CHAPTER 4

Linear Regression

| with One Regressor

state implements tough new penalties on drunk drivers; what is the effect
Aon highway fatalities? A school district cuts the size of its elementary
school classes; what is the effect on its students’ standardized test scores? You
successfully complete one more year of college classes; what is the effect on
your future earnings?

All three of these questions are about the unknown effect of changing
one variable, X (X being penalties for drunk driving, class size, or years of
schooling), on another variable, Y (Y being highway deaths, student test
scores, Or earnings).

This chapter introduces the linear regression model relating one variable, X,
to another, Y. This model postulates a linear relationship between X and Y, the
slope of the line relating X and Y is the effect of a one-unit change in X on Y.
Just as the mean of Y'is an unknown characteristic of the population
distribution of Y, the slope of the line relating X and Y'is an unknown
characteristic of the population joint distribution of X and Y. The econometric
problem is to estimate this slope—that is, to estimate the effect on Y of a unit
change in X—using a sample of data on these two variables.

This chapter describes methods for making statistical inferences about this
regression model using a random sample of data on X and Y. For instance,
using data on class sizes and test scores from different school districts, we
show how to estimate the expected effect on test scores of reducing class sizes
by, say, one student per class. The slope and the intercept of the line relating
X and Y can be estimated by a method called ordinary least squares (OLS).

Moreover, the OLS estimator can be used to test hypotheses about the
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4.1

population value of the slope—for example, testing the hypothesis that
cutting class size has no effect whatsoever on test scores—and to create

confidence intervals for the slope.

The Linear Regression Model ‘

The superintendent of an elementary school district must decide whether to hire
additional teachers and she wants your advice. If she hires the teachers, she will
reduce the number of students per teacher (the student-teacher ratio) by two. She
faces a tradeoff. Parents want smaller classes so that their children can receive more
individualized attention. But hiring more teachers means spending more money,
which is not to the liking of those paying the bill! So she asks you: If she cuts class
sizes, what will the effect be on student performance?

In many school districts, student performance is measured by standardized
tests, and the job status or pay of some administrators can depend in part on how
well their students do on these tests. We therefore sharpen the superintendent’s
question: If she reduces the average class size by two students, what will the eftect
be on standardized test scores in her district?

A precise answer to this question requires a quantitative statement about
changes. If the superintendent changes the class size by a certain amount, what
would she expect the change in standardized test scores to be? We can write this
as a mathematical relationship using the Greek letter beta, g2 Where the
subscript “ClassSize” distinguishes the effect of changing the class size from
other effects. Thus,

change in TestScore ATestScore
change in ClassSize ~ AClassSize ’

ﬂ ClassSize —

4.1)

where the Greek letter A (delta) stands for “change in.” That is, By, 1S the
change in the test score that results from changing the class size, divided by the
change in the class size.

If you were lucky enough to know S, YOu would be able to tell the
superintendent that decreasing class size by one student would change districtwide
test scores by Brysizes YOUu could also answer the superintendent’s actual question,
which concerned changing class size by two students per class. To do so, rearrange
Equation (4.1) so that

ATestScore = Prysize X AClassSize. 4.2)
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Suppose that S5, = —0.6. Then a reduction in class size of two students per
class would yield a predicted change in test scores of ( —0.6) X (=2) = 1.2; that is,
you would predict that test scores would rise by 1.2 points as a result of the reduc-
tion in class sizes by two students per class.

Equation (4.1) is the definition of the slope of a straight line relating test scores
and class size. This straight line can be written

TestScore = By + Bejussize X ClassSize, (4.3)

where f§, is the intercept of this straight line, and, as before, S,z 15 the slope.
According to Equation (4.3), if you knew S, and gz 20t only would you be
able to determine the change in test scores at a district associated with a change in
class size, you also would be able to predict the average test score itself for a given
class size.

When you propose Equation (4.3) to the superintendent, she tells you that
something is wrong with this formulation. She points out that class size is just one
of many facets of elementary education, and that two districts with the same class
sizes will have different test scores for many reasons. One district might have bet-
ter teachers or it might use better textbooks. Two districts with comparable class
sizes, teachers, and textbooks still might have very different student populations;
perhaps one district has more immigrants (and thus fewer native English speak-
ers) or wealthier families. Finally, she points out that, even if two districts are the
same in all these ways, they might have different test scores for essentially random
reasons having to do with the performance of the individual students on the day
of the test. She is right, of course; for all these reasons, Equation (4.3) will not
hold exactly for all districts. Instead, it should be viewed as a statement about a
relationship that holds on average across the population of districts.

A version of this linear relationship that holds for each district must incorpo-
rate these other factors influencing test scores, including each district’s unique
characteristics (quality of their teachers, background of their students, how lucky
the students were on test day, etc.). One approach would be to list the most impor-
tant factors and to introduce them explicitly into Equation (4.3) (an idea we return
to in Chapter 5). For now, however, we simply lump all these “other factors”
together and write the relationship for a given district as

TestScore = By + Pepussize X ClassSize + other factors. (4.4)

Thus, the test score for the district is written in terms of one component, f3, +
Beiasssize X ClassSize, that represents the average effect of class size on scores in
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the population of school districts and a second component that represents all
other factors.

Although this discussion has focused on test scores and class size, the idea
expressed in Equation (4.4) is much more general, so it is useful to introduce more
general notation. Suppose you have a sample of n districts. Let Y, be the average
test score in the i™ district, let X, be the average class size in the i™ district, and
let u; denote the other factors influencing the test score in the i™ district. Then
Equation (4.4) can be written more generally as

Y, =B, + B X; + u, (4.5)

for each district, thatis, i =1, ..., n, where f3, 1s the intercept of this line and j; is
the slope. (The general notation “f;” is used for the slope in Equation (4.5) instead
of “Briusize. because this equation is written in terms of a general variable X..)

Equation (4.5) is the linear regression model with a single regressor,
in which Y is the dependent variable and X is the independent variable
or the regressor.

The first part of Equation (4.5), 3, + 5, X, is the population regression line
or the population regression function. This is the relationship that holds
between Y and X on average over the population. Thus, if you knew the value of
X, according to this population regression line you would predict that the value
of the dependent variable, Y, is 8, + 5, X.

The intercept f3, and the slope f, are the coefficients of the population
regression line, also known as the parameters of the population regression line.
The slope f3, is the change in Y associated with a unit change in X. The intercept
is the value of the population regression line when X = 0; it is the point at which
the population regression line intersects the Y axis. In some econometric applica-
tions, such as the application in Section 4.7, the intercept has a meaningful eco-
nomic interpretation. In other applications, however, the intercept has no
real-world meaning; for example when Xis the class size, strictly speaking the inter-
cept is the predicted value of test scores when there are no students in the class!
When the real-world meaning of the intercept is nonsensical it is best to think of
it mathematically as the coefficient that determines the level of the regression line.

The term u, in Equation (4.5) is the error term. The error term incorpo-
rates all of the factors responsible for the difference between the i™ district’s aver-
age test score and the value predicted by the population regression line. This error
term contains all the other factors besides X that determine the value of the
dependent variable, Y, for a specific observation, i. In the class size example, these
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other factors include all the unique features of the i™ district that affect the per-
formance of its students on the test, including teacher quality, student economic
background, luck, and even any mistakes in grading the test.

The linear regression model and its terminology are summarized in Key
Concept 4.1.

