 spaces -

�
DCW
spaces - �

DCW
spaces -

i rφ(i)

...
...

END OF DATA
//
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Here i is an integer and rΦ(i) is a floating-point number. The number of rows
of the RVCPH file will be equal to `Φ.

The procedure of setting up the RCFPI and RVCPI files is analogous to that of
RCFPH and RVCPH, respectively. The procedure of setting up the RCFDT and
RVCDT files is also analogous to that of RCFPH and RVCPH, respectively, but
in setting up RCFDT and RVCDT, you should remember that R∆a and r∆a refer
only to the diagonal and below diagonal elements of ∆a.

SAVE FILES

You have the option of either saving or not saving the estimate of Φg computed in
the last iteration of the calculation of a local model. If you want to save this estimate,
then write YES on the right-hand side of the equation, SAVE PHI MATRIX =, in
the PARAMTRS file. This estimate will be written to the PSAVE.(GROUP ID)
file. In a subsequent run, you can use this estimate as the initial value of Φg by
writing SWAMSLEY SAVE-FILE on the right-hand side of the equation, INITIAL
PHI MATRIX =, in the PARAMTRS file.

Similarly, your entry, “YES,” on the right-hand side of the equation, SAVE
DELTA MATRIX =, in the PARAMTRS file tells SCEP to write the estimate of
∆ag computed in the last iteration of a run to the DSAVE.(GROUP ID) file. You
can use this estimate as the initial value of ∆ag in a subsequent run by writing
SWAMSLEY SAVE-FILE on the right-hand side of the equation, INITIAL DELTA
MATRIX =, in the PARAMTRS file.

You also have the option of saving or not saving all the computed βtg of the
local models and the global model. The forecasts of βtg are not saved in this version
of SCEP. If you write YES on the right-hand side of the equation, SAVE BETA =,
in the PARAMTRS file, then SCEP writes all the βtg (all groups, all iterations) of
the local models to the BSAVE.(GROUP ID) files, in binary format. The βtg of the
global model are saved in the files BETAVECP.(GROUP ID), also in finary format.

4 How to Execute SCEP?

SCEP is a collection of several fortran routines. The steps required to execute
SCEP on a Intel PC system under Windows 2000 or Windows XP are given below.
The main program is called SCEPMAIN.FOR. A compiler is used to compiled the
routines to obtain an module with a name such as SCEPMAIN.OBJ. A linker is then
invoked to produce an executable module with a name such as SCEPMAIN.EXE.
This executable module is then run in a directory where all the necessary data files
reside. The program creastes two output files, SCEPOUT and SCEPLOG. The file
SCEPOUT contains all the results on the computed model. The file SCEPLOG
contains working messages from the program on the operational status of each of
the file used by the program. Messages in SCEPLOG are mainly for checking
the integrity of the run and for debugging problems related to input or output
encountered in a run.
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5 Five Levels of Output

The size of the output file SCEPOUT depends on the number you wrote on the
right-hand side of the equation, PRINT LEVEL =, in the PARAMTRS file. You
may write in here any one of the integers 1-5, for there are five levels of output.
We describe each of these levels below. We use the notations adopted in the flow
diagram given in the next section to indicate how the results are sequenced in the
output. The printing of most of the results is performed by printing subroutines
that have names of the form PR****.
PRINT LEVEL THE RESULTS PRINTED

1, 2, 3, 4, 5 •the parameter values and options read in from the
PARAMTRS file; y

IF (SPIRWU .EQ. NEQPIU) THEN
The condition for this IF-block is that there is no linear inequality restriction im-
posed on the Π matrix for each group.
If linear equality restriction is to be imposed on the Π matrix of each group, the
restriction is of the form R* vec(Π) = r. In the pooled calculation, a matrix C
with the property that RC′ = 0 and a vector v = R′(RR′)−r are computed. If
no linear equality is to be imposed on Π, the matrix C is set to an identity matrix
and the vector v is set to the zero vector.

1, 2, 3, 4, 5 •the numerical rank of the restriction matrix R;
•the matrix C and the vector v;

ENDIF y
DO 1 IG=1,NGROUP
In each loop, a local stochastic coefficient model is computed for the IGth group.
The end of this loop is marked by the statement 1 CONTINUE.
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1, 2, 3, 4, 5 •the data read in from the YXDATA1 and YXDATA2 files
for the estimation period;
•the data read in from the YXDATA1 and YXDATA2 files
for the forecast period (if supplied);
•the data read in from the ZDATA1 and ZDATA2 files for the
estimation period (if supplied);
•the data read in from the ZDATA1 and ZDATA2 files for the
forecast period (if supplied);
•the L-matrix used;
•the linear restriction matrices and vectors on Π, Φ, and ∆a

(if supplied); y
1, 2, 3, 4, 5 •the initial value of Φ used;

•whether an adjustment of this value was necessary to make
its eigenvalues less than one in absolute value;

3, 4, 5 •the lengths of the eigenvalues of the initial value of Φ before
it was adjusted;
•the method of adjusting the initial value if adjustments were
needed;
•the adjusted initial value if adjustments were made;
•the lengths of the eigenvalues of the adjusted initial value if
adjustments were made; y

1, 2, 3, 4, 5 •the initial value of ∆a used;
•the value of the initial σ2

a used if it was different from the
default value;
•whether the initial value of ∆a was adjusted to make it non-
negative definite; y

3, 4, 5 •the eigenvalues of the unadjusted initial ∆a if adjustments
were to be made;
•the adjusted initial ∆a if adjustments were made;
•the eigenvalues of the adjusted initial ∆a if adjustments were
made; y
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5 •the observation vectors on the xjt premultiplied by L′ for
the estimation period;
•the observation vectors on the xjt premultiplied by L′ for
the forecast period; y

5 •the observation vectors on (z′
t ⊗ x′

t);y
ITER = 0
1 IF ( ITER .LE. MAXITR) THEN
The condition of this IF-block is that the iteration count ITER has not exceeded the
upper limit MAXITR. This IF-block is a loop where a local stochastic coefficient
model for the IGth group is iteratively refined. The end of this loop is marked by
the three statements ITER = ITER +1, GO TO 1, ENDIF.y

3, 4, 5 •the method used to estimate Φ (if this iteration is not the
initial iteration);
•an estimate of Φ (if this iteration is not the initial iteration);y

3, 4, 5 •the method used to estimate ∆a (if this iteration is not the
initial iteration);
•an estimate of ∆a (if this iteration is not the initial itera-
tion); y

1, 2, 3, 4, 5 •whether this estimate of ∆a was adjusted to make it non-
negative definite; y

3, 4, 5 •the eigenvalues of the unadjusted estimate of ∆a if adjust-
ment were made;
•an adjusted estimate of ∆a matrix if adjustments were made;
•the eigenvalues of the adjusted estimate of ∆a if adjustments
were made; y

4, 5 •an estimate of the covariance matrix of ε̃1;
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3, 4, 5 •a decomposition of this estimate;y
5 •an estimate of the covariance matrix of (ε̃′

1, ε̃′
2, . . . , ε̃T )′;y

5 •an estimate of the covariance matrix of (ỹ1, ỹ2, . . . , ỹT )′;
1, 2, 3, 4, 5 •the eigenvalues of this estimate;y
1, 2, 3, 4, 5 •if Π is estimated using two methods, print a message on

whether the two estimates may be considered to be suffi-
ciently close (see CALL INEQPI, CALL ECPIMU and CALL
CHEQPI in the flow diagram given in the next section);
•for each method used to estimate of Π, print the Π obtained
from the method; the Π calculated in SUBROUTINE
ECPIMU is then chosen as the final estimate for Π;

3, 4, 5 •generalized least squares residuals;

1, 2, 3, 4, 5 •an estimate of σ2
a;

3, 4, 5 •an estimate of the covariance matrix of a Π estimator based
on Paige’s method;

1, 2, 3, 4, 5 •the standard errors and the t-ratios for the Π estimator, and
the estimated coefficients of variation for the coefficients;y

1, 2, 3, 4, 5 •a second estimate of the covariance matrix of a restricted Π
estimator based the formula (29) given in Appendix C; ranks
of three different matrices involved in these computations;y

3, 4, 5 •forecasts of εt for the estimation period;y
1, 2, 3, 4, 5 •forecasts of βt for the estimation period;y
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3, 4, 5 •in the second iteration, print an estimate of the covariance
matrix (31) given in Appendix C and the corresponding stan-
dard errors; y

1, 2, 3, 4, 5 •the actual values of y for forecast and/or their forecasts
based on the first two terms on the right-hand side of equation
(32) given in Appendix D; root mean squared error and mean
percentage error of these forecasts if the actual values of y for
forecast are supplied; y

1, 2, 3, 4, 5 •the actual values of y for forecast and/or their forecasts
based on all the terms on the right-hand side of equation (32)
given in Appendix D; root mean squared error and mean per-
centage error of these forecasts if the actual values of y for are
supplied; y

ITER = ITER + 1
GO TO 1
ENDIF y

Start pooled calculation. Pooled calculation is made only if there are at least two
groups of data and no linear constraint is imposed on any Π matrix.y

1, 2, 3, 4, 5 •a covariance matrix DELTMU for a µ vector;y
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1, 2, 3, 4, 5 •a message stating that no adjustment was made on DELT-
MMU if the matrix is already non-negative definite;
•the adjusted DELTMU if adjustments were made on
DELTMU;
•the eigenvalues of DELTMU if adjustments were made on
DELTMU;
•an upper Cholesky factor of DELTMU if adjustments were
made on DELTMU; y

1, 2, 3, 4, 5 •the pooled estimate for the Π matrix;
•an estimate of the covariance matrix for Π;
•the standard errors and the t-ratios for the Π estimator,
and the estimated coefficient of variation for the coefficients;y

1, 2, 3, 4, 5 •for each group of data, print the components in the updated
stochastic coefficient model for the group: the vector µ̂g, the
vectors ε̄tg and the vectors β̄tg. See formula *** in Section
2.2 of this manual. y

1, 2, 3, 4, 5 •for each group of data, print pooled forecasts of εt, pooled
forecasts of βt; print the updated forecasts for y together
with any actual y-values supplied by the user; print updated
error measurements for the forecasts.
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6 Computational Steps Coded in SCEP

MAIN PROGRAM (SCEPMAIN.FOR)

SCEP follows the computational scheme described in this section. The code is
written in Fortran 77. The file name for the main program is SCEPMAIN.FOR.

The first part of the main program contains declarations. Variables that end
with the letter “u” are in general global variables which remain constant from one
group of data to another group of data. Variables that are to be used for specific
group of data are mostly variables in an arrays. The names of such an arrays usually
contain the letter “G”. For instance, the array declaration of REAL*8 NTOTG(150)
allocates one hundred and fifty variables for the purpose of saving the number (the
count) of observations for the Ith group in the variable NTOTG(I).y

Following the declarations, values are assigned to several variables for control-
ling the amount of memory to be used: MAXWR, MAXWI, MAXWC, MAXKEY,
MAXNGR, MAXGID, MAXITU, HIPHRU, HIPIRU, HIDTRU. Further such ini-
tializations are made at several subsequent points of SCEPMAIN, assigning mem-
ory sizes to the variables SBATCH, LDRPHU, LDRDTU, LDRPIU, LDMRPI, LD-
MXDB, LDMZDB, LDMLU, LDORCU, LDMDLM, LDMSCV, LDSBTB, LDMPMP.y

SCEP then commences to construct components for the model through sequences
of subroutine calls described below. A call to a major subroutine is usually preceded
by a call to a subprogram with a name of the form AL****, and followed by a call
to a subprogram with name of the form PR****. An AL-subprogram allocates
memory and initializes switching variables for the major subroutine that follows. A
PR-subprogram prints the results computed by the preceding major subroutine(s).
The first subroutine called is Subroutine SETFA.

CALL SETFA
Assigned file names and file unit numbers to disk files that are global. This
set of files are shared by all groups.

y
Open the Files SCEPOUT and SCEPLOG. Rewind the files.

y
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CALL GETPRM
Get the basic parameters and options from the file PARAMTR.

CALL PRTPRM

y
CALL GETKEY

Read in data keys from the file YXDKEY. Sort the keys and generate counts
to give information on the grouping structure of the data set.

y
CALL SETFB

Assign file names and file unit numbers to disk files that are used by individual
groups.

y
CALL IDXFC

Create arrays of pointers and indices for the subsequent calculation and fore-
cast within each group.

y
CALL ALCSDT

CALL SETDAT
Get the numerical data and separate the data into groups. A set of data files
is created for each group.

y
CALL OPGSET

Process options specified for selected groups.

y
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IF ( SPIRWU .EQ. NEQPIU ) THEN
The condition for executing this IF-block is that there is no linear inequality
restriction imposed on the Π matrix within each group. In this case, the final
pooled calculation is made. The following matric ORCU and vector TRIVRU
are needed in the pool calculation. If linear inequality constraints are imposed
on the Π matrix in each group, no pooled calculation will be performed.y
CALL ALPORC
CALL ORCRRP

Calculate the matrix ORCU and the vector TRIVRU that will be needed
in final pooled calculation.