Figure 4.1 summarizes the linear regression model with a single regressor for
seven hypothetical observations on test scores (Y) and class size (X). The popu-
lation regression line is the straight line 8, + ,X. The population regression line
slopes down, that is, 3, < 0, which means that districts with lower student-teacher
ratios (smaller classes) tend to have higher test scores. The intercept 3, has a math-
ematical meaning as the value of the Y axis intersected by the population regres-
sion line, but, as mentioned earlier, it has no real-world meaning in this example.

Because of the other factors that determine test performance, the hypothet-
ical observations in Figure 4.1 do not fall exactly on the population regression
line. For example, the value of Y for district #1, Y], is above the population
regression line. This means that test scores in district #1 were better than pre-
dicted by the population regression line, so the error term for that district, u,, is
positive. In contrast, Y, is below the population regression line, so test scores for
that district were worse than predicted, and u, < 0.

FIGURE 4.1 Scatter Plot of Test Score vs. Student-Teacher Ratio (Hypothetical Data)
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Key

Concept

4.1

Terminology for the Linear Regression
Model with a Single Regressor

The linear regression model is:
Y, = fo + X+ u,

where:

the subscript i runs over observations, i =1, ..., n;

Y. is the dependent variable, the regressand, or simply the left-hand variable;
X, is the independent variable, the regressor, or simply the right-hand variable;
By + B, X is the population regression line or population regression_function;

By 1s the intercept of the population regression line;

By 1s the slope of the population regression line; and

u, is the error term.

4.2

Now return to your problem as advisor to the superintendent: What is the
expected effect on test scores of reducing the student-teacher ratio by two stu-
dents per teacher? The answer is easy: the expected change is (—=2) X By,giz- BUL
what is the value of By’

Estimating the Coefficients
of the Linear Regression Model

In a practical situation, such as the application to class size and test scores, the
intercept f3, and slope f3; of the population regression line are unknown. There-
fore, we must use data to estimate the unknown slope and intercept of the pop-
ulation regression line.

This estimation problem is similar to others you have faced in statistics. For
example, suppose you want to compare the mean earnings of men and women
who recently graduated from college. Although the population mean earnings are
unknown, we can estimate the population means using a random sample of male
and female college graduates. Then the natural estimator of the unknown popu-
lation mean earnings for women, for example, is the average earnings of the
female college graduates in the sample.
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The same idea extends to the linear regression model. We do not know the

population value of fy,.size the slope of the unknown population regression line

o0
relating X (class size) and Y (test scores). But just as it was possible to learn about
the population mean using a sample of data drawn from that population, so is it
possible to learn about the population slope By, Using a sample of data.

The data we analyze here consist of test scores and class sizes in 1998 in 420
California school districts that serve kindergarten through eighth grade. The test
score is the districtwide average of reading and math scores for fifth graders. Class
size can be measured in various ways. The measure used here is one of the broad-
est, which is the number of students in the district divided by the number of
teachers, that is, the districtwide student-teacher ratio. These data are described
in more detail in Appendix 4.1.

Table 4.1 summarizes the distributions of test scores and class sizes for this
sample. The average student-teacher ratio is 19.6 students per teacher and the
standard deviation is 1.9 students per teacher. The 10™ percentile of the distri-
bution of the student-teacher ratio is 17.3 (that is, only 10% of districts have stu-
dent-teacher ratios below 17.3), while the district at the 90™ percentile has a
student-teacher ratio of 21.9.

A scatterplot of these 420 observations on test scores and the student-teacher
ratio is shown in Figure 4.2. The sample correlation is —0.23, indicating a weak
negative relationship between the two variables. Although larger classes in this
sample tend to have lower test scores, there are other determinants of test scores
that keep the observations from falling perfectly along a straight line.

Despite this low correlation, if one could somehow draw a straight line
through these data, then the slope of this line would be an estimate of S,z
based on these data. One way to draw the line would be to take out a pencil and
a ruler and to “eyeball” the best line you could. While this method is easy, it is
very unscientific and different people will create different estimated lines.

TABLE 4.1 Summary of the Distribution of Student-Teacher Ratios and Fifth-Grade Test
Scores for 420 K-8 Districts in California in 1998

Percentile

Average Standard  10%  25%  40%  50%  60%  75%  90%
Deviation (median)

Student-teacher ratio 19.6 1.9 17.3 18.6 19.3 19.7 20.1 20.9 21.9

654.2 191 630.4  640.0 649.1 6545 6594 666.7 679.1




98 CHAPTER 4  Linear Regression with One Regressor
FIGURE 4.2 Scatterplot of Test Score vs. Student-Teacher Ratio (California School District Data)
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How, then, should you choose among the many possible lines? By far the
most common way is to choose the line that produces the “least squares” fit to
these data, that is, to use the ordinary least squares (OLS) estimator.

The Ordinary Least Squares Estimator

The OLS estimator chooses the regression coefficients so that the estimated regres-
sion line is as close as possible to the observed data, where closeness is measured
by the sum of the squared mistakes made in predicting Y given X.

As discussed in Section 3.1, the sample average, Y, is the least squares esti-
mator of the population mean, E(Y); that is, Y minimizes the total squared esti-
mation mistakes Z(Yl — m)? among all possible estimators m (see expression (3.2)).

The OLS estimator extends this idea to the linear regression model. Let b,
and b; be some estimators of 3, and f5;. The regression line based on these esti-
mators is b, + b, X, so the value of Y, predicted using this line is b, + b, X,. Thus,
the mistake made in predicting the i observation is Y; = (b, + b, X)) = Y, = b, =

b, X;. The sum of these squared prediction mistakes over all n observations is
(¥ = by = by X)*. (+.6)
i=1

The sum of the squared mistakes for the linear regression model in expres-
sion (4.6) is the extension of the sum of the squared mistakes for the problem of
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estimating the mean in expression (3.2). In fact, if there is no regressor, then b,
does not enter expression (4.6) and the two problems are identical except for the
different notation (m in expression (3.2), b, in expression (4.6)). Just as there is a
unique estimator, Y, that minimizes the expression (3.2), so is there a unique pair
of estimators of 3, and f3; that minimize expression (4.6).

The estimators of the intercept and slope that minimize the sum of squared
mistakes in expression (4.6) are called the ordinary least squares (OLS) esti-
mators of 3, and f3,.

OLS has its own special notation and terminology. The OLS estimator of j,
is denoted f3,, and the OLS estimator of f3; is denoted f3;. The OLS regression
line is the straight line constructed using the OLS estimators, that is, 8, + f,X.
The predicted value of Y, given X, based on the OLS regression line, is ¥, =
By + B, X,. The residual for the i ™ observation is the difference between Y; and
its predicted value; that is, the residual is i1, = Y, = Y.

You could compute the OLS estimators f3, and 3, by trying different values
of b, and b, repeatedly until you find those that minimize the total squared mis-
takes in expression (4.6); they are the least squares estimates. This method would
be quite tedious, however. Fortunately there are formulas, derived by mini-
mizing expression (4.6) using calculus, that streamline the calculation of the
OLS estimators.

The OLS formulas and terminology are collected in Key Concept 4.2. These
formulas are implemented in virtually all statistical and spreadsheet programs.
These formulas are derived in Appendix 4.2.

OLS Estimates of the Relationship Between
Test Scores and the Student-Teacher Ratio

When OLS is used to estimate a line relating the student-teacher ratio to test
scores using the 420 observations in Figure 4.2, the estimated slope is —2.28 and
the estimated intercept is 698.9. Accordingly, the OLS regression line for these
420 observations is

TostScore = 698.9 — 2.28 X STR, (4.7)

where TestScore is the average test score in the district and STR is the student-

teacher ratio. The symbol “*”

over TestScore in Equation (4.7) indicates that this
is the predicted value based on the OLS regression line. Figure 4.3 plots this OLS
regression line superimposed over the scatterplot of the data previously shown

in Figure 4.2.
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Key
Concept
4.2

The OLS Estimator, Predicted Values, and Residuals

The OLS estimators of the slope f; and the intercept f3, are:

n

2X=X)-Y)
B, =+ . = % (4.8)
2 (X =X) *
i=1
By =Y - BX. (4.9)
The OLS predicted values }A’l and residuals #, are:
V=P +BX,i=1,...,n (4.10)
nL=Y-Y, i=1,..., n 4.11)

The estimated intercept (f,), slope (f,), and residual (i1,) are computed from a
sample of n observations of X; and Y;, i = 1, ..., n. These are estimates of the
unknown true population intercept (f3,), slope (f3;), and error term ().

The slope of —2.28 means that an increase in the student-teacher ratio by
one student per class is, on average, associated with a decline in districtwide test
scores by 2.28 points on the test. A decrease in the student-teacher ratio by 2
students per class is, on average, associated with an increase in test scores of 4.56
points (= =2 x (—2.28)). The negative slope indicates that more students per
teacher (larger classes) is associated with poorer performance on the test.

It is now possible to predict the districtwide test score given a value of the
student-teacher ratio. For example, for a district with 20 students per teacher, the
predicted test score is 698.9 — 2.28 x 20 = 653.3. Of course, this prediction will
not be exactly right because of the other factors that determine a district’s per-
formance. But the regression line does give a prediction (the OLS prediction) of
what test scores would be for that district, based on their student-teacher ratio,
absent those other factors.

Is this estimate of the slope large or small? To answer this, we return to the
superintendent’s problem. Recall that she is contemplating hiring enough teach-
ers to reduce the student-teacher ratio by 2. Suppose her district is at the median
of the California districts. From Table 4.1, the median student-teacher ratio is
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FIGURE 4.3 The Estimated Regression Line for the California Data
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19.7 and the median test score is 654.5. A reduction of 2 students per class, from
19.7 to 17.7, would move her student-teacher ratio from the 50 percentile to
very near the 10" percentile. This is a big change, and she would need to hire
many new teachers. How would it affect test scores?

According to Equation (4.7), cutting the student-teacher ratio by 2 is pre-
dicted to increase test scores by approximately 4.6 points; if her district’s test scores
are at the median, 654.5, they are predicted to increase to 659.1. Is this improve-
ment large or small? According to Table 4.1, this improvement would move her
district from the median to just short of the 60™ percentile. Thus, a decrease in
class size that would place her district close to the 10% with the smallest classes
would move her test scores from the 50 to the 60 percentile. According to these
estimates, at least, cutting the student-teacher ratio by a large amount (2 students
per teacher) would help and might be worth doing depending on her budgetary
situation, but it would not be a panacea.

What if the superintendent were contemplating a far more radical change,
such as reducing the student-teacher ratio from 20 students per teacher to 5°?
Unfortunately, the estimates in Equation (4.7) would not be very useful to her.
This regression was estimated using the data in Figure 4.2, and as the figure shows,
the smallest student-teacher ratio in these data is 14. These data contain no infor-
mation on how districts with extremely small classes perform, so these data alone
are not a reliable basis for predicting the effect of a radical move to such an
extremely low student-teacher ratio.
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The “Beta” of a Stock

Afundamental idea of modern finance is that an
investor needs a financial incentive to take a
risk. Said differently, the expected return' on a risky
investment, R, must exceed the return on a safe, or
risk-free, investment, Rf. Thus the expected excess
return, R = Ry, on a risky investment, like owning
stock in a company, should be positive.

At first it might seem like the risk of a stock
should be measured by its variance. Much of that
risk, however, can be reduced by holding other
stocks in a “portfolio,” that is, by diversifying your
financial holdings. This means that the right way to
measure the risk of a stock is not by its variance but
rather by its covariance with the market.

The capital asset pricing model (CAPM) for-
malizes this idea. According to the CAPM, the
expected excess return on an asset is proportional to
the expected excess return on a portfolio of all avail-
able assets (the “market portfolio”). That i1s, the
CAPM says that

R =R =p(R, =~ R), (4.12)

where R, is the expected return on the market
portfolio and f3 is the coefficient in the population
regression of R = Ry on R,, = Ry. In practice, the
risk-free return is often taken to be the rate of inter-
est on short-term U.S. government debt. Accord-
ing to the CAPM, a stock with a 8 <1 has less risk

than the market portfolio and therefore has a lower

expected excess return than the market portfolio. In
contrast, a stock with a § > 1 is riskier than the mar-
ket portfolio and thus comands a higher expected
excess return.

The “beta” of a stock has become a workhorse
of the investment industry, and you can obtain esti-
mated f’s for hundreds of stocks on investment
firm web sites. Those f8’s typically are estimated by
OLS regression of the actual excess return on the
stock against the actual excess return on a broad
market index.

The table below gives estimated f’s for six U.S.
stocks. Low-risk consumer products firms like Kel-
logg have stocks with low fs; risky high-tech stocks
like Microsoft have high fs.

Company Estimated
Kellogg (breakfast cereal) 0.24
‘Waste Management (waste disposal) 0.38
Sprint (long distance telephone) 0.59
Walmart (discount retailer) 0.89
Barnes and Noble (book retailer) 1.03

1.80
1.83

Best Buy (electronic equipment retailer)

Microsoft (software)
Source: Yahoo.com

1The return on an investment is the change in its price
plus any payout (dividend) from the investment as a per-
centage of its initial price. For example, a stock bought
on January 1 for $100, that paid a $2.50 dividend during
the year and sold on December 31 for $105, would have
a return of R = [($105 — $100) + $2.50] / $100 = 7.5%.

Why Use the OLS Estimator?

There are both practical and theoretical reasons to use the OLS estimators f3, and
B, Because OLS is the dominant method used in practice, it has become the com-
mon language for regression analysis throughout economics, finance (see the box),
and the social sciences more generally. Presenting results using OLS (or its variants
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discussed later in this book) means that you are “speaking the same language” as
other economists and statisticians. The OLS formulas are built into virtually all
spreadsheet and statistical software packages, making OLS easy to use.

The OLS estimators also have desirable theoretical properties. For example, the
sample average Y is an unbiased estimator of the mean E(Y), that is, E(Y) = uy; Y
is a consistent estimator of tiy; and in large samples the sampling distribution of Y
is approximately normal (Section 3.1). The OLS estimators Bo and ﬁA1 also have these
properties. Under a general set of assumptions (stated in Section 4.3), f§, and 3, are
unbiased and consistent estimators of 3, and f3; and their sampling distribution is
approximately normal. These results are discussed in Section 4.4.