CALL PRPOCRy
ENDIF

y
Initialize leading dimensions such as LDMDLM for use in SUBROUTINE
DLTMUP within SUBROUTINE CGROUP.

y
DO 1 IG=1,NGROUP

In each loop, a local stochastic coefficient model is computed for the IGth
group.y
CALL ALCCGR

Allocate memory and set up options for the computation of a stochastic
coefficient model for the IGth group. Calculate upper bounds for several
memory requirements. If any upper bound exceeds the allocation size
specified in the main program SCEPMAIN, program execution is halted.

CALL CGROUP
SUBROUTINE CGROUP computes a stochastic coefficient model the
IGth group. This subroutine is the main computation component of
SCEP. The steps executed by CGROUP are described in a separate sec-
tion that is to follow.y
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1 CONTINUE

y
IF ((NGROUP .GT. 1) .AND. (SPIRWU .EQ. NEQPIU) ) THEN

The condition for the execution of this IF-block is that there are at least two
groups and no linear inequality constraint is imposed on the Π matrix in each
group.y
CALL RWRITE

Print a covariance matrix DELTMU for a µ-vector. The covariance ma-
trix is to be used in the pooled calculation. This covariance matrix is
computed in SUBROUTINE DLTMUP (see the flow diagram for SUB-
ROUTINE CGROUP).y

CALL ALPADS

CALL ADPSYM
Adjust the covariance matrix DLTMUP for non-negative definiteness and
determine an upper Cholesky factor for the matrix.

CALL PRPADSy
DO 5 IG=1,NGROUP

For each group, calculate vectors and matrices which are basic compo-
nents of the pooled estimates.y
CALL ALPXZY
CALL CDXZYP

Calculate components for the Π̂ matrix, the vectors ε̄tg and the
vectors µ̄

g
. Calculate the vector β. See formula *** of Section 2.2

in this manual for the roles of such matrix and vectors.y
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5 CONTINUEy
CALL ALPPIC
CALL CPICVP

Calculate the pooled estimate for Π̂ matrix and an estimate for its co-
variance matrix.

CALL PRPPICy
DO 10 IG=1,NGROUP

Calculate and print pooled results for each group.y
CALL ALPEMB
CALL EMBTAP

Calculate the vector µ̂g, the vectors ε̄tg and the vectors β̄tg. See
formula *** in Section 2.2 of this manual for the roles of the various
vectors.

CALL PRPEMBy
CALL ALCPFC
CALL PFCAST

Calculate the requested forecasts of yt based on the pooled results
for this group. Compute the root mean square error and the mean
absolute error if the user has provided actual yt values.

CALL PRTPFCy
10 CONTINUEy
CALL DELETF

Delete designated disk files such as temporary files that were used for
intermediate calculations.
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y
Close the files SCEPOUT and SCEPLOG.y

ENDIF
This is the end of the IF-block where the pooled estimates are calculated.

y
STOP
END
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COMPUTATIONAL STEPS IN SUBROUTINE CGROUP
(FILE CGROUP.FOR)

Declaration of variables and assign leading dimensions to arrays.y
Give comments for each significant variable.y
Declare local variables and give comments on most of the local variables.y
IF ( SPIRWU .GT. 0 ) THEN

The condition for this IF-block is that linear restriction is to be imposed on
the matrix Π.y
CALL INIRPI

Reset a system of parameters that will be used if linear constraints are
to be imposed on the Π matrix. This set of parameters may have been
changed by the previous call to SUBROUTINE INEQPI.y

ENDIF

y
CALL GETDTA

Get numerical data for the computation of the stochastic coefficient model for
this group.

CALL PRTGDT

y
CALL ALCINP
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CALL INTPHI
Initialize the Φ matrix either by reading values from a disk file or setting Φ
to the zero matrix. Modify the matrix, if necessary, so that the eigenvalues of
the matrix have moduli not exceeding a fixed value EVLTOL. EVLTOL is a
positive value less than 1.0 provided by the user in the file PARAMTR. The
results of this initialization are printed.y

CALL ALCIND

CALL INTDLT
Initialize the ∆a matrix by either reading values from a disk file or by setting
∆a to the identity matrix. Modify the matrix, if necessary, so that the eigen-
values of the matrix have are non-negative. The results of this initialization
are printed.

y
CALL ALCTLX

CALL CTLXS
Compute a matrix of the form L′X for the computation described in equation
**** in Section 2.1 of this manual. Each column of the matrix X is a vector
xt.

IF (NUMXF .GT. 0) THEN
The condition of this IF-block is that data have been provided for the fore-
casting of yt.

CALL CTLXS
Compute a matrix of the form L′X for calculating the forecasts of yt.

ENDIF

CALL PRTTLX

y
CALL ALCXZ

CALL CXZ
Compute the matrix XZ having z′

t ⊗ x′
t as its tth row.

CALL PRTXZ
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y
ITER = 0

y
1 IF ( ITER .LE. MAXITR ) THEN

The condition of this IF-block is that the iteration count ITER has not ex-
ceeded the upper limit MAXITR. This IF-block is a loop where a local stochas-
tic coefficient model for the IGth group is iteratively refined. The end of this
loop is marked by the three statements ITER = ITER +1, GO TO 1,
ENDIF.y
CALL PGRESS

Show the progress of the iteration on the monitor screen.y
IF ( (SPIRWU .GT. 0) .AND. (SPIRWU .GT. NEQPIU) ) THEN

The condition for this IF-block is that linear inequality constraints have
been imposed on the Π matrix.y
CALL INIRPI

Reset a system of parameters to be used when applying linear con-
straints to the Π matrix. This set of parameters may have been
changed by SUBROUTINE INEQPI in the previous loop.y

ENDIFy
IF ( ITER .GT. 0 ) THEN

The condition for this IF-block is that the iteration counter is 1 or higher.
This loop is not the initial loop where ITER is 0. Within this IF-block,
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calculate the Φ–matrix using one of the available algorithms. Algo-
rithms available are “LM” for a Levenberg–Maquart method, “QP” for a
quadratic programming, and “RN” for a monte carlo method. The char-
acter string ALGCPH contains the designation “LM”, “QP” or “RN”.
The matrix ∆a is then computed in the same manner, using one of the
three available methods.y
CALL HOWCPH

Assign either “LM”, ”QP” or “RN” to the character string ALGCPH,
according to a strategy implemented in this subroutine.y

IF ( INDEX( ALGCPH, ’LM’) .GT. 0 ) THEN
The condition for this IF-block is that the method “LM” has been
chosen.y
CALL ALLMPH
CALL LMCPHI

Calculate the matrix Φ using a Levenberg–Marquardt method.
CALL PRLMPHy

ENDIFy
IF ( INDEX( ALGCPH, ’QP’) .GT. 0 ) THEN

The condition for this IF-block is that the method “QP” has been
chosen.y
CALL ALQPPH
CALL QPCPHI

Compute the matrix Φ using a method of quadratic program-
ming.

CALL PRQPPH
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y
ENDIFy
IF ( INDEX( ALGCPH, ’RN’) .GT. 0 ) THEN

The condition for this IF-block is that the method “RN” has been
chosen.y
CALL ALRNPH
CALL RNCPHI

Compute the matrix Φ using a monte carlo method.
CALL PRRNPHy

ENDIFy
CALL HOWCDT

Assign either “LM”, ”QP” or “RN” to the character string ALGCDT,
according to a strategy implemented in this subroutine.y

IF ( INDEX( ALGCDT, ’LM’) .GT. 0 ) THEN
The condition for this IF-block is that the method “LM” has been
chosen.y
CALL ALLMDT
CALL LMCDLT

Compute the matrix ∆a using a Levenberg–Marquardt method.
CALL PRLMDTy

ENDIF
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y
IF ( INDEX( ALGCDT, ’QP’) .GT. 0 ) THEN

The condition for this IF-block is that the method “QP” has been
chosen.y
CALL ALQPDT
CALL QPCDLT

Compute the matrix ∆a using a quadratic programming method.
CALL PRQPDTy

ENDIFy
IF ( INDEX( ALGCDT, ’RN’) .GT. 0 ) THEN

The condition for this IF-block is that the method “RN” has been
chosen.y
CALL ALRNDT
CALL RNCDLT

Compute the matrix ∆a using a monte carlo method.
CALL PRRNDTy

ENDIFy
IF ( (.NOT. OLS) .AND. (.NOT. GLS) ) THEN

The condition for this IF-block is that the stochastic coefficient model
to be computed is neither an OLS model nor an AR(1) model.y
IF (.NOT. DDIAG) THEN

The condition for this IF-block is that ∆a is not to be a diagonal
matrix.
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y
CALL ALCADN
CALL ADJDND

Modify the computed ∆a matrix, if necessary, to a non-negative
definite matrix. Compute an upper Cholesky factor of ∆a.

CALL PRTADNy
ELSE

Otherwise ∆a is to be a diagonal matrix.y
CALL ALCADD
CALL ADJDD

Modify the diagonal matrix ∆a, if necessary, to a non-negative
definite matrix. Compute an upper Cholesky factor of ∆a.

CALL PRTADDy
ENDIFy

ELSE
The ELSE-condition here is that the stochastic coefficient model is
to be an OLS model or an AR(1) model.y
CALL MZERO

Set the upper Cholesky factor for the matrix ∆a to the zero ma-
trix.y

IF ( DELTA(1,1) .LT. 0.0D0 ) THEN
If the element DELTA(1,1) of ∆a is negative, set DELTA(1,1)
to zero and print a message.
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ENDIFy
UDELTA(1,1) = SQRT(DELTA(1,1)

Assign the square root of DELTA(1,1) to the element UDELTA(1,1)
in the upper Cholesky factor for ∆a.y

ENDIF
This is the end of the IF-block of “IF ( (.NOT. OLS) .AND. (.NOT.
GLS)) THEN”y

ENDIF
This is the end of the IF-block of “IF (ITER .GT. 0) THEN”.y

CALL ALCGMA

CALL CGAMMA
Compute an estimate for the matrix Γ0.

CALL PRTGMAy
CALL ALCYE

CALL CSIGYE
Compute estimates for the matrices Σε and Σy. Calculate an upper
Cholesky factor for the computed Σy.

CALL PRTSGE

CALL PRTYSGy
IF (ITER .EQ. 0) THEN

The condition for this IF-block is that the present iteration is the first
iteration – ITER is 0.y
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CALL SAVYSG
Save the estimate of Σy in a temporary memory block YSGMA0.
This estimate will be used later when evaluating a covariance matrix
of the weighted or unweighted least squares estimate of the Π–matrix
in the second iteration ( ITER = 1 ).

y
ENDIFy
IF (ITER .EQ. 1) THENy

CALL SAVYSG
Save an upper Cholesky factor for Σy in a temporary memory block
YSGMA1.y

ENDIFy
IF ( SPIRWU .GT. NEQPIU ) THEN

The condition for this IF-block is that linear inequality constraints have
been imposed on the Π–matrix.y
CALL ALCEIPy
CALL INEQPI

Calculate a Π–matrix using a quadratic programming method. The
linear constraints include possible equality constraints and at least
one linear inequality constraint. At the end of the computation,
the system of constraints may be modified to include only the linear
constraints where equality has been achieved by the computed Π–
matrix. This step prepares for the subsequent covariance calculation
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for the Π–matrix.y
ENDIFy
CALL ALEPMU

CALL ECPIMU
Calculate a Π–matrix, perhaps for the second time in this loop. If lin-
ear restrictions are present, the constraints are only equality constraints.
This system of equality constraints include those specified by and user
and possibly several specified by SUBROUTINE INEQPI in the previous
step of the computation of Π. The method used in this subroutine is
Paige’s method. Other estimates computed are σ2

a, a covariance matrix
for Π, and the residual vectors yt − x′

tΠzt.y
IF ( SPIRWU .GT. NEQPIU ) THEN

The condition for this IF-block is that linear inequality constraints are
present for the matrix Π.y
CALL CHEQPI

The Π–matrix computed in SUBROUTINE INEQPI and the Π–
matrix computed in SUBROUTINE ECPIMU are expected to be
equal to within the range of round-off errors. SUBROUTINE CHEQPI
check for such equality. The results of the checks are printed.y

ENDIFy
CALL SQCVAR

Multiply the estimate of the covariance matrix of the generalized least
squares estimate of Π by the estimate of σ2

a. The estimate of Π calcu-
lated in SUBROUTINE ECPIMU was formed without the factor σ2

a.
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y
CALL PRTPMUy
CALL ALCORC

CALL ORCVAR
Use a method of orthogonal decomposition to compute another estimate
for the covariance matrix associated with Π.