An additional desirable theoretical property of Y is that it is efficient among
estimators that are linear functions of Y], ..., Y it has the smallest variance of
all estimators that are weighted averages of Y}, ..., Y, (Section 3.1). A similar
result is also true of the OLS estimator, but this result requires an additional
assumption beyond those in Section 4.3 so we defer its discussion to Section 4.9.

The Least Squares Assumptions

This section presents a set of three assumptions on the linear regression model and
the sampling scheme under which OLS provides an appropriate estimator of the
unknown regression coefficients, 3, and f3;. Initially these assumptions might
appear abstract. They do, however, have natural interpretations, and understand-
ing these assumptions is essential for understanding when OLS will—and will
not—give useful estimates of the regression coefficients.

Assumption #1: The Conditional Distribution
of u; Given X; Has a Mean of Zero

The first least squares assumption is that the conditional distribution of u; given
X; has a mean of zero. This assumption is a formal mathematical statement about
the “other factors” contained in u; and asserts that these other factors are unre-
lated to X, in the sense that, given a value of X,, the mean of the distribution of
these other factors is zero.

This is illustrated in Figure 4.4. The population regression is the relationship
that holds on average between class size and test scores in the population, and the
error term u; represents the other factors that lead test scores at a given district to
differ from the prediction based on the population regression line. As shown in
Figure 4.4, at a given value of class size, say 20 students per class, sometimes these
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FIGURE 4.4 The Conditional Probability Distributions and the Population Regression Line
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The figure shows the conditional probability of test scores for districts with class sizes of 15,
20, and 25 students. The mean of the conditional distribution of test scores, given the student-
teacher ratio, E (Y| X), is the population regression line B, + ;X. At a given value of X, Yis
distributed around the regression line and the error, u= Y — (B, + 8;X), has a conditional
mean of zero for all values of X.

other factors lead to better performance than predicted (#;> 0) and sometimes to
worse (1#; < 0), but on average over the population the prediction is right. In other
words, given X; = 20, the mean of the distribution of u; is zero. In Figure 4.4, this
is shown as the distribution of u; being centered around the population regression
line at X, = 20 and, more generally, at other values x of X; as well. Said difterently,
the distribution of u,, conditional on X, = x, has a mean of zero; stated mathe-
matically, E(u;| X; = x) = 0 or, in somewhat simpler notation, E(y;| X;) = 0.

As shown in Figure 4.4, the assumption that E(y;| X;) = 0 is equivalent to
assuming that the population regression line 1s the conditional mean of Y; given
X; (a mathematical proof of this is left as Exercise 4.3).

Correlation and conditional mean. Recall from Section 2.3 that if the condi-
tional mean of one random variable given another is zero, then the two random vari-
ables have zero covariance and thus are uncorrelated (Equation (2.25)). Thus, the
conditional mean assumption E(#;| X;) = 0 implies that X; and u; are uncorrelated,
or corr(X;,u;) = 0. Because correlation is a measure of linear association, this impli-
cation does not go the other way; even if X; and u, are uncorrelated, the conditional
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mean of u; given X; might be nonzero. However, if X; and u; are correlated, then it
must be the case that E(u;| X)) is nonzero. It is therefore often convenient to discuss
the conditional mean assumption in terms of possible correlation between X; and u.,.
If X; and u; are correlated, then the conditional mean assumption is violated.

Assumption #2: (X, Y)),i=1,...,n Are
Independently and Identically Distributed

The second least squares assumption is that (X, Y;), i = 1, ..., n are indepen-
dently and identically distributed (i.i.d.) across observations. As discussed in Sec-
tion 2.5 (Key Concept 2.5), this is a statement about how the sample is drawn. If
the observations are drawn by simple random sampling from a single large popu-
lation, then (X, Y;), i =1, ..., nare 1.1.d. For example, let X be the age of a
worker and Y be his or her earnings, and imagine drawing a person at random
from the population of workers. That randomly drawn person will have a certain
age and earnings (that is, X and Y will take on some values). If a sample of n work-
ers is drawn from this population, then (X, Y),i= 1, ..., n, necessarily have the
same distribution, and if they are drawn at random they are also distributed inde-
pendently from one observation to the next; that is, they are 1.1.d.

The 1.1.d. assumption is a reasonable one for many data collection schemes.
For example, survey data from a randomly chosen subset of the population typi-
cally can be treated as 1.1.d.

Not all sampling schemes produce i.i.d. observations on (X, Y;), however.
One example is when the values of X are not drawn from a random sample of the
population but rather are set by a researcher as part of an experiment. For exam-
ple, suppose a horticulturalist wants to study the eftects of different organic weed-
ing methods (X) on tomato production (Y) and accordingly grows different plots
of tomatoes using different organic weeding techniques. If she picks the tech-
niques (the level of X) to be used on the i™ plot and applies the same technique
to the i plot in all repetitions of the experiment, then the value of X; does not
change from one sample to the next. Thus X, is nonrandom (although the out-
come Y;is random), so the sampling scheme 1s not i.i.d. The results presented in
this chapter developed for i.i.d. regressors are also true if the regressors are non-
random (this is discussed further in Chapter 15). The case of a nonrandom regres-
sor is, however, quite special. For example, modern experimental protocols would
have the horticulturalist assign the level of X to the different plots using a com-
puterized random number generator, thereby circumventing any possible bias by
the horticulturalist (she might use her favorite weeding method for the tomatoes
in the sunniest plot). When this modern experimental protocol is used, the level
of X is random and (X, Y;) are 1.i.d.
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Another example of non-i.i.d. sampling is when observations refer to the same
unit of observation over time. For example, we might have data on inventory lev-
els (Y) at a firm and the interest rate at which the firm can borrow (X), where
these data are collected over time from a specific firm; for example, they might
be recorded four times a year (quarterly) for 30 years. This is an example of time
series data, and a key feature of time series data is that observations falling close
to each other in time are not independent but rather tend to be correlated with
each other; if interest rates are low now, they are likely to be low next quarter.
This pattern of correlation violates the “independence” part of the 1.1.d. assump-
tion. Time series data introduce a set of complications that are best handled after
developing the basic tools of regression analysis, so we defer further discussion of
time series analysis to Part IV.

Assumption #3: X; and u; Have Four Moments
The third least squares assumption is that the fourth moments of X; and u; are
nonzero and finite (0 < E(X}") < 0 and 0 < E(u}) < ) or, equivalently, that the
fourth moments of X; and Y; are nonzero and finite. This assumption limits the prob-
ability of drawing an observation with extremely large values of X; or u;. Were we
to draw an observation with extremely large X; or Y, —that is, with X; or Y, far out-
side the normal range of the data—then that observation would be given great
importance in an OLS regression and would make the regression results misleading.
The assumption of finite fourth moments is used in the mathematics that
justify the large-sample approximations to the distributions of the OLS test sta-
tistics. We encountered this assumption in Chapter 3 when discussing the con-

sistency of the sample variance. Specifically, Equation (3.8) states that the sample

variance s¢ is a consistent estimator of the population variance o3 (that is, that
P . o
sy —>09). If Y, ..., Y, are i.i.d. and the fourth moment of Y, is finite, then the

law of large numbers in Key Concept 2.6 applies to the average, %E(Yl - uy)?,
a key step in the proof in Appendix 3.3 showing that s is consistent. The role
of the fourth moments assumption in the mathematical theory of OLS regres-
sion is discussed further in Section 15.3.

One could argue that this assumption is a technical fine point that regu-
larly holds in practice. Class size is capped by the physical capacity of a class-
room; the best you can do on a standardized test is to get all the questions right
and the worst you can do is to get all the questions wrong. Because class size
and test scores have a finite range, they necessarily have finite fourth moments.
More generally, commonly used distributions such as the normal have four
moments. Still, as a mathematical matter, some distributions have infinite
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Concept
4.3

The Least Squares Assumptions

Y, =p, + ;X +u,i=1,...,n where:

1. The error term u; has conditional mean zero given X, that is, E(u,| X;) = 0;

2. (X, Y),i=1,..., nare independent and identically distributed (i.i.d.)
draws from their joint distribution; and

3. (X, u;) have nonzero finite fourth moments.

fourth moments, and this assumption rules out those distributions. If this
assumption holds then it is unlikely that statistical inferences using OLS will
be dominated by a few observations.

Use of the Least Squares Assumptions

The three least squares assumptions for the linear regression model are summa-
rized in Key Concept 4.3. The least squares assumptions play twin roles, and we
return to them repeatedly throughout this textbook.

Their first role is mathematical: if these assumptions hold, then, as is shown
in the next section, in large samples the OLS estimators have sampling distribu-
tions that are normal. In turn, this large-sample normal distribution lets us
develop methods for hypothesis testing and constructing confidence intervals
using the OLS estimators.

Their second role is to organize the circumstances that pose difficulties for
OLS regression. As we will see, the first least squares assumption is the most
important to consider in practice. One reason why the first least squares assump-
tion might not hold in practice is discussed in Section 4.10 and Chapter 5, and
additional reasons are discussed in Section 7.2.

It is also important to consider whether the second assumption holds in an
application. Although it plausibly holds in many cross-sectional data sets, it is
inappropriate for time series data. Therefore, the i.i.d. assumption will be replaced
by a more appropriate assumption when we discuss regression with time series
data in Part IV.

We treat the third assumption as a technical condition that commonly holds
in practice so we do not dwell on it further.
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4.4

Sampling Distribution
of the OLS Estimators

Because the OLS estimators 3, and f3, are computed from a randomly drawn sam-
ple, the estimators themselves are random variables with a probability distribu-
tion—the sampling distribution—that describes the values they could take over
different possible random samples. This section presents these sampling distribu-
tions. In small samples, these distributions are complicated, but in large samples,
they are approximately normal because of the central limit theorem.

The Sampling Distribution
of the OLS Estimators

Review of the sampling distribution of Y. Recall the discussion in Sections
2.5 and 2.6 about the sampling distribution of the sample average, Y, an estima-
tor of the unknown population mean of Y, ity. Because Y is calculated using a
randomly drawn sample, Y is a random variable that takes on different values from
one sample to the next; the probability of these different values is summarized in
its sampling distribution. Although the sampling distribution of Y can be com-
plicated when the sample size is small, it is possible to make certain statements
about it that hold for all n. In particular, the mean of the sampling distribution is
Uy, that 1s, EY)=u v SO Y is an unbiased estimator of Uy If nis large, then more
can be said about the sampling distribution. In particular, the central limit theo-
rem (Section 2.6) states that this distribution is approximately normal.

The sampling distribution of f§, and f3;. These ideas carry over to the
OLS estimators 3, and f3; of the unknown intercept f3, and slope f8; of the pop-
ulation regression line. Because the OLS estimators are calculated using a ran-
dom sample, i, and f; are random variables that take on different values from
one sample to the next; the probability of these different values is summarized
in their sampling distributions.

Although the sampling distribution of 3, and , can be complicated when the
sample size is small, it is possible to make certain statements about it that hold for
all n. In particular, the mean of the sampling distributions of Bo and f, are By and
Bi. In other words, under the least squares assumptions in Key Concept 4.3,

E(B,) = By and E(B) = B, (4.13)
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that is, f3, and f3; are unbiased estimators of , and 8,. The proof that f3, is unbiased
is given in Appendix 4.3 and the proof that f3, is unbiased is left as Exercise 4.4.

If the sample is sufficiently large, by the central limit theorem the sampling
distribution of f3, and f3, is well approximated by the bivariate normal distribution
(Section 2.4.). This implies that the marginal distributions of 30 and ﬁl are nor-
mal in large samples.

This argument invokes the central limit theorem. Technically, the central limit
theorem concerns the distribution of averages (like Y). If you examine the numer-
ator in Equation (4.8) for f3,, you will see that it, too, is a type of average—not a
simple average, like Y, but an average of the product, (Y, - Y) (X; - X). As dis-
cussed further in Appendix 4.3, the central limit theorem applies to this average
so that, like the simpler average Y, it is normally distributed in large samples.

The normal approximation to the distribution of the OLS estimators in large
samples is summarized in Key Concept 4.4. (Appendix 4.3 summarizes the deriva-
tion of these formulas.) A relevant question in practice is how large n must be for
these approximations to be reliable. In Section 2.6 we suggested that n = 100 is
sufficiently large for the sampling distribution of Y to be well approximated by a
normal distribution, and sometimes smaller n suffices. This criterion carries over
to the more complicated averages appearing in regression analysis. In virtually all
modern econometric applications n > 100, so we will treat the normal approxi-
mations to the distributions of the OLS estimators as reliable unless there are good
reasons to think otherwise.

The results in Key Concept 4.4 imply that the OLS estimators are consistent; that
is, when the sample size is large, f3, and f3; will be close to the true population coeffi-
cients 3, and 3, with high probability. This is because the variances 6[320 and 6[}2] of the
estimators decrease to zero as n increases (n appears in the denominator of the for-
mulas for the variances), so the distribution of the OLS estimators will be tightly
concentrated around their means, f§, and f;, when # is large.

Another implication of the distributions in Key Concept 4.4 is that, in gen-
eral, the larger is the variance of X, the smaller is the variance (7/321 of [3’1. Mathe-
matically, this arises because the variance of f3; in Equation (4.14) is inversely
proportional to the square of the variance of X;: the larger is var(X)), the larger is
the denominator in Equation (4.14) so the smaller is G',;Zl. To get a better sense of
why this is so, look at Figure 4.5, which presents a scatterplot of 150 artificial data
points on X and Y. The data points indicated by the colored dots are the 75 obser-

vations closest to X. Suppose you were asked to draw a line as accurately as
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Large-Sample Distributions of 3, and f3;

|H|HHH““ ‘ If the least squares assumptions in Key Concept 4.3 hold, then in large samples

B, and f; have a jointly normal sampling distribution. The large-sample normal
distribution of B1 s N(B4, ‘7[?21)> where the variance of this distribution, Gﬁgl’ is

Key

Concept o2 = 1 var[(X; - HX)”;’]_ (4.14)
4.4 P [var(X))? '
The large-sample normal distribution of f, is N(f,, Gﬁzo ), where
Hu
of _ 1 varlHu) WhereHl-=1—< i )X (4.15)
" n [EED)P E(X?)

possible through either the colored or the black dots—which would you choose?
It would be easier to draw a precise line through the black dots, which have a
larger variance than the colored dots. Similarly, the larger the variance of X, the
more precise is f3;.

The normal approximation to the sampling distribution of f3, and 3, is a pow-
erful tool. With this approximation in hand, we are able to develop methods for
making inferences about the true population values of the regression coefficients
using only a sample of data.