CALL PRTORCy
CALL ALCEPS

CALL CEPS
Compute the forecasts of εt. See equation **** of section 2.1 in this
manual.

CALL PRTEPSy
IF ( (NGROUP .GT. 1) .AND. (ITER .EQ. MAXITR) .AND.

(SPIRWU .EQ. NEQPIU) ) THEN
The three conditions for this IF-block are: more than one group is in-
volved in this model, this iteration is the last iteration, and no linear
inequality constraint is imposed on Π.y
CALL SVSG2G

Save the σ2
a computed in the last iteration for use in the subsequent

pooled calculation.y
CALL ALPDMU

CALL DLTMUP
Accumulate matrices to form the matrix DELTMU, to be used in
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the pooled calculation.y
ENDIFy
CALL ALCBTA

CALL CBETA
Compute forecasts of βt. See equation **** in Section 2.1 of this manual.

CALL PRTBTAy
IF (SAVBTA) THEN

The condition for this IF-block is that the vectors βt computed in this
iteration is to be saved on a disk file.y
CALL PUTBTA

Write the vectors βt computed in this iteration to a disk file.y
ENDIFy
IF (ITER .EQ. 1) THEN

The condition for this IF-block is that this loop is the second loop of the
iteration (ITER = 1).y
CALL ALCSCV
CALL SCOVAR

Compute a special covariance matrix associated with Π.
CALL PRTSCVy
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ENDIFy
IF ( NUMXF .GT. 0 ) THEN

The condition for this IF-block is that forecasts of yt have been requested.y
CALL ALCYFC
CALL YFCAST

Compute forecasts of yt. If the user supplies actual values of yt for
the forecast period, compute also the root mean square error and the
mean absolute error.

CALL PRTYFCy
ENDIFy

ITER = ITER + 1

y
GO TO 1

y
ENDIF

y
CALL PUTPHI

Write the last estimate of Φ to a disk file.

y
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IF (SAVDLT) THEN
The condition for this IF-block is that the user wants to save the last estimate
of ∆a.y
CALL PUTDLT

Save the last estimates of σ2
a and ∆a to a disk file.y

ENDIF

y
CALL FDELET

Delete temporary files used by SUBROUTINE CGROUP in this call to the
subroutine.

y
RETURN

Return execution control to the main program SCEPMAIN.

END
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7 An Example

In recent years there has been considerable interest in the issue of the effects of
federal budget deficits on interest rates. To measure the effect of such deficits on a
specific interest rate, the following model was applied to U.S. economic data:

ỹt = β̃1t + β̃2tx2t + β̃3tz1t + β̃4tz2t, (10)

where ỹt = the 3-month Treasury bill rate, −x2t = the ratio of net surplus of
federal government (National Income and Product Accounts basis) to nominal gross
national product, z1t =

∑5
j=0 wjPGNPDOTt−j , PGNPDOT = the annual

rate of change of the implicit deflator for GNP (1982 = 100), and z2t = the annual
rate of change of the narrow (M1) measure of money supply. This model is consid-
ered here because it was previously found to perform well in prediction over a broad
range of conditions by Swamy, Kolluri and Singamsetti.9

Let β̃t = (β̃1t, β̃2t, β̃3t, β̃4t)′. Then for t = 1, 2, . . . , T we assume that

β̃t = β̄ + ε̃t, (11)

where β̄ = (β̄1, β̄2, β̄3, β̄4)′, ε̃t = (ε̃1t, ε̃2t, ε̃3t, ε̃4t)′ satisfies equation (3) with
m = 4, and ãt = (ã1t, ã2t, ã3t, ã4t)′. Equation (7) is the case K = m = 4, L =
I4, and all the elements of zt other than the first element are equal to zero of
equation (2).

Since we want to discern the effect on ỹt of only x̃2t, we follow Pratt and
Schlaifer10 in assuming that x̃2t is the only factor (simply put, a factor is a variable
whose value can be manipulated) and z̃1t and z̃2t are concomitants (a concomitant
is a variable, the manipulation of whose value does not make sense). In terms of
these variables, equation (5) can be written as

ỹt = (1, x2t)

(
π11 π12 π13

π21 π22 π23

) 1
z1t

z2t

+ (1, x2t)

(
ε̃1t

ε̃2t

)
, (12)

where xt = (1, x2t)′, zt = (1, z1t, z2t)′, ỹt, x2t, z1t, and z2t are as defined in
equation (6), K = 2, p = 3, m = 2, Π = (πij) is a 2 × 3 matrix, and L = I2.

Note that equation (6) is not an example of equation (1) but of an equation
obtained by including concomitants in equation (1) rather than in equation (2).
While equation (6) decomposes the coefficient on x̃2t into β̄2 + ε̃2t, equation (8)
decomposes the same coefficient into π21 + π22z1t + π23z2t + ε̃2t, as in equation
(2), where π21 is the coefficient on x2t and π22 and π23 are the coefficients on the
interactions of x2t with z1t and z2t, respectively. Since z1t and z2t are substantially
influenced by the Federal Reserve’s policies, equation (8) attempts to measure the

9Swamy, P.A.V.B., B.R. Kolluri and R.N. Singamsetti (1990), “What Do Regressions of Interest
Rates on Deficits Imply?,” Southern Economic Journal, 56, 1010-1028.

10Pratt, J.W. and R. Schlaifer (1984), “On the Nature and Discovery of Structure,” Journal of
the American Statistical Association, 79, 9-21, 29-33 and Pratt, J.W. and R. Schlaifer (1988), “On
the Interpretation and Observation of Laws,” Journal of Econometrics, Annals, 39, 23-52.
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effect of budget deficits on a short-term interest rate, which is realizable in an
economic environment influenced by the Federal Reserve.

Two viewpoints dominate most analyses of the effects of federal deficits on inter-
est rates. The conventional view is that large federal deficits drive up interest rates.
This view is supported by equation (6) if β̄2 is positive and does not contain any
proxy effects and by equation (8) if π21 is positive and the sum π22z1t+π23z2t+ε̃2t

accurately measures the proxy effects contained in β̃2t. The “Ricardian equivalence
proposition” which challenges the conventional view, is supported by equation (6)
if β̄2 measures the direct effect of x̃2t on ỹt and is equal to zero and by equation
(8) if π21 = 0 and measures accurately the direct effect of x̃2t on ỹt.

To estimate and validate equations (6) and (8), we use Swamy et al.’s11 quarterly
data on the variables ỹt, x̃2t, z̃1t, and z̃2t for the U.S. for the period 1960:Q1-
1986:Q4. These data are presented in Table 1. The data on z̃1t were generated by
using the estimates of a fixed-β model which performed better than several other
fixed-β models in prediction. The total period, 1960:Q1-1986:Q4, was split into two
subperiods, 1960:Q1-1983:Q4 and 1984:Q1-1986:Q4. The first subperiod was used
as the fitting period and the second subperiod was used as the forecast period.

If assumption (3) is true, then there is the problem of precisely determining the
true values of the nuisance parameters Φ and ∆a. Obtaining a satisfactory solution
to this problem is of first order importance because the nuisance parameters sub-
stantially affect the accuracy with which we can estimate (or predict) the parameters
of interest which are the elements of β̄ and Π (or the β̃t). The absence of any strong
beliefs about the true values of the nuisance parameters has led us to estimate them
from data under a variety of judgments concerning simplification. These simplifi-
cations are described in Appendix B. We may be able to discover the usefulness of
some of these simplifications after seeing how certain constrained and unconstrained
estimates of β̄, Π, Φ, and σ2

a∆a perform in terms of explanation and prediction in
different periods. For each of several simplifications and for each of 12 quarters in the
forecast period, the forecasts of yt were obtained. To generate these forecasts, mod-
els (6) and (8) were estimated using SCEP and using all the 96 observations covering
the fitting period. The results of these computations are presented in Tables 2-6.

The root mean square error (RMSE)
[

1
12

∑12
s=1(a forecast of yT+s − yT+s)2

]1
2 is

used as a measure of the inaccuracy of the forecasts of yT+s, s = 1, 2, . . . , 12, with
T referring to the last quarter of the year 1983 and s referring to a quarter in the
forecast period. The mean of the observations on ỹt in the forecast period is 7.6590.

Different sequences of parameter estimates for models (6) and (8) under different
restrictions on Φ and ∆a were obtained by an iterative application of an operational
version of the generalized least squares method, in which Swamy and Tinsley’s12

estimates of Φ and ∆a were used in place of their unknown population values. This
iterative scheme converges if Φ and ∆a are estimated subject to certain upper-bound
constraints on the eigenvalues of Φ and the Frobenius norm of ∆a. In practice we
have taken its convergence to occur when no changes in the estimates of β̄, t-ratios,

11Swamy, Kolluri and Singamsetti, op. cit.
12Chang et al., pp. 46-51.
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σ2
a, and RMSE’s printed upto 4 decimal places are observed. It is possible that the

terminal estimates of β̄, Φ, ∆a, and σ2
a given by this iterative procedure are closest

to the maximum likelihood estimates whenever the latter exist.
For estimation in models (6) and (8), we do not consider sequential methods

because forecasting without sequential estimation is more appropriate for exposing
and isolating potential weaknesses inherent in fixed-β modeling, since sequentially
updated parameter estimates would cloud the distinction between revisions of es-
timates due to changes in sample values (like adding a recent data point with or
without dropping an earlier one) involved in sequential estimation and the behav-
ior of parameters driven by potentially time-dependent processes. Thus, we do not
know whether we are estimating a fixed parameter or a variable parameter whenever
we follow sequential methods to estimate it. Moreover, Swamy and Schinasi13 have
shown that the mean square errors of predictors about actual realizations are not
necessarily minimized when fixed-β models are sequentially re-estimated and used
for prediction.

Tables 2-5 report estimates of the parameters of model (6) obtained in the follow-
ing cases. (The symbol λmax(Φ) is used below to denote the maximum eigenvalue
of Φ.)

Case 1. Φ = 0, and for i = 2, 3, 4 and for all t, the random variable ε̃it is
degenerate at 0.

Case 2. Φ = 0 and ∆a = I.
Case 3. Φ = 0 and ∆a is diagonal with nonnegative diagonal elements.
Case 4. Φ = 0 and ∆a is nondiagonal with an upper-bound constraint on its

Frobenius norm.
Case 5. (β̃1t − β̄1) = φ11(β̃1t−1 − β̄1) + ã1t, where |φ11| < 1, Eã1t =

0, Eã1tã1s = σ2
a if t = s and = 0 if t 6= s, and for i = 2, 3, 4 and all t, the

random variable ε̃it is degenerate at 0.
Case 6. Φ is diagonal with |λmax(Φ)| ≤ 0.95, 0.99, or 0.995 and ∆a is

diagonal with nonegative diagonal elements.
Case 7. Φ is diagonal with |λmax(Φ)| ≤ 0.99 or 0.995 and ∆a is nondiagonal

with an upper-bound constraint on its Frobenius norm.
Case 8. Φ is nondiagonal with |λmax(Φ)| ≤ 0.99 or 0.995 and ∆a is diagonal

with nonnegative diagonal elements.
Case 9. Φ is nondiagonal with |λmax(Φ)| ≤ 0.8, 0.95, 0.99, or 0.995 and ∆a

is nondiagonal with an upper-bound constraint on its Frobenius norm.
The following remarks clarify our estimation procedure further.

1. Since the least-squares criterion is appropriate in Case 1, the first row of Table
2 gives the least squares estimates of the parameters of model (6). These
estimates were used as starting values for generating a sequence of parameter
estimates in Case 5. Note that in Case 5, model (6) reduces to a fixed-β
model with first-order autoregressive (denoted by AR(1)) errors. Since SCEP
is based on a derivative-free approach, the estimates given in Table 2 for Case

13Swamy, P.A.V.B. and G.J. Schinasi (1989), “Should Fixed Coefficients be Re-estimated Every
Period for Extrapolation?” Journal of Forecasting, 8, 1-17.
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5 are more accurate than those given by a nonlinear least squares program
which uses analytical or numerical derivatives.

2. The estimates given in the second row of Table 2 were used as starting values
for generating sequences of parameter estimates in Cases 3-9, excluding Case
5. Some of these sequences converged to either one point or several points
in the parameter space. We indicate this by putting a superscript c on the
numbers of the final iterations of these sequences. Initial iterations are labeled
“0.”

3. In Case 6 with the restriction that |λmax(Φ)| ≤ 0.99, the sequence of pa-
rameter estimates generated by our iterative scheme converged to 5 different
points. It can be seen from the entries in rows, labeled “6,” of Table 2 that
these points are not very far apart. These points did not change very much
when the estimates obtained in Case 6 and iteration 3 were used as starting
values. (Compare the estimates given in rows, labeled “6,” of Tables 2 and 3.)
When we imposed the restriction that |λmax(Φ)| ≤ 0.995, the sequence of
parameter estimates generated by our iterative scheme converged to one point
in the parameter space, as can be seen from Table 4.