4.5 Testing Hypotheses About One
of the Regression Coefficients

Your client, the superintendent, calls you with a problem. She has an angry tax-
payer in her office who asserts that cutting class size will not help test scores, so
that reducing them further is a waste of money. Class size, the taxpayer claims, has
no effect on test scores.

The taxpayer’s claim can be rephrased in the language of regression analysis.
Because the effect on test scores of a unit change in class size 1S gz the tax-
payer is asserting that the population regression line is flat, that is, that the slope
Beiasssize Of the population regression line is zero. Is there, the superintendent asks,
evidence in your sample of 420 observations on California school districts that
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this slope is nonzero? Can you reject the taxpayer’s hypothesis that 8.z = 0,

or must you accept it, at least tentatively pending further new evidence?

This section discusses tests of hypotheses about the slope 3, or intercept 3, of
the population regression line. We start by discussing two-sided tests of the slope
p; in detail, then turn to one-sided tests and to tests of hypotheses regarding the
intercept f3,.

Two-Sided Hypotheses Concerning f3;

The general approach to testing hypotheses about these coefticients is the same as
to testing hypotheses about the population mean, so we begin with a brief review.

Testing hypotheses about the population mean. Recall from Section 3.2
that the null hypothesis that the mean of Y'is a specific value uy, cyan be written
as Hy: E(Y') = uy, and the two-sided alternative is H;: E(Y) # tiy,.

The test of the null hypothesis H,, against the two-sided alternative proceeds
as in the three steps summarized in Key Concept 3.6. The first is to compute the
standard error of Y, SE(Y), which is an estimator of the standard deviation of the
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sampling distribution of Y. The second step is to compute the f-statistic, which
has the general form given in Key Concept 4.5; applied here, the f-statistic is
t= (Y = )/ SE(Y).

The third step is to compute the p-value, which is the smallest significance
level at which the null hypothesis could be rejected, based on the test statistic actu-
ally observed; equivalently, the p-value is the probability of obtaining a statistic,
by random sampling variation, at least as different from the null hypothesis value
as 1s the statistic actually observed, assuming that the null hypothesis is correct
(Key Concept 3.5). Because the f-statistic has a standard normal distribution in
large samples under the null hypothesis, the p-value for a two-sided hypothesis
test is 2( — | t*'|), where " is the value of the t-statistic actually computed and
@ is the cumulative standard normal distribution tabulated in Appendix Table 1.
Alternatively, the third step can be replaced by simply comparing the ¢-statistic to
the critical value appropriate for the test with the desired significance level; for
example, a two-sided test with a 5% significance level would reject the null
hypothesis if |#*|> 1.96. In this case, the population mean is said to be statisti-
cally significantly different than the hypothesized value at the 5% significance level.

Testing hypotheses about the slope 3,. At a theoretical level, the critical fea-
ture justifying the foregoing testing procedure for the population mean is that, in
large samples, the sampling distribution of Y is approximately normal. Because 3,
also has a normal sampling distribution in large samples, hypotheses about the true
value of the slope f3; can be tested using the same general approach.

The null and alternative hypotheses need to be stated precisely before they
can be tested. The angry taxpayer’s hypothesis is that .., = 0. More gener-
ally, under the null hypothesis the true population slope f3; takes on some specific
value, B, ;. Under the two-sided alternative, 3 does not equal f3; (. That is, the
null hypothesis and the two-sided alternative hypothesis are

Hy: By = By vs. Hy: By # By (two-sided alternative). (4.16)

To test the null hypothesis H,, we follow the same three steps as for the pop-
ulation mean.

The first step is to compute the standard error of B, SE(f,). The standard
error of ﬁlAis an estimator of ¢ , the standard deviation of the sampling distri-
bution of ;. Specifically,

SE(By) = V63 4.17)
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General Form of the ¢-Statistic r

estimator — hypothesized value

t= 4.18
standard error of the estimator ( ) Key
Concept
4.5
where
n 1 2 (Xt - ‘)_<)2 &12
& =1 x 1 =L — (4.19)
1 2
[ 2y~ %7

The estimator of the variance in Equation (4.19) is discussed in Appendix 4.4.
Although the formula for 6321 is complicated, in applications the standard error is
computed by regression software so that it is easy to use in practice.

The second step is to compute the f-statistic,

f=t "o [51 ﬁl ,0 (420)
SE(B))

The third step is to compute the p-value, that is, the probability of observ-
ing a value of 3, at least as different from f, 0 as the estimate actually computed
(B, assuming that the null hypothesis is correct. Stated mathematically,

p-value = PrHO [|/§1 - By 0|> |ﬁ1m _[51,0|]
_pr [ ﬁl - [51,0 ﬁ1 51 0
"L sEp) SE(p,)

where, Pr; denotes the probability computed under the null hypthesis, the sec-
ond equality follows by dividing by SE(f,), and t“ is the value of the f-statistic
actually computed. Because f3, is approximately normally distributed in large sam-

(4.21)

|| = peadiei=1e.

ples, under the null hypothesis the t-statistic is approximately distributed as a stan-
dard normal random variable, so in large samples,

p-value = Pr(| Z| > |) = 2 (= | #**|). (4.22)
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A small value of the p-value, say less than 5%, provides evidence against
the null hypothesis in the sense that the chance of obtaining a value of 3, by
pure random variation from one sample to the next is less than 5% if in fact
the null hypothesis is correct. If so, the null hypothesis is rejected at the 5%
significance level.

Alternatively, the hypothesis can be tested at the 5% significance level simply
by comparing the value of the t-statistic to £1.96, the critical value for a two-
sided test, and rejecting the null hypothesis at the 5% level if |*|> 1.96.

These steps are summarized in Key Concept 4.6.

Application to test scores. 'The OLS estimator of the slope coefficient, esti-
mated using the 420 observations in Figure 4.2 and reported in Equation (4.7), is
—2.28. Its standard error is 0.52, that is, SE(ﬁl) = 0.52. Thus, to test the null
hypothesis that S,.si2e = 0, We construct the t-statistic using Equation (4.20);
accordingly, t*" = (=2.28 — 0)/0.52 = —4.38.

This t-statistic exceeds the 1% two-sided critical value of 2.58, so the null
hypothesis is rejected in favor of the two-sided alternative at the 1% significance
level. Alternatively, we can compute the p-value associated with t = —4.38. This
probability is the area in the tails of standard normal distribution, as shown in Fig-
ure 4.6. This probability is extremely small, approximately .00001, or .001%. That
is, if the null hypothesis S,.gz, = O 1s true, the probability of obtaining a value
of B, as far from the null as the value we actually obtained is extremely small, less
than .001%. Because this event is so unlikely, it is reasonable to conclude that the
null hypothesis is false.

One-Sided Hypothesis Concerning f3,

The discussion so far has focused on testing the hypothesis that 8; = 3, ; against
the hypothesis that ; # 3, ;. This is a two-sided hypothesis test, because under
the alternative 8 could be either larger or smaller than f3; ;. Sometimes, however,
it is appropriate to use a one-sided hypothesis test. For example, in the student-
teacher ratio/test score problem, many people think that smaller classes provide a
better learning environment. Under that hypothesis, f3; is negative: smaller classes
lead to higher scores. It might make sense, therefore, to test the null hypothesis
that 5, = 0 (no effect) against the one-sided alternative that 5, < 0.