4. When a prespecified upper bound for the number of iterations was 30, conver-
gence of our iterative scheme did not occur in Cases 8 and 9 (see Table 2). It
occurred when |λmax(Φ)| is constrained not to lie very close to 1 (see Table
5).

5. The estimates of σ2
a given in the last columns of Tables 2-5 do not measure

the goodness of fit of equation (6) because the error covariance matrix of this
equation is σ2

aΣy which is shown in Appendix C. The smaller the estimates
of the elements of Σy, the bigger the estimates of σ2

a and vice versa.

The entries in the RMSE columns of Tables 2-5 show that the points to which
different estimate sequences converged do not provide the smallest RMSE’s. A
striking implication of our results (some of which are not presented in Tables 2-5)
is that with a few exceptions, model (6), when fitted by an iterative application of
Swamy and Tinsley’s operational generalized least squares procedure subject to the
restictions that (i) Φ is diagonal with |λmax(Φ)| ≤ 0.99 and (ii) ∆a is diagonal
with nonnegative diagonal elements, has produced in every iteration starting with
the second, a RMSE of forecasts which is smaller than that produced in any iteration
in any other case we considered. The range of RMSE’s obtained in iterations 2-49
in Case 6 with |λmax(Φ)| ≤ 0.99 is (0.3680-0.4843). We can conclude from Table
2 that the model given by equations (6) and (7) does not generally perform very
well in prediction whenever the estimates of β̄2 are positive. Perhaps this result is
a consequence of the fact that model (6) does not rule out negative values for the
variable ỹt − β̃3tz1t which can be interpreted as a real rate. Negative values for a
real rate are meaningless. In any case, we cannot conclude from any of these results,
however, that the conventional view concerning the effects of government deficits on
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interest rates is incorrect because our assumption that β̄2 does not contain any
terms contributing to proxy effects may be false.

Tables 6 and 7 report estimates of the parameters of model (8) for two different
upper-bound constraints on |λmax(Φ)|. It can be seen from the entries in these
tables that several estimates of π21 including those which have yielded good forecasts
are positive. Even though a sequence of estimates obtained in Case 6 converges to
three points given in Table 7, it is inconclusive because it converges to both negative
and positive estimates of π21. The estimate sequence obtained in Case 7 converges
to a point in the parameter space which performs well in prediction and the estimate
of π21 implied by this point is positive. This result supports the conventional view
if π21 measures accurately the direct effect of x̃2t on ỹt and if the t-ratio given in
parenthesis below the estimate of π21 does not provide strong evidence against the
hypothesis that π21 6= 0.

Tables 2 and 6 might be compared to determine whether one of models (6) and
(8) has a clear advantage over the other in terms of explanation and prediction.
From the preceding discussion it follows that in making these comparisons, cases
other than Case 6 for model (6) and Case 7 for model (8) can be ignored. Relative
to model (8) in Case 7, the RMSE’s for forecasts from model (6) in Case 6 are
generally substantially lower. To the extent that β̄2 is not as good a measure of the
direct effect of x̃2 on ỹ as π21 is, then this gain in predictive accuracy offered by
model (6) in Case 6 occurs at the cost of a loss in explanatory power. The question
of what form of equation (6) or (8) performs well in both explanation and prediction
is still open. However, it appears that the inclusion in equation (2) of concomitants
that absorb proxy effects can have a payoff in terms of explanatory power.

As a final remark, we point out that one out of 21 estimates of β̄2 given in Table
2 and one out of 17 estimates of π21 given in Table 6 are significantly different
from zero on the convention that a t-ratio is greater than 2 in absolute value. This
result does not imply that the variable x̃2t must be excluded from equations (6)
and (8). The concomitants that substantially reduce the omitted variables biases in
the estimates of β̄2 and π21 are likely to be highly correlated with the x̃2t and this
high correlation results in low t-ratios. As Pratt and Schlaifer14 show, exclusion of
a variable because its estimated coefficient is not significantly different from zero
is wrong if the variable is a factor. It is better to include a concomitant that
substantially reduces the bias in an estimate of a factor’s effect than to exclude it
even if its inclusion means reducing the t-ratio of the estimate.

14Pratt and Schlaifer 1984, op. cit., p. 19.
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Appendices

Appendix A: Estimation of Direct Effects–A
Step-by-Step Argument

Question: Why should any economist use SCEP?
To answer this question, consider the usual case where an economist wants to

estimate an equation relating ỹt to x̃1t, . . . , x̃Kt. If such a relationship exists, then
it can be represented by:

ỹt = ft(x̃1t, . . . , x̃Kt, ẽ1t, ẽ2t, . . . , ẽrt), (13)

where ẽ1t, ẽ2t, . . . , ẽrt represent unknown and/or unobservable variables that pos-
sibly affect ỹt.

If, in empirical econometrics that relies on equation (9), no assumption other
than equation (9) is needed, then econometrics is a user-friendly subject. Unfortu-
nately, in this research, the following questions arise:

Set I: What are the conditions under which equation (9) exists? How can one
verify these conditions?

Set II: What is the correct parametric form of f if equation (9) exists? If this
form is unknown, as it usually is, can one specify it so that the specified func-
tion coincides with a stochastic law? What are the conditions under which such a
coincidence occurs? How can one decide whether these conditions are or are not
satisfied?

Set III: Are the x̃jt independent of the ẽit? If they are not, then what is the
right way to estimate and interpret the parameters of f?

Set IV: Are the coefficients on x̃1t, x̃2t, . . . , x̃Kt, ẽ1t, ẽ1t, . . . , ẽrt in the true
parametric form of f constant?

Set V: If some random variables are used as proxies for the ẽit, then what are
their statistical consequences?

Set I of questions is important because any model which does not exist could not
have generated our data and should not be used for their analysis.15 Specification
problems exist in econometrics because the answers to all these sets of questions
are unknown. However, as we argue below, they become less serious if equation (5)
rather than its fixed-β version is adopted.

To answer Set II of questions, we need to consider Pratt and Schlaifer’s16 condi-
tions under which an observed distribution conforms to a stochastic law. These con-
ditions which are stated at the end of this section are not automatically satisfied if we
interpret equation (9) to refer to the sum of a parametric form of f(x1t, . . . , xKt; α)
and random disturbance. Yet it is a common practice in econometric model-building
to derive a mathematical function of x1t, . . . , xKt, and then at some final stage to
simply tack on an error term without any discussion on the possible meaning and
real-world sources of the probabilities implied by the assumed error distribution.

15For further discussion of this point, see Swamy, P.A.V.B. and P. von zur Muehlen (1988),
“Further Thoughts on Testing for Causality with Econometric Models,” Journal of Econometrics,
Annals, 39, 105-147.

16Pratt and Schlaifer 1988, op. cit., p. 37
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In laying out a tentative model, let us deviate from this practice. Without
imposing an arbitrary functional form, equation (9) can be written as

ỹt =
K∑

j=1

xjtα̃jt +
r∑

i=1

ẽitδ̃it, (14)

where x1t = 1 for all t. For certain variations in the α̃jt and δ̃it, this equation
coincides with equation (9) if the latter exists. More recently, Klein17 has argued
that “Random parameters and systematic changes in parameters may be evidence of
nonlinearities that have not been adequately captured in a model’s specification.”(p.
290). For example, if equation (9) is a constant elasticity of substitution production
function, then the variations in the α̃jt and δ̃it for which equation (10) coincides with
equation (9) are shown in Narasimham, Swamy and Reed.18 A matrix formulation
of equation (10) is

ỹt = α̃1t + x′
2tα̃2t + ẽ′

tδ̃t, (15)

where the scalar α̃1t represents the time-varying intercept, x2t = (x2t, . . . , xKt)′

is a (K − 1)-vector of observations on (K − 1) regressors, α̃2t = (α̃2t, . . . , α̃Kt)′

is a (K − 1)-vector of coefficients, ẽt = (ẽ1t, . . . , ẽrt)′ is a r-vector of excluded
variables, and δ̃t = (δ̃1t, . . . , δ̃rt)′ is a r-vector of coefficients. Assume that the
data on ỹt and x̃2t for t = 1, 2, . . . , T are available.

Equation (11) yields perfect predictions of as yet unobserved values of ỹt if it
is deterministic. The condition under which equation (11) is deterministic is of
course the usual one: For all t, the sum of α̃1t, x′

2tα̃2t, and ẽ′
tδ̃t predicts yt with

zero mean square error. According to Pratt and Schlaifer,19 if this condition is
satisfied, then ẽt is “a sufficient set.” The α̃1t, α̃2t, and δ̃t can be assumed to be
constants (or degenerate) as in Pratt and Schlaifer20 if the true relation of ỹt to x2t

and ẽt is known to be linear.21 Otherwise, equation (11), quite possibly, provides
a better approximation to the true relation than an exact parametric form of the
nonlinear regression ỹt = ft(x̃2t, ẽt; α) because with the true parametric form
being unknown, there is, after all, no guarantee that any of the “exact” forms will
in fact be exact. Thus, by assigning time-varying coefficients to x2t and ẽt we are
not assuming any particular parametric form not implied by the theory.

However, the unobservables of equation (11) are not unique. To see this, consider
the usual case, where r is greater than K, and let δ̃1t be a (K−1)-vector consisting
of any (K −1) elements of δ̃t. Then adding and subtracting the term x′

2tδ̃1t on the
right-hand side of equation (11) give ỹt = α̃1t +x′

2t(α̃2t + δ̃1t)+ẽ∗′
t δ̃t, where ẽ∗

t is
obtained by subtracting x2t from the subvector of ẽt whose coefficient vector is δ̃1t.

17Klein, L.R. (1989), “Developments and prospects in macroeconomic modeling,” Eastern Eco-
nomic Journal, XV, 287-304.

18Narasimham, G.V.L., P.A.V.B. Swamy and R.C. Reed (1988), “Productivity Analysis of U.S.
Manufacturing Using a Stochastic-Coefficients Production Function,” Journal of Business & Eco-
nomic Statistics, 6, 339-349.

19Pratt and Schlaifer 1984, op. cit., p. 13.
20Pratt and Schlaifer 1984, op. cit., p. 13.
21A random variable is said to be degenerate if it takes a single value with probability 1.

64



This result can also be written as ỹt = α̃1t + x′
2t(α̃2t + δ̃1t) + (ẽ∗′

t P )(P −1δ̃t),
where P is any nonsingular matrix. Since the ẽt and the coefficients of equation (11)
are unknown, equation (11) and the equations, ỹt = α̃1t + x′

2t(α̃2t + δ̃1t) + ẽ∗′
t δ̃t

and ỹt = α̃1t +x′
2t(α̃2t + δ̃1t)+ (ẽ∗′

t P )(P −1δ̃t), are (observationally) equivalent
implying the same distribution for ỹt. From this result it follows that (i) equation
(11) has an infinite number of equivalent representations, (ii) in the regressions of
ỹt on x2t, the vector ẽ∗

t (or P ′ẽ∗
t ) is just as much an excluded variable as ẽt,

and (iii) the fixed-coefficients model ỹt = f(x2t; α) + ξ̃t cannot describe every
equivalent representation of equation (11) unless it is both equivalent to equation
(11) and not invariant under changes in the parametrization of equation (11). Unlike
equation (11), real-world relations are unique, as Basmann22 has shown. That is,
real-world relations do not change merely because of changes in the parametrization
of equation (11). This proves that the correspondence between a real-world relation
and equation (11) is one-to-many if one of the parametrization of the latter is true
and does not exist otherwise. The fixed-coefficients model ỹt = f(x2t; α) + ξ̃t is
true if it coincides with a parametrization of equation (11) which is true. These
results have led Basmann23 to say that econometricians should not restrict their
analysis to one particular parametrization of equation (11).

Because of their nonuniqueness, assumptions about the unobservables of equa-
tion (11) may be logically inconsistent. Swamy and von zur Muehlen24 show that
specification errors arise if the assumptions underlying a representation of model
(9) are not consistent. Zellner25 agrees with this view, emphasizing that an anal-
ysis or theory that involves logical inconsistencies is not acceptable as a scientific
explanation of observed phenomena. The following is an example of an inconsistent
set of assumptions. Since at least one of ẽt and ẽ∗

t must be correlated with x̃2t,
the assumption that the x̃2t be uncorrelated with ‘the’ unknown excluded variables
which could be any one of the vectors ẽt, ẽ∗

t , and P ′ẽ∗
t , is meaningless and the

stronger assumption that the x̃2t be uncorrelated with any of ẽt, ẽ∗
t , and P ′ẽ∗

t is
false, as Pratt and Schlaifer26 show. According to them,27 “A condition for consis-
tent estimation stated in virtually every book on econometrics is meaningless in one
common form, impossible to satisfy in another.” This proves that any regression
of ỹt on x2t does not satisfy the logical consistency condition if its error term is
thought of as the joint effect of ‘the’ unknown excluded variables and if x̃2t or any
of its subvectors is assumed to be uncorrelated with those excluded variables.

To avoid the restriction that x2t be uncorrelated with any of ẽt, ẽ∗
t , and P ′e∗

t ,
we combine equation (11) with the plausible equation

ẽt = Ψ̃tx2t + ṽt, (16)
22See pp. 74-76 of Basmann, R.L. (1988), “Causality Tests and Observationally Equivalent

Representations of Econometric Models,” Journal of Econometrics, Annals, 39, 69-104.
23Basmann, op. cit., pp. 75-76.
24Swamy and von zur Muehlen, op. cit., p. 119.
25Zellner, A. (1988), “Causality and Causal Laws in Economics,” Journal of Econometrics, An-

nals, 39, 7-21.
26Pratt and Schlaifer 1984, op. cit., pp. 11-12.
27Pratt and Schlaifer 1984, op. cit., p. 9.
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where the r × (K − 1) matrix Ψ̃t and the r-vector ṽt are possibly random. For
certain variations in Ψ̃t and ṽt, this equation coincides with the true relation of ẽt

to x̃2t if the latter exists. Substituting (12) for ẽt in (11) gives

ỹt = (α̃1t + ṽ′
tδ̃t) + x′

2t(α̃2t + Ψ̃′
tδ̃t)

= x′
tβ̃t (t = 1, 2, . . . , T ), (17)

where xt = (1, x′
2t)

′ and β̃t = [(α̃1t + ṽ′
tδ̃t), (α̃2t + Ψ̃′

tδ̃t)′]′. This equation is
the same as equation (1). The terms α̃2t and Ψ̃′

tδ̃t of β̃t are needed to measure the
direct and proxy effects of x2t on ỹt, respectively.

Alternatively, if the equation ỹt = α̃1t + x′
2t(α̃2t + δ̃1t) + ẽ∗′

t δ̃t is considered,
then it can be combined with the equation ẽ∗

t = ẽt − ct = Ψ̃tx2t + ṽt − ct =
Ψ̃tx2t+ṽ∗

t , where the elements of ct are equal to the elements of x2t if the latter have
δ̃1t as their coefficient vector, and are equal to zero otherwise. This combination
results in the equation ỹt = (α̃1t + ṽ∗′

t δ̃t) + x′
2t(α̃2t + δ̃1t + Ψ̃′

tδ̃t) which is
equivalent to equation (13), since x′

2tδ̃1t = c′
tδ̃t.

The vector ṽt (or ṽ∗
t ) is the remainder of ẽt (or ẽ∗

t ) after the effect Ψ̃tx2t of x2t

on ẽt (or ẽ∗
t ) has been subtracted out. Although x̃2t cannot be uncorrelated with

every excluded variable that affects ỹt, it can be uncorrelated with the remainder of
every such variable.28 This shows that equation (13) containing ṽt but not ẽt has
an advantage over equation (11). It can also be seen that an effect of changing the
representation in (11) to ỹt = α̃1t + x′

2t(α̃2t + δ̃1t) + ẽ∗′
t δ̃t is to change the de-

composition (α̃1t, α̃′
2t)

′ +(ṽ′
tδ̃t, δ̃

′
tΨ̃t)′ of β̃t to (α̃1t, α̃′

2t + δ̃
′
1t)

′ +(ṽ∗′
t δ̃t, δ̃

′
tΨ̃t)′.

Thus, the decomposition of β̃t into the terms that are needed to measure direct and
proxy effects of x2t on ỹt is not unique if it is not known whether ẽt or ẽ∗

t repre-
sents excluded variables. Note that equation (11) accounts for all the explanatory
variables in equation (9) and hence does not suffer from a specification error due to
omitted explanatory variables. It has another virtue. Unlike the parametric forms
of linear and nonlinear regressions of ỹt on xt, equation (11) may be appropriate
even when the functional form of the true relationship between ỹt and xt does not
correspond to any familiar form.29

A well known axiom in the literature is that the real effects of a deliberate
change in the value of x̃2t depend not only on the magnitude of the change but
also on the timing of the change. Model (13) says exactly that. More specifically,
it implies that the ‘total’ effect on ỹt of xt relative to xt−1 is yt − yt−1 = (xt −
xt−1)′βt + x′

t−1(βt − βt−1) which depends on both the magnitude of the change
(xt − xt−1) and the time index of βt. Another important implication of model
(13) is that only the part of this total effect contributed by α2t represents a ‘direct’
effect and the other part which is due to Ψ′

tδt arises as a direct consequence of the
fact that x̃2t proxies for ẽt. Therefore, a ‘direct’ effect of xt on ỹt is not equal to
(xt − xt−1)′βt + x′

t−1(βt − βt−1) unless equation (13) is applied to situations,

28See Pratt and Schlaifer 1984, op. cit., p. 14.
29By contrast, a simultaneous-equation model for ỹt does not account for all possible functional

forms of equation (9), does not account for the nonuniqueness of the unobservables of equation
(11), and assumes, perhaps inconsistently, that some of the x’s are uncorrelated with the e’s.
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where x̃t does not proxy for ẽt. Characterizations of such situations are given by
Pratt and Schlaifer.30

Zellner31 makes an additional point that model (13) must be shown to work well
in explanation and prediction of ỹ over a broad range of conditions and data before
it is elevated to the status of a causal law. It is not difficult to see that equation (13)
always performs well in explanation and prediction if α̃2t 6= 0 almost surely for all
t and can be separated from Ψ̃′

tδ̃t whenever the latter is different from a null vector
with probability 1 for all t. Also, equation (13) with α̃2t = 0 with probability 1
for all t cannot provide any explanation of ỹ but is of use in predicting ỹ, provided
Ψ̃t 6= 0 with probability 1 for all t. Thus, a variable that does not affect ỹ may
nevertheless be of use in predicting ỹ because it proxies for an excluded variable
that does affect ỹ.

To separate Ψ̃′
tδ̃t from α̃2t, we assume that β̃t satisfies the equation

β̃t = Πzt + Lε̃t, (18)

which is the same as equation (2). This completes the derivation of equation (5)
which reveals that the stochastic coefficients model given by equations (1) and (2)
can be transformed into a fixed-coefficient model, the source whose disturbance term
is the second term on the right-hand side of equation (2). Quite possibly, this second
term is a vector and not a scalar because it is difficult to find zt such that all the
elements of β̃t other than the first element are exactly equal to the corresponding
elements of Πzt. Thus, the fixed-coefficient model (5) is different from the fixed-β
version of equation (1). This version is usually obtained by adding (or multiplying)
random disturbance to (or by) a mathematical formula. This random disturbance
is enigmatic because its real-world sources and interpretations are not clear.

The usefulness of equation (14) becomes apparent when Π is partitioned as

Π =

(
π11 π′

12

π21 Π22

)
, where π11 is a scalar, π21 and π12 are (K −1)- and (p−1)-

vectors, respectively, and Π22 is (K − 1) × (p − 1). Partitioning zt in conformity
with the partitioning of Π as zt = (z1t, z′

2t)
′ gives x′

tβ̃t = (α̃1t+ṽ′
tδ̃t)+x′

2t(α̃2t+
Ψ̃′

tδ̃t) = x′
tΠzt + x′

tLε̃t = (π11 + π′
12z2t) + x′

2t(π21 + Π22z2t) + x′
tLε̃t. This

formulation shows that the vector π21 measures the mean of α̃2t if the z̃2t are
highly correlated with the Ψ̃′

tδ̃t but independent of the α̃2t. The z2t need not be
included in equation (14) if the expected values of ṽ′

tδ̃t and Ψ̃′
tδ̃t are zero and the

expected value of α̃2t is nonzero. Note that Pratt and Schlaifer’s32 approach differs
from our approach in that it includes concomitants in equation (13) rather than in
equation (14). Inclusion of concomitants in equation (13) was enough because they
were dealing with linear models with constant coefficients.

The model given by equations (13) and (14) may be neither too broad nor too
narrow if the error vector {ε̃t} is assumed to satisfy the difference equation

ε̃t = Φε̃t−1 + ãt, (19)
30Pratt and Schlaifer 1984, op. cit., p. 15-16.
31Zellner, op. cit., pp. 8-9.
32Pratt and Schlaifer 1984, op. cit., p. 17.
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which is the same as equation (3).

Assumption 1 The variables x̃t and z̃t are statistically independent of ε̃t.

Pratt and Schlaifer’s33 definition of genetic distributions should suffice to suggest
the various ways in which Assumption 1 can be satisfied in the linear case. For
example, x̃t will be uncorrelated with ṽt if the conditional distribution of ẽt given
a value of x̃t implied by equation (12) coincides with the distribution that would be
realized if x̃t were held fixed at that value. Since Lε̃t is the remainder of β̃t after
the effect Πzt of z̃t on β̃t has been subtracted out, it can be independent of z̃t.
If x̃t is assumed to be correlated with β̃t, then it can be included in equation (14)
as a subvector of zt. This shows that unlike the absence-of-correlation assumption
between x̃t and ẽt (or ẽ∗

t ), Assumption 1 can be true.
Equations (14) and (15) are the expressions of our beliefs about the coefficient

vector of model (13) whose structure does not involve logical or mathematical con-
tradictions. The parameter matrices of model (13) are Π, Φ, and σ2

a∆a. Certainly,
it would be a mistake to think of these parameters as a description of a reality
when, in fact, they are Greek letters, divorced from the reality they are supposed to
represent.34 Such mistakes can be avoided if model (5) coincides with a stochastic
law defined by Pratt and Schlaifer.35

In preparation for stating their definition of a law, we need to replace the ob-
served outcome notation yt by a potential outcome notation because it is the exis-
tence of potential values that distinguishes a law from a statistical association. Let
x̃t denote a vector of factors whose values can be deliberately manipulated. Let
z̃xt denote a vector of concomitants. Suppose that ỹxzt denotes a set of random
variables, one for each possible value of x̃t, each realized value of z̃xt and each t and
that there exists a vector of random variables, denoted by ãxzt, whose distribution
is conditional on the realized value of z̃xt but is defined for each possible value of
x̃t whether or not this possible value is realized. Suppose also that the z’s and a’s
are generated by a single random process following a joint distribution in which for
each x, the marginal distribution of the z̃’s is arbitrary but given any one pair of
values of x̃t and z̃xt, the ãxzt are identically and independently distributed (iid).

Then according to Pratt and Schlaifer,36 ỹ is related to x̃ and z̃ by a law with
concomitants if there exists a function f which on the tth observation associates
with every possible value of x̃t and realized value of z̃xt a random variable, ỹxzt =
f(xt, zt, ãxzt), and a potential value, yxzt = f(xt, zxt, axzt). This value is called
‘potential’ because it is not always realized. It will be realized on any one observation
t if it corresponds to the realized value x of x̃t.

Pratt and Schlaifer37 prove that when the value and the variance of ãxzt do
not depend on xt, the law, ỹxzt = f(xt, zt, ãxzt), is observable if x̃t and ãxzt are

33Pratt and Schlaifer 1984, op. cit., p. 15.
34See p. 55 of Lindley, D.V. (1990), “The 1988 Wald Memorial Lectures: The Present Position

in Bayesian Statistics,” Statistical Science, 5, 44-89.
35Pratt and Schlaifer 1988, op. cit., pp. 28 and 35.
36Pratt and Schlaifer 1988, op. cit., pp. 28 and 35.
37Pratt and Schlaifer 1988, op. cit., p. 37.
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statistically independent given z̃xt = zxt for all t. Since the value and the variance
of the error in equation (5) depend on xt, the law is observable if Assumption 1 is
true.38 Therefore, under Assumption 1, model (5) coincides with the law, in which
case Π and ε̃t are unique because the law specifies a unique distribution. It shuld
be noted that the derivation of the condition for the observability of a law entails
two steps:

• Recognizing that causal inferences can be soundly drawn from data obtained
by randomized experimentation.

• Showing that non-randomized circumstances correspond to randomized cir-
cumstances if they adequately conform to the observability conditions which
are satisfied in randomized studies.39

For example, from a strong sample multiple correlation between y and x we are
permitted to conclude that the value of y is largely determined by x only when the
sample is generated by a randomized experiment. In non-randomized circumstances,
this permission is granted to us only when these circumstances adequately conform
to critical assumptions which are satisfied in randomized circumstances.

The total number of parameters in model (5) is n = Kp+m2+[m(m+1)/2]+
1. Nothing in the definition of the law requires that some of these parameters be
equal to zero. This fact is usually obscured by the practice of using the a priori
restrictions that will reduce model (5) to a fixed-β model. When n > T , such
practices, though ad hoc, may be unavoidable. But whatever statistical estimates
of the parameters of a special case of (5), their signs, their ‘large sample t-statistics’
seem to tell us about a reality, may be false, and is due partly to the imposition
of a set of arbitrary restrictions on model (5). When n < T , there are no grave
difficulties in implementing a general stochastic coefficients approach, as shown in
Section 7.