For a one-sided test, the null hypothesis and the one-sided alternative
hypothesis are

Hy: By = By o vs. Hy: By < By, (one-sided alternative). (4.23)
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Testing the Hypothesis f = 3, , Against
the Alternative 8; # o

1. Compute the standard error of Bp SE( ﬁl) (Equation (4.17)). ‘

2. Compute the f-statistic (Equation (4.20).

3. Compute the p-value (Equation (4.22)). Reject the hypothesis at the 5% sig- Key
nificance level if the p-value is less than .05 or, equivalently, if [F*[> 1.96. Conce P t

The standard error and (typically) the f-statistic and p-value testing 3, =0 are 4, G
computed automatically by regression software.

FIGURE 4.6 Calculating the p-Value of a Two-Sided Test When o = -4.38

The p-value of a two-sided
test is the probability that

| Z| 2| tect|, where Zis a
standard normal random
variable and t9is the
value of the t-statistic cal-
culated from the sample.
When ot = -4.38, the
p-value is only .00001.

—4.38
The p-value is the area

to the left of —4.38

+
the area to the right of
+4.38.

where 3 ; is the value of #; under the null (0 in the student-teacher ratio exam-
ple) and the alternative is that 8, is less than f3 ;. If the alternative is that B, is
greater than f3; o, the inequality in Equation (4.23) is reversed.

Because the null hypothesis is the same for a one- and a two-sided hypothe-
sis test, the construction of the t-statistic is the same. The only difference between
a one- and two-sided hypothesis test is how you interpret the f-statistic. For the
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one-sided alternative in (4.23), the null hypothesis is rejected against the one-
sided alternative for large negative, but not large positive, values of the f-statistic:
instead of rejecting if |¢*'| > 1.96, the hypothesis is rejected at the 5% significance
level if %" < —1.645.

The p-value for a one-sided test is obtained from the cumulative standard

normal distribution as
p-value = Pr(Z < t*) = @(t*") (p-value, one-sided left-tail test). (4.24)

If the alternative hypothesis is that 8, is greater than f3; , the inequalities in
Equations (4.23) and (4.24) are reversed, so the p-value is the right-tail probabil-
ity, Pr(Z > ).

When should a one-sided test be used? In practice, one-sided alternative
hypotheses should be used when there is a clear reason for 8, being on a certain
side of the null value 3;  under the alternative. This reason could stem from eco-
nomic theory, prior empirical evidence, or both. However, even if it initially
seems that the relevant alternative is one-sided, upon reflection this might not
necessarily be so. A newly formulated drug undergoing clinical trials actually
could prove harmful because of previously unrecognized side effects. In the class
size example, we are reminded of the graduation joke that a university’s secret of
success is to admit talented students and then make sure that the faculty stays out
of their way and does as little damage as possible. In practice, such ambiguity often
leads econometricians to use two-sided tests.

Application to test scores. The t-statistic testing the hypothesis that there is
no effect of class size on test scores (so ; , = 0 in Equation (4.23)) is t* = —4.38.
This is less than —2.33 (the critical value for a one-sided test with a 1% signifi-
cance level), so the null hypothesis is rejected against the one-sided alternative at
the 1% level. In fact, the p-value is less than .0006%. Based on these data, you can
reject the angry taxpayer’s assertion that the negative estimate of the slope arose
purely because of random sampling variation at the 1% significance level.

Testing Hypotheses About the Intercept f3,

This discussion has focused on testing hypotheses about the slope, ;. Occasion-
ally, however, the hypothesis concerns the intercept, 3,. The null hypothesis con-
cerning the intercept and the two-sided alternative are

Hy: By = By vs. Hy: By # Py (two-sided alternative). (4.25)
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The general approach to testing this null hypothesis consists of the three steps
in Key Concept 4.6, applied to f, (the formula for the standard error of Bo is given
in Appendix 4.4). If the alternative is one-sided, this approach is modified as was
discussed in the previous subsection for hypotheses about the slope.

Hypothesis tests are useful if you have a specific null hypothesis in mind (as
did our angry taxpayer). Being able to accept or to reject this null hypothesis based
on the statistical evidence provides a powerful tool for coping with the uncer-
tainty inherent in using a sample to learn about the population. Yet, there are
many times that no single hypothesis about a regression coefficient is dominant,
and instead one would like to know a range of values of the coefficient that are
consistent with the data. This calls for constructing a confidence interval.

Confidence Intervals for a
Regression Coefficient

Because any statistical estimate of the slope f3; necessarily has sampling uncertainty,
we cannot determine the true value of 3, exactly from a sample of data. It is, how-
ever, possible to use the OLS estimator and its standard error to construct a con-
fidence interval for the slope f3; or for the intercept f,.

Confidence interval for ;. Recall that a 95% confidence interval for f3,
has two equivalent definitions. First, it is the set of values that cannot be rejected
using a two-sided hypothesis test with a 5% significance level. Second, it is an
interval that has a 95% probability of containing the true value of f,; that is, in
95% of possible samples that might be drawn, the confidence interval will con-
tain the true value of ;. Because this interval contains the true value in 95% of
all samples, it is said to have a confidence level of 95%.

The reason these two definitions are equivalent is as follows. A hypothesis test
with a 5% significance level will, by definition, reject the true value of 3, in only
5% of all possible samples; that is, in 95% of all possible samples the true value of
B will not be rejected. Because the 95% confidence interval (as defined in the first
definition) is the set of all values of 3; that are not rejected at the 5% significance
level, it follows that the true value of 3, will be contained in the confidence inter-
val in 95% of all possible samples.

As in the case of a confidence interval for the population mean (Section 3.3),
in principle a 95% confidence interval can be computed by testing all possible val-
ues of 3 (that is, testing the null hypothesis §; = B, , for all values of 3, () at the
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5% significance level using the f-statistic. The 95% confidence interval is then the
collection of all the values of 3, that are not rejected. But constructing the t-sta-
tistic for all values of 3, would take forever.

An easier way to construct the confidence interval is to note that the
t-statistic will reject the hypothesized value f3; ; whenever B, ; is outside the
range f3; £1.96SE(f,). That is, the 95% confidence interval for 8, is the inter-
val (ﬁA1 - 1.96SE(ﬁA1), BA] + 1.96SE(/§1)). This argument parallels the argument
used to develop a confidence interval for the population mean.

The construction of a confidence interval for f; is summarized as Key
Concept 4.7.

Confidence interval for 3;. A 95% confidence interval for f3, is constructed
as in Key Concept 4.7, with Bo and SE(,@O) replacing [?1 and SE(BO-

Application to test scores. The OLS regression of the test score against the
student-teacher ratio, reported in Equation (4.7), yielded [3’0 = 698.7 and [%] =
—2.28. The standard errors of these estimates are SE(ﬁ’O) =10.4 and SE(ﬁ'l) =0.52.

Because of the importance of the standard errors, we will henceforth
include them when reporting OLS regression lines in parentheses below the
estimated coetficients:

—
TestScore = 698.9 — 2.28 x STR. (4.26)
(10.4) (0.52)

The 95% two-sided confidence interval for 3, is {—2.28 + 1.96 x 0.52}, that
is, =3.30 < 3, < —1.26. The value 8; = 0 is not contained in this confidence inter-
val, so (as we knew already from Section 4.5) the hypothesis 5; = 0 can be rejected
at the 5% significance level.