38Pratt and Schlaifer 1984, op. cit., p. 33.
39Pratt and Schlaifer 1988, op. cit., pp. 23-24.
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Appendix B: The Special Cases of a Stochastic
Coefficients Model

The framework outlined in Section 2 is useful for estimating not only the very general
fixed-coefficients model (5) but also a variety of models that have been considered
in theoretical and applied econometrics.

Special Case I of Equation (5): Classical Linear Fixed-β
Model

To get a classical linear fixed-β model from equation (5), impose the following
restrictions:

(Ia) zt = (1, 0, . . . , 0)′,

(Ib) p = 1,

(Ic) m = K,

(Id) Φ = 0,

(Ie) L = IK ,

(If) ∆a =


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 . (20)

Linear restrictions on the first column of Π will be present if some of the first K
rows of RΠ defined in equation (4) are not null.
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SCEP imposes restrictions (Ia) − (If) on equation (5) if you fill out the
PARAMTR, DDATA1, DDATA2, RCFDT, and RVCDT files as follows:

PARAMTRS FILE

M = K
(Note: Here K stands for the number of independent variables in equation (1).)
P = 1
Z-VECTORS = DEFAULT
L-MATRIX = DEFAULT
ZERO PHI = YES
DIAGONAL DELTA = NO
INITIAL PHI MATRIX = DEFAULT
INITIAL DELTA MATRIX = USER’S
NUMBER OF ROWS IN LINEAR RESTRICTION ON PHI = 0
NUMBER OF ROWS IN LINEAR RESTRICTION ON DELTA = K(K+1)/2
OLS = YES
END OF DATA
//
(Note: Other fields in the PARAMTRS file should also be filled appropriately.)
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FILE DDATA1

� 80 spaces -

DCW spaces DCW spaces · · · DCW spacesa

1.0
1.0 0.0 · · · 0.0
0.0 0.0 · · · 0.0
...

...
...

0.0 0.0 · · · 0.0

END OF DATA
//

aContinued in DDATA2.

FILE DDATA2

� 80 spaces -

DCW spaces · · · DCW spaces
0.0 · · · 0.0
0.0 · · · 0.0
...

...
0.0 · · · 0.0

END OF DATA
//
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FILE RCFDT

� 80 spaces -

DCW spaces DCW spaces DCW spaces
1 1 1.0
2 2 1.0
3 3 1.0
...

...
...

K(K+1)/2 K(K+1)/2 1.0

END OF DATA
//

FILE RVCDT

� 80 spaces -

DCW spaces DCW spaces
1 1.0
2 0.0
3 0.0
...

...
K(K+1)/2 0.0

END OF DATA
//

You can use only the restrictions (Ic) − (Ie) without the restrictions (Ia) and
(Ib) by writing P = the number of z’s in equation (2), Z-VECTORS = USER’S to
the PARAMTRS file, and typing the data on the z’s in the ZDATA1 and ZDATA2
files.
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Special Case II of Equation (5): A Linear Fixed-β
Model with AR(1) Errors

A linear fixed-β model in which the disturbances follow an autoregressive process
of order 1 (AR(1)) is given by equation (5) when this equation is subjected to the
following restrictions:

(IIa) zt = (1, 0, . . . , 0)′,

(IIb) p = 1,

(IIc) m = K,

(IId) Φ =


φ11 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 ,

(IIe) L = IK ,

(IIf) ∆a =


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 . (21)

Linear restrictions on the first column of Π will be present if some of the first K
rows of RΠ defined in equation (4) are not null.
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To impose the restrictions (IIa)−(IIf) on equation (5), fill out the PARAMTR,
DDATA1, DDATA2, RCFDT, RVCDT, RCFPH, and RVCPH files as follows:

PARAMTR SFILE

M = K
(Note: Here K stands for the number of independent variables in equation (1).)
P = 1
Z-VECTORS = DEFAULT
L-MATRIX = DEFAULT
ZERO PHI = NO
DIAGONAL PHI = NO
DIAGONAL DELTA = NO
INITIAL PHI MATRIX = DEFAULT
INITIAL DELTA MATRIX = USER’S
NUMBER OF ROWS IN LINEAR RESTRICTION ON PHI = K2 − 1
NUMBER OF ROWS IN LINEAR RESTRICTION ON DELTA = K(K+1)/2
OLS = NO
GLS = YES
END OF DATA
//
(Note: Other fields in the PARAMTRS file should also be filled appropriately.)

The files DDATA1, DDATA2, RCFDT, and RVCDT are the same as those in
Case I.
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FILE RCFPH

� 80 spaces -

DCW spaces DCW spaces DCW spaces
1 2 1.0
2 3 1.0
3 4 1.0
...

...
...

K2 − 1 K2 1.0

END OF DATA
//

FILE RVCPH

� 80 spaces -

DCW spaces DCW spaces
1 0.0
2 0.0
3 0.0
...

...
K2 − 1 0.0

END OF DATA
//

You can impose the restrictions (IIc) − (IIf) without the restrictions (IIa)
and (IIb) by writing P = the number of z’s in equation (2), Z-VECTORS =
USER’S to the PARAMTRS file, and typing the data on the z’s in the ZDATA1
and ZDATA2 files.
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Special Case III of Equation (5): A Linear Fixed-β
Model with Heteroscedastic Disturbances

If only heteroscedasticity is present in a linear fixed-β regression model, then the
following restrictions may be imposed on equation (5):

(IIIa) zt = (1, 0, . . . , 0)′,

(IIIb) p = 1,

(IIIc) m = K,

(IIId) Φ = 0,

(IIIe) L = IK ,

(IIIf) ∆a = (1/σ2
a)


σ11 0 · · · 0
0 σ22 · · · 0
...

...
...

0 0 · · · σKK

 . (22)

Linear restrictions on the first column of Π will be present if some of the first K
rows of RΠ defined in equation (4) are not null.
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To impose the restrictions (IIIa)−(IIIf) on equation (5), fill out the PARAMTRS
file as follows:

PARAMTRS FILE

M = K
(Note: Here K stands for the number of independent variables in equation (1).)
P = 1
Z-VECTORS = DEFAULT
L-MATRIX = DEFAULT
ZERO PHI = YES
DIAGONAL PHI = NO
DIAGONAL DELTA = YES
INITIAL PHI MATRIX = DEFAULT
INITIAL DELTA MATRIX = DEFAULT
NUMBER OF ROWS IN LINEAR RESTRICTION ON PHI = 0
NUMBER OF ROWS IN LINEAR RESTRICTION ON DELTA = 0
OLS = NO
GLS = NO
END OF DATA
//
(Note: Other fields in the PARAMTRS file should also be filled appropriately.)

If you relax the restriction (IIIf) to make ∆a non-diagonal, then you obtain
a general type of heteroscedasticity.
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Special Case IV of Equation (5): A Shifting Fixed-β
Model

Equations (1)-(3) represent temporal shifts in the regression of ỹt on xt if

(IV a) zt = (d1t, d2t, . . . , dpt)′, (23)

where d1t, d2t, . . . , dpt are a set of p dummy variables. This definition of zt may
be combined with any of the definitions of Φ, L, and ∆a given in Cases I, II, and
III.

In the conventional approach, dummy variables are sometimes used to repre-
sent a finite number of shifts in some or all the coefficients of a regression model
without allowing any shifts in the variance of the error distribution. Not all of
these shifts may be temporary but some of them may persist indefinitely. Typically,
the timing of any of these shifts will be unknown to the modeler. Use of dummy
variables will reliably detect a shift only if the preselected location of the break is
close to the true break, if the model used to represent this break is true, and if
there are sufficient observations before and after the true break. By contrast, the
approach based on equation (1) permits model coefficients to vary every period or
continuously over time. This variation introduces continuous temporal variation in
both the mean and the variances and covariances of a dependent variable, as can be
seen from equation (5). The variation in the mean is consonant with the variation
in the variances and covariances. The stochastic coefficient analysis employs less-
restrictive assumptions–notably, that the timing of a coefficient change is generally
unknown and that coefficient changes may be intrinsically evolutionary, with some
coefficients subject to changes every period and others to infrequent changes. This
analysis assumes also that coefficient changes may be partly transient and may pro-
vide only partial predictions of future values of the model coefficients (see Fuhrer
and Tinsley).40

Furthermore, shift adjustments typically represent our ability to accommodate
events after they happen. In any research program, the problem of finding evidence
against a theory, or equivalently, the problem of finding outcomes that have a small
probability of occurring whenever a theory is true can really not be solved by use
of dummy variables in post hoc adjustments.

Special Case V of Equation (5): A Non-Linear
Fixed-Coefficients Model

If the elements of zt are some functions of xt, then equation (5) represents a non-
linear relationship. Flexible functional forms introduced in Diewert and Wales41

also fall out as special cases of equation (5). For example, equation (5) represents a
flexible functional form if

40Fuhrer, J.C. and P.A. Tinsley (1990), “Continuous versus One-time Changes in Policy Trans-
mission Channels,” Federal Reserve Bulletin, 76, 1004-8.

41Diewert, W.E. and T.J. Wales (1987), “Flexible Functional Forms and Global Curvature Con-
ditions,” Econometrica, 55, 43-68.
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(V a) m = K

(V b) p = K

(V c) zt = xt,

(V d) Π = Π′,

(V e) Φ =


φ11 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 ,

(V f) L = IK ,

(V g) ∆a =


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 . (24)

The model satisfying these restrictions may be compared with model (5). Im-
posing the restrictions (V f) and (V g) on equation (5) amounts to adding an error
term to x′

tΠzt. It is shown in Appendix A that model (5) can approximate the true
function between ỹt and xt better than the equation, ỹt = x′

tΠzt plus an error
term, even when x′

tΠzt is a second order differential approximation to an arbitrary
twice continuously differential function at any point in an admissible domain.

To impose the restrictions (V a)−(V g) on equation (5), fill out the PARAMTR,
DDATA1, DDATA2, RCFDT, RVCDT, RCFPH, RVCPH, RCFPI, and RVCPI files
as follows:

PARAMTRS FILE

M = K
(Note: Here K stands for the number of independent variables in equation (1).)
P = K
Z-VECTORS = USER’S
L-MATRIX = DEFAULT
ZERO PHI = NO
DIAGONAL PHI = NO
DIAGONAL DELTA = NO
INITIAL PHI MATRIX = DEFAULT
INITIAL DELTA MATRIX = USER’S
NUMBER OF ROWS IN LINEAR RESTRICTION ON PHI = K2 − 1
NUMBER OF ROWS IN LINEAR RESTRICTION ON PI = K(K − 1)/2
NUMBER OF ROWS IN LINEAR RESTRICTION ON DELTA = K(K+1)/2
OLS = NO
GLS = YES
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END OF DATA
//
(Note: Other fields in the PARAMTRS file should also be filled appropriately.)

The files DDATA1, DDATA2, RCFDT, RVCDT, RCFPH, and RVCPH are the
same as those in Case II.
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FILE RCFPI

� 80 spaces -

DCW spaces DCW spaces DCW spaces
1 2 1.0
1 K + 1 −1.0
2 3 1.0
2 2K + 1 −1.0
3 4 1.0
3 3K + 1 −1.0
...

...
...

K − 1 K 1.0
K − 1 K(K − 1) + 1 −1.0

K K + 3 1.0
K 2(K + 1) −1.0
...

...
...

2K − 3 2K 1.0
2K − 3 K(K − 1) + 2 −1.0

...
...

...

K(K − 1)/2 K(K − 1) 1.0
K(K − 1)/2 (K + 1)(K − 1) −1.0

END OF DATA
//

This file specifies the subscripts and values of only the nonzero elements of RΠ

defined in equation (4). If the ijth element of RΠ, denoted by RΠ(i, j), is nonzero,
then in the above file the value of i is entered in the first column, the value of j
is entered in the second column, and the value of RΠ(i, j) is entered in the third
column. Unfortunately, the pattern of values presented in the second column of the
above file may not be as clear as it should be. The easiest way to figure out this
pattern is to write down explicitly the column stack of Π on paper.

FILE RVCPI

� 80 spaces -

DCW spaces DCW spaces
1 0.0
2 0.0
3 0.0
...

...
K(K − 1)/2 0.0
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END OF DATA
//

If the restrictions V (b), V (c), (V d), (V e) and (V g) are dropped, then SCEP
provides a general method of estimating flexible functional forms.
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Special Case VI of Equation (5): Structural
Restrictions on Equation (5)

Pratt and Schlaifer42 provide a very elegant proof of the proposition that the econo-
metrician’s definitions of exogenous and instrumental variables do not lead to con-
sistent estimates of the direct effects of xt on ỹt. Therefore, it is correct to ignore
such definitions. If these definitions are dropped, then each coefficient in equation
(1) is a sum of direct and proxy effects. Direct effects can be separated from proxy
effects by experimenting with different sets of concomitants, denoted by the zt.43

Case VII (A Generalization of Equation (5)): A
Fixed-Coefficients Model with ARMA Errors

(V IIa) m = (p + q)K,

(V IIb) Φ =



Φ1 Φ2 · · · Φp−1 Φp θ1 θ2 · · · θq−1 θq

IK 0 · · · 0 0
0 IK · · · 0 0 0
...

...
...

...
0 0 · · · IK 0

0 0 · · · 0 0
IK 0 · · · 0 0

0 0 IK · · · 0 0
...

...
...

...
0 0 · · · IK 0



,

where each of the

Φi =


φi11 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 (i = 1, 2, . . . , p)

is a K × K matrix with all of its elements other than the leading diagonal element
equal to zero, and each of the

θj =


θj11 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 (j = 1, 2, . . . , q)

is a K × K matrix with all of its elements other than the leading diagonal element
equal to zero,

(V IIc) L = [IK , 0, . . . , 0] ,
42Pratt and Schlaifer 1988, op. cit., p. 48.
43Swamy, Mehta and Singamsetti, op. cit.
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where the number of null matrices of order K × K, denoted by 0, is (p + q - 1),

(V IId) L∆aL′ =


1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 (25)

is a K × K matrix with all of its elements other than the leading diagonal element
equal to zero.

The restrictions (V IIa) − (V IId) are appropriate if all the coefficients of
equation (1) except the first coefficient are constant and the deviation of the first
coefficient from its fixed mean follows a univariate autoregressive and moving average
(ARMA) process of orders p and q.44 SCEP does not yet have the capability of
estimating equation (5) subject to these restrictions.

Case VIII (ARCH Restrictions on Equation (5)): An
ARCH Model

The autoregressive conditional heteroscedastic (ARCH) model developed by Engle45

specifies a set of restrictions on equations (1)-(3). These restrictions are

(V IIIa) replace ỹt by ỹ∗
t = (ỹt − x′

tβ), where β is fixed,
(V IIIb) replace x̃′

t by (1, ỹ∗
t−1, . . . , ỹ∗

t−K+1),

(V IIIc) Π = 0,

(V IIId) m = K,

(V IIIe) Φ = 0,

(V IIIf) L = IK ,

(V IIIg) ∆a = (1/σ2
a)


σ11 0 · · · 0
0 σ22 · · · 0
...

...
...

0 0 · · · σKK

 ,

(V IIIh) ε̃t and x̃t are independent. (26)

These restrictions do not have any obvious connection with equation (9) and are
not designed to satisfy the conditions for the observability of a law. Therefore, any
parameter of ARCH models does not have obvious economic interpretations. For
example, if the x̃t are correlated with the ẽ’s of equation (9), as they usually are,
then β does not measure the direct effect on ỹt of xt. Real-world interpretations
of ε̃t are also not obvious. Furthermore, the restriction (V IIIa) eliminates all
the advantages equation (5) has over its fixed-β version because the assumption
of the constancy of β is as severe as the assumption that the coefficients on the
nonconstant regressors of equation (1) are constant.

44Swamy and Tinsley, op. cit., p. 106.
45Engle, R. F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the

Variance of United Kingdom Inflation,” Econometrica, 50, 987-1008.
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Case IX: Co-integrated Variables and Error-Correction
Models

Let B denote the backward shift operator, i.e., for any variable xt, xt−i = Bixt.
Granger46 defines that a vector, ỹt = (ỹ1t, ỹ2t, . . . , ỹKt)′, of K variables is co-
integrated of orders d, b if:

1. each ỹ∗∗
jt ≡ (1 − B)dỹjt has no deterministic component and is covariance

stationary for d > 0;

2. there exists a set of constants α1, α2, . . . , αK (not all zero) such that (1 −
B)d−b(

∑K
j=1 αj ỹjt) has no deterministic component and is covariance sta-

tionary for b > 0. (Caution: Do not confuse these α’s with the α’s of equation
(11).)

The essential differences between the co-integrated variables and equation (13)
are: (i) Whereas knowledge of the stationarity producing trasformation is required
to specify a vector of co-integrating variables, no similar requirement is imposed on
equation (13). (ii) Whereas by assumption the coefficients (α’s) on the co-integrated
variables do not contain any effects of omitted variables, the coefficients of equation
(13) may contain both direct and proxy effects.

In Granger’s definition, the co-integrating vector α = (α1, α2, . . . , αK)′, is the
same as an eigenvector corresponding to a zero eigenvalue of the sum of unknown
coefficient matrices in a moving average model of ỹ∗∗

t = (ỹ∗∗
1t , ỹ∗∗

2t , . . . , ỹ∗∗
Kt)

′.
Even when ỹ1t, ỹ2t, ỹ3t, . . . , ỹKt are the same as ỹt, x̃2t, x̃3t, . . . , x̃Kt, respec-
tively, there is no obvious connection between any of these co-integrating models
and equation (13) or (5) which, under very general conditions, coincides with a
stochastic law, as shown in Appendix A. Co-integrating models are not designed
to coincide with stochastic laws and, hence, any of their parameters do not have
economic interpretations, in general (see Swamy and Tavlas).47

Special Case X of Equation (5): A Version of Kalman’s
Model

If, in equations (1) and (2),

(Xa) zt = (1, 0, . . . , 0)′,

(Xb) p = 1,

(Xc) m = K,

(Xd) L = IK ,

46Granger, C. W. J. (1983), “Co-integrating Variables and Error-Correcting Models,” Unpub-
lished discussion paper 83-13a, University of California, San Diego, CA.

47Swamy, P.A.V.B. and G.S. Tavlas (1992), “Is it Possible to Find an Econometric Law that
Works Well in Explanation and Prediction? The Case of Australian Money Demand,” Journal of
Forecasting, 11, 17-33.
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(Xe) Φ =


0 0 · · · 0
0 φ22 · · · φ2K
...

...
...

0 φK2 · · · φKK

 ,

(Xf) ∆a = (1/σ2
a)


σ11 0 · · · 0
0 σ22 · · · σ2K
...

...
...

0 σK2 · · · σKK

 , (27)

then we obtain a version of Kalman’s model. Assuming that the first column of Π
is zero, Φ of the above form is known, ε̃t is Gaussian, that ∆a of the above form
is known, and that at some initial period (say t = 0), β has a prior distribution in
the form of a multivariate normal distribution with specified mean and covariance
matrix, Harrison and Stevens proposed a Bayesian forecasting method which is
based on the Kalman algorithm for predicting the yt from equations (1) and (2).48

No doubt, Harrison and Stevens’ insistence on complete specification of model (5)
(including the values of its parameters) prior to observation of the data would lessen
the risk of selecting, while looking at the data, of models or priors that are overly
special. (Berger49 calls such a selection ‘purposeful or unintended “cheating”.’) This
security, however, comes with an impossibly heavy price, as Berger50 points out. For
example, the values Π = 0, L = I, and Φ = I are used in the literature; consider,
in this connection, what price the user of these values pays. When equation (2) is
supplemented by Π = 0 and L = I, it amounts only to stating that the mean of the
coefficient vector of the relationship between ỹt and x̃t is zero, so on average, this
relationship does not exist. In other words, when equation (2) is equated to equation
(3), equation (1) is assumed to provide no signal. When further supplemented by
the prior Φ = I, it amounts only to announcing that equation (1) is equivalent to
ỹt =

∑K
j=1 xjtβ̃jt, where β̃jt − πj1 = β̃j,t−1 − πj1 + ãjt. Here the subtraction

of πj1 from both sides of the equation β̃jt = β̃j,t−1 + ãjt does not change the
equation unless the βj0 are known, in which case the πj1 can be set equal to
zero. The requirement that the βj0 be known must in most cases be unreasonably
demanding. All the time profiles of βjt generated in the literature using the Kalman
algorithm are probably wrong. Therefore, the βj0 employed in the literature are
only loosely connected with a relation of ỹt to x̃t when such a relation exists and
hence equation (1) with Φ = I is arbitrary. In this case, ∆a is a Greek letter. As
de Finetti once said to Lindley: “Stop thinking about Greek letters.”51 The reason
is that stochastic laws are not arbitrary, as shown by Pratt and Schlaifer52 and

48See Priestley, M. B. (1981), Spectral Analysis and Time Series, New York: Academic Press, p.
814.

49Berger, J.O. (1990), “Comment on ‘The 1988 Wald Memorial Lectures: The Present Position
in Bayesian Statistics’ by D.V. Lindley,” Statistical Science, 5, 71-75.

50Berger, op. cit., p. 73.
51See p. 55 of Lindley, D.V. (1990): “The 1988 Wald Memorial Lectures: The Present Position

in Bayesian Statistics,” Statistical Science, 5, 44-89.
52Pratt and Schlaifer 1988, op. cit., p. 35.
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Basmann,53 and arbitrary equations do not coincide with nonarbitrary laws except
by accident. The above set of values of Π, L, and Φ is unrealistic if the theories
implying the relationship (1) are realistic. Thus, the values Π = 0 and Φ = I, like
the fixed-β assumption, imply overly special prior distributions for the parameters
of model (5).

Because of our inability to make arbitrarily fine distinctions in judgment (e.g.,
we cannot decide whether our subjective probability of rain tomorrow is .80 or .79),
we cannot specify a priori highly accurate values of all relevant probabilities. The
probabilities that will matter are determined by the eventual data and, therefore,
the degree of accuracy necessary in the values of Π, Φ, and σ2

a∆a to be used in
the Bayesian forecasting method will often depend on the data that are impossible
to assess a priori, as Berger54 points out. This practical difficulty is eliminated by
SCEP which does not require its users to supply the a priori values of Π, Φ, and
σ2

a∆a. SCEP estimates all these parameters from the data. Using the estimates
of these parameters given by several iterations of SCEP for several cases, you can
consider a variety of Π, Φ, and σ2

a∆a for your data, all of which (together with your
own knowledge of the subject) convince you that as many reasonable possibilities
have been covered as can be expected. Out of all these possibilities, a few yield
excellent forecasts of the out-of-sample values of y. We now ask you Berger’s55

question: Would you be happy, even if the development of the models and priors
utilized your data in a certain way? Berger56 said that he would be, as long as he
felt that your models and priors covered the range of reasonable possibilities, and
you did not purposefully fail to disclose models or priors that were reasonable and
yet supported different conclusions.

The estimates of Π, Φ, and σ2
a∆a given by several iterations of SCEP for several

cases can show you how general the distributions of coefficients in equation (1) would
have to be (within a certain class of distributions) in order to obtain good forecasts
of yt in a certain period. If such distributions are not in the ballpark of your prior for
the β̃t, then the data on ỹt, xt, and zt in conjunction with your prior are incapable
of giving a clear indication as to which model is preferable. Thus, you can use SCEP
to calibrate your prior beliefs about the coefficients of equation (1).

Case XI: Cooley and Prescott’s Stochastic Coefficients
Model

Cooley and Prescott’s57 assumption about the βit in equation (1) is

(XIa) Π = 0,

(XIb) m = K,

(XIc) L = IK ,

53Basmann, op. cit., p. 73.
54Berger, op. cit., p. 73.
55Berger, op. cit., p. 73.
56Berger, op. cit., p. 73.
57Cooley, T. F. and E. C. Prescott (1976), “Estimation in the Presence of Stochastic Parameter

Variation,” Econometrica, 44, 167-184.
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(XId) β̃t = β̃
p

t + ũt,

β̃
p

t = β̃
p

t−1 + ṽt, (28)

where the ũt and ṽt are identically and independently distributed normal variables
with mean vectors 0 and covariance structures known up to scale factors.

Since the probability density function for ỹt, considered for fixed yt and xt, t =
1, 2, . . . , T, as a function of parameters, is called the likelihood function, the uncon-
ditional likelihood function for Cooley and Prescott’s model is not defined unless the
unconditional probability density function for ỹt is defined. Under the restrictions
(XIa) − (XId), this unconditional probability density function is not defined.
However, the density conditional on a given initial value, βp

0, is defined but the
analysis based on this conditional density will heavily depend on the initial value.
Cooley and Prescott’s model has the same problems as the version of Kalman model
considered in Case X.

Case XII: The Errors-In-Variables Nature of Equation
(5)

Consider the case where the dependent and independent variables of an equation
are measured with error. Let ỹt = ỹ∗

t + ũt be the dependent variable and x̃it =
x̃∗

it + ṽit, i = 2, 3, . . . , K, be the independent variables of this equation. Here we
distinguish a true measurement from its observed value by an asterisk. For example,
yt is the observed counterpart of the true value y∗

t . The deviation of an observed
value from the corresponding true measurement represents a measurement error.
Suppose that the relationship between the true variables is given by

ỹ∗
t = β1 + β2x̃∗

2t + · · · + βKx̃∗
Kt + ε̃t. (29)

Replacing each true variable in this equation by the corresponding observable vari-
able minus its measurement error gives

ỹt = (β1 + ũt + ε̃t) + β2

(
1 −

ṽ2t

x̃2t

)
x̃2t + · · · + βK

(
1 −

ṽKt

x̃Kt

)
x̃Kt,

= β̃1t + β̃2tx̃2t + · · · + β̃Ktx̃Kt, (30)

which is observationally equivalent to equation (1). This equivalence was previously
noted by Swamy, et al.58 SCEP can estimate equation (26) if the z̃it in equation (2)
are highly correlated with the

(
1 − ṽit

x̃it

)
. Thus, equation (5) is appropriate when

the independent variables of equation (1) are measured with error, though these
errors introduce dependence between the coefficients and the independent variables
of equation (1).

58Swamy, Kolluri and Singamsetti, op. cit.
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Case XIII: An Equation with Smoothly Varying
Coefficients

In some applications of the model given by equations (1)-(3), the estimated coeffi-
cients may change too abruptly, given prior knowledge. In this section, we attempt
to state, in Bayesian terms, what this prior knowledge is, and then use this prior
knowledge to derive posterior means.

Following Shiller,59 we first define

ε̃jt = (1 − B)d+1β̃jt (j = 1, 2, . . . , K; t = 1, 2, . . . , T ) (31)

where B is the backward shift operator operating only on t, i.e., β̃j,t−i = Biβ̃jt,
d refers to the degree of smoothness priors, and the ε̃jt with different t and the
same j are independently and normally distributed with zero mean and constant
variance, σjj . To incorporate the prior (27), we combine the procedures of Swamy
and Tinsley60, Thurman, Swamy, and Mehta61 and Kashyap, Swamy, Mehta, and
Porter.62 SCEP does not yet have the capability of incorporating the prior (27).

59Shiller, R. J. (1973), “A Distributed Lag Estimator Derived From Smoothness Priors,” Econo-
metrica, 41, 775-788.

60Swamy and Tinsley, op. cit.
61Thurman, S. S., P. A. V. B. Swamy, and J. S. Mehta (1986), “An Examination of Distributed

Lag Model Coefficients Estimated with Smoothness Priors,” Communications in Statistics: Theory
and Methods, 15, 1723-1750.

62Kashyap, A. K., P. A. V. B. Swamy, J. S. Mehta, and R. D. Porter (1988), “Further Results
on Estimating Linear Regression Models with Partial Prior Information,” Economic Modelling, 5,
49-57.
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Appendix C: A Numerically Stable Method of
Computing Generalized Least Squares Estimators and
their Standard Errors

For t = 1, 2, . . . , T , equation (5) can be compactly written as

ỹ = Xzvec(Π) + ũ, (32)

where ỹ is a T -vector having ỹt as its tth element, Xz is a T × Kp matrix having
(z′

t ⊗ x′
t) as its tth row, and ũ is a T -vector having x′

tLε̃t as its tth element.
It follows from equation (3) that the covariance matrix of ε̃ = (ε̃′

1, ε̃′
2, . . . , ε̃′

T )′

is

Eε̃ε̃′ = σ2
aΣε = σ2

a


Γ0 Γ0Φ′ Γ0Φ

′2 · · · Γ0Φ
′T −1

ΦΓ0 Γ0 Γ0Φ′ · · · Γ0Φ
′T −2

...
...

...
...

ΦT −1Γ0 ΦT −2Γ0 ΦT −3Γ0 · · · Γ0

 ,(33)

where σ2
aΓ0 = σ2

aΦΓ0Φ′ + σ2
a∆a, and the covariance matrix of ỹ is

σ2
aΣy = Dx(IT ⊗ L)σ2

aΣε(IT ⊗ L′)D′
x, (34)

where Dx = diag[x′
1, x′

2, . . . , x′
T ] is a T × TK block diagonal matrix and IT is

a T × T identity matrix.
When the restrictions on vec(Π) given by equation (4) are true, the minimum

variance linear unbiased estimator of vec(Π) is

R′
Π(RΠR′

Π)−1rΠ + C′
Π(CΠX′

zΣ
−1
y XzC′

Π)−1CΠX′
zΣ

−1
y

×(ỹ − XzR′
Π(RΠR′

Π)−1rΠ), (35)

where CΠ is such that RΠC′
Π = 0.

The covariance matrix of the estimator (31) is

σ2
aC′

Π(CΠX′
zΣ

−1
y XzC′

Π)−1CΠ. (36)

The formulas (31) and (32) corresponding to the values RΠ = 0, rΠ = 0,
and CΠ = I are the unrestricted estimator of vec(Π) and its covariance matrix,
respectively. SCEP evaluates both these formulas at the sample estimates of Φ, ∆a

and σ2
a for the general and special cases of equations (1)-(3). Clearly, the formulas

(31) and (32) are not correct if Σy is singular and/or Xz has less than full column
rank. Even when they are correct, Kourouklis and Paige63 have shown how some
computational algorithms based on them can be numerically unreliable. These algo-
rithms introduce large numerical errors when some of the nonzero eigenvalues of Σy

are much smaller than others. A much more stable way of evaluating the formulas
(31) and (32) using orthogonal transformations has been suggested by Paige.64 It

63Kourouklis, S. and C.C. Paige (1981), “A Constrained Least Squares Approach to the General
Gauss-Markov Linear Model,” Journal of the American Statistical Association, 76, 620-625.

64Kourouklis and Paige, op. cit., p. 622.
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can be applied whether or not Σy is nonsingular and whether or not Xz has full col-
umn rank. The attractiveness of Paige’s method is that all potential ill-conditioning
is concentrated in certain triangular systems. Moreover, Paige65 has shown that
his procedure is numerically stable, something that is not true of any method that
explicitly forms the formula (31). SCEP adopts Paige’s method and compares the
value of the matrix (32) with the value of the same matrix given by Paige’s method.
In principle, these two values should agree if Σy is nonsingular and Xz has full col-
umn rank.66 The estimates of (30) given by SCEP are always nonnegative definite
because SCEP computes only the lower triangular factor of σ2

aΣy subject to the
restriction that the diagonal elements of this factor are nonnegative. An algebraic
form of this lower triangular factor is given in Chang et al.67

In the initial iteration of SCEP, the estimator (31) reduces to

(X′
z[Dx(IT ⊗ LL′)D′

x]−1Xz)−1X′
z[Dx(IT ⊗ LL′)D′

x]−1ỹ (37)

if RΠ = 0, rΠ = 0 and 0 and I are used as the initial values of Φ and ∆a,
respectively.

A general estimator of the covariance matrix of the estimator (33) is

(X′
z[Dx(IT ⊗ LL′)D′

x]−1Xz)−1X′
z[Dx(IT ⊗ LL′)D′

x]−1Dx(IT ⊗ L)σ̂2
aΣ̂ε

×(IT ⊗ L′)D′
x[Dx(IT ⊗ LL′)D′

x]−1Xz(X′
z[Dx(IT ⊗ LL′)D′

x]−1Xz)−1(38)

where σ̂2
aΣ̂ε is evaluated by SCEP by replacing σ2

a, Φ, and ∆a in (30) by their
sample estimates. SCEP computes the square roots of the diagonal elements of
the matrix (34). This method is much more accurate than White’s68 method. The
asymptotic distribution of the estimator (33) is derived by Havenner and Swamy.69

The formula (34) gives the standard errors of the unweighted least squares es-
timator of vec(Π) if Dx(IT ⊗ LL′)D′

x is set equal to IT . This can be done by
using IK in place of L and the values of Φ and ∆a given in Case I as the initial
values of Φ and ∆a, respectively.

Thus, the standard errors of the estimates of Π depend on the formula used to
compute them. Since it is not known which of these formulas give the standard
errors that are close to the true values of the square roots of the diagonal elements
of (32), it is difficult to interpret the results of tests based on these standard errors.
So there are limits to the usefulness of hypothesis testing. Furthermore, rejection of
a null hypothesis, say H0, by a test is not proof that H0 is false or acceptance of H0

is not proof that H0 is true. In any test of H0 against an alternative hypothesis,
say H1, finding the value of the test statistic which lies in the critical region should
not be taken to be strong evidence against H0 and for H1 if both H0 and H1 are
false. This is because in this case, the probabilities of the critical region calculated

65See Kourouklis and Paige, op. cit., and the references cited therein.
66For further discussion, see Swamy, Mehta and Singamsetti, op. cit.
67See Chang et al., op. cit., p. 45.
68White, H. (1978), “A Heteroscedastic Consistent Covariance Matrix and a Direct Test for

Heteroscedasticity,” Econometrica, 46, 817-838.
69Havenner, A. and P.A.V.B. Swamy (1981), “A Random Coefficient Approach to Seasonal Ad-

justment of Economic Time Series,” Journal of Econometrics, 15, 177-210.
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under H0 and H1 are not true. Alternatively stated, a test of any null hypothesis
against an alternative provides fictitious evidence against the null hypothesis or the
alternative if both the null and alternative hypotheses are false.
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Appendix D: A Stochastic Coefficients Approach to
Forecasting

Equations (1)-(3) provide a useful approach for the investigation of forecast error
sources. For this purpose, partition several of the vectors and matrices of these
equations as follows:

x′
t = (1, x′

2t), z′
t = (1, z′

2t), Π = (π1, Π2), L′ = (L1, L2),

where π1 is the first column of Π and L′
1 is the first row of L. Equation (5) may

then be expressed as

ỹt = x′
t(π1, Π2)

(
1
z2t

)
+ (1, x′

2t)

(
L′

1ε̃t

L′
2ε̃t

)
= x′

tπ1 + x′
tΠ2z2t + L′

1ε̃t + x′
2tL

′
2ε̃t. (39)

Equation (1) with fixed coefficients implies a forecast of y in some future period s
after T, given by ŷT+s,

ŷT+s = x̂′
T+sβ̂ + ûT+s. (40)

The forecast error–the difference between the future realization, yT+s, and the
prediction, ŷT+s–that arises from using any one of the fixed-coefficients versions of
equation (1) may be decomposed as

ŷT+s − yT+s = x̂′
T+s(β̂ − π1) + (x̂′

T+s − x′
T+s)π1 + (ûT+s − L′

1εT+s)

−x′
T+sΠ2z2,T+s − x′

2,T+sL
′
2εT+s, (41)

which, in order of appearance, is the sum of (i) a linear combination of the sampling
errors and bias in the fixed-coefficient estimates, (ii) a linear combination of the
errors in predicting future values of the independent variables, (iii) the errors in
predicting stochastic shifts in the intercept, (iv) the failure to predict deterministic
shifts in intercept and nonconstant regressors’ coefficients, and (v) the failure to
predict stochastic shifts in nonconstant regressors’ coefficients. Except for (ii), all
these forecast error sources are accounted for when equation (5) is used. Observe
that an accounting of forecast error sources based on fixed-coefficient estimates is
limited to (i) and (iii), alone. The remaining error sources may not be diagnosed
using fixed-coefficients models. The error resulting from (ii) is, of course, beyond
the reach of any of the above models, since they originate from errors in forecasting
independent variables.70

SCEP uses the estimates of π1, Π2, E(ε̃T+s|y1, . . . , yT , x1, . . . , xT+s, z1, . . . , zT+s)
and the values of xT+s and zT+s in place of the true values used in equation (35)
to forecast the value of ỹ in T + s. It prints the forecasts of both (x′

T+sπ1 +
x′

T+sΠ2z2,T+s) and yT+s. It also computes the root mean squared error of these

70For further discussion, see Swamy, P.A.V.B., R.K. Conway, and M.R. LeBlanc (1989), “The
Stochastic Coefficients Approach to Econometric Modeling, Part III: Estimation, Stability, and
Prediction,” The Journal of Agricultural Economics Research, 41, 4-20.
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forecasts. However, it does not yet have the capability of computing the terms on
the right-hand side of equation (37).

At the end of Section 2, it is mentioned that SCEP permits you to validate
model (5) and its special cases. Suppose that use of one of these models produced
improvement in terms of root mean squared error of forecasts relative to all the
other models you considered. Then you can argue that this model is useful. You
cannot, however, prove that this model is a true model. To indicate why this is
the case, make the proviso that you know that one of a finite number of models is
true, but you do not know which one. Suppose also that specification errors lead
to poor predictions. Then it is correct to argue that focusing on the comparisons
of out-of-sample forecasts is preferable to statistical testing of hypotheses because
specification errors lead to poor predictions which are more likely to be discerned
with out-of-sample forecasting methods than with statistical tests. The practical
fault in this reasoning is that the above proviso is often not present in any realistic
fashion if the set of alternative models you consider is very small. It is also incorrect
to suppose that specification errors lead to poor predictions because sometimes naive
models predict quite well. The above proviso may be present in a realistic fashion
if you consider a very general model of the form (5) which covers a variety of fixed-
coefficient models as special cases. The reason is that a general model can be true
even though its special cases are false.
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