Confidence intervals for predicted effects of changing X. The 95% con-
fidence interval for 3, can be used to construct a 95% confidence interval for
the predicted effect of a general change in X.

Consider changing X by a given amount, Ax. The predicted change in Y asso-
ciated with this change in X is $;Ax. The population slope 3, is unknown, but
because we can construct a confidence interval for 3;, we can construct a confidence
interval for the predicted eftect 5;Ax. Because one end of a 95% confidence interval
for f3; is BA1 - 1.96SE(BA1), the predicted effect of the change Ax using this esti-
mate of 3 is (Bl - 1.965E(ﬁl)) X Ax. The other end of the confidence interval
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Confidence Intervals for 3 r

A 95% two-sided confidence interval for 3 is an interval that contains the true ‘
value of 8, with a 95% probability; that is, it contains the true value of f; in

95% of all possible randomly drawn samples. Equivalently, it is also the set of
values of f3; that cannot be rejected by a 5% two-sided hypothesis test. When

Key

the sample size is large, it is constructed as Concept

95% confidence interval for §; = (B1 - 1.96SE([§1), ﬁ1 + 1.96SE(ﬁ1)). (4.27) 4.7

4.7

is B, + 1.96SE(f,), and the predicted effect of the change using that estimate is
([§1 + 1.96SE([§1)) X Ax. Thus a 95% confidence interval for the effect of chang-
ing x by the amount Ax can be expressed as

95% confidence interval for f;Ax =

(B,Ax = 1.96SE(B,) X Ax, fiAx + 1.96SE(f) X Ax). (4.28)

For example, our hypothetical superintendent is contemplating reducing the
student-teacher ratio by 2. Because the 95% confidence interval for 3, is (=3.30,
—1.26), the effect of reducing the student-teacher ratio by 2 could be as great as
—3.30 x (=2) = 6.60, or as little as =1.26 x (=2) = 2.52. Thus decreasing the stu-
dent-teacher ratio by 2 is predicted to increase test scores by between 2.52 and
6.60 points, with a 95% confidence level.

Regression When X Is a Binary Variable

The discussion so far has focused on the case that the regressor is a continuous
variable. Regression analysis can also be used when the regressor is binary, that is,
when it takes on only two values, 0 or 1. For example, X might be a worker’s
gender (= 1 if female, = 0 if male), whether a school district is urban or rural
(= 1 if urban, = 0 if rural), or whether the district’s class size is small or large
(= 1ifsmall, = 0 if large). A binary variable is also called an indicator variable
or sometimes a dummy variable.



120

CHAPTER 4  Linear Regression with One Regressor

Interpretation of the Regression Coefficients

The mechanics of regression with a binary regressor are the same as if it is con-
tinuous. The interpretation of 8, however, is difterent, and it turns out that regres-
sion with a binary variable is equivalent to performing a difference of means
analysis, as described in Section 3.4.

To see this, suppose you have a variable D, that equals either O or 1, depend-
ing on whether the student-teacher ratio is less than 20:

D .= 1 if the student-teacher ratio in i district < 20 (4.29)
i 0 if the student-teacher ratio in i district > 20. .
The population regression model with D, as the regressor is
Y=0,+BD +u,i=1,...,n (4.30)

This is the same as the regression model with the continuous regressor X, except that
now the regressor is the binary variable D,. Because D, is not continuous, it is not
useful to think of f3; as a slope; indeed, because D, can take on only two values, there
is no “line” so it makes no sense to talk about a slope. Thus we will not refer to f3; as
the slope in Equation (4.30); instead we will simply refer to 5, as the coefficient
multiplying D, in this regression or, more compactly, the coefficient on D

If 3, in Equation (4.30) is not a slope, then what is it? The best way to inter-
pret S, and f3; in a regression with a binary regressor is to consider, one at a time,
the two possible cases, D, = 0 and D, = 1. If the student-teacher ratio is high, then
D, = 0 and Equation (4.30) becomes

Y =p,+u (D=0). (4.31)

1

Because E(u;|D;) = 0, the conditional expectation of Y, when D, = 0 is

E(Y;| D, = 0) = B, that is, f§, is the population mean value of test scores when
the student-teacher ratio is high. Similarly, when D, = 1,

Y= Byt B+ (D=1). (4.32)

Thus, when D, = 1, E(Y;| D, = 1) = 3, + f;; that s, 3, + f3; is the population mean
value of test scores when the student-teacher ratio is low.

Because 3, + 5, is the population mean of Y; when D, = 1 and 3, is the pop-
ulation mean of Y; when D, = 0, the difterence (8, + 3,) — B, = 3, is the differ-



4.7 Regression When X Is a Binary Variable 121

ence between these two means. In other words, 3, is the difference between
the conditional expectation of Y; when D; = 1 and when D, = 0, or 3, =
E(Y,|D,=1) — E(Y;| D, = 0). In the test score example, f3; is the difference
between mean test score in districts with low student-teacher ratios and the
mean test score in districts with high student-teacher ratios.

Because f, is the difference in the population means, it makes sense that the
OLS estimator f3, is the difference between the sample averages of Y in the two
groups, and in fact this is the case.

Hypothesis tests and confidence intervals. If the two population means
are the same, then f; in Equation (4.30) is zero. Thus, the null hypothesis that the
two population means are the same can be tested against the alternative hypoth-
esis that they differ by testing the null hypothesis f; = 0 against the alternative
B, # 0. This hypothesis can be tested using the procedure outlined in Section 4.5.
Specifically, the null hypothesis can be rejected at the 5% level against the two-
sided alternative when the OLS t-statistic ¢ = ﬁl/ SE(ﬁl) exceeds 1.96 in absolute
value. Similarly, a 95% confidence interval for 8, constructed as f3; + 1.96SE(f3,)
as described in Section 4.6, provides a 95% confidence interval for the difference
between the two population means.

Application to Test Scores. As an example, a regression of the test score
against the student-teacher ratio binary variable D defined in Equation (4.29) esti-
mated by OLS using the 420 observations in Figure 4.2, yields

e
TestScore = 650.0 + 7.4D (4.33)
(1.3) (1.8)
where the standard errors of the OLS estimates of the coefficients f3, and f3; are
given in parentheses below the OLS estimates. Thus the average test score for
the subsample with student-teacher ratios greater than or equal to 20 (that is,
for which D = 0) is 650.0, and the average test score for the subsample with
student-teacher ratios less than 20 (so D = 1) is 650.0 + 7.4 = 657.4. Thus the
difference between the sample average test scores for the two groups is 7.4.
This is the OLS estimate of f3;, the coefficient on the student-teacher ratio
binary variable D.
Is the difference in the population mean test scores in the two groups statis-
tically significantly different from zero at the 5% level? To find out, construct the
t-statistic on f3;: t = 7.4/1.8 = 4.04. This exceeds 1.96 in absolute value, so the
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4.8

hypothesis that the population mean test scores in districts with high and low stu-
dent-teacher ratios is the same can be rejected at the 5% significance level.

The OLS estimator and its standard error can be used to construct a 95%
confidence interval for the true difference in means. Thisis 7.4 £ 1.96 X 1.8 =
(3.9, 10.9). This confidence interval excludes 5, = 0, so that (as we know from
the previous paragraph) the hypothesis 8, = 0 can be rejected at the 5% signif-
icance level.

The R? and the Standard Error
of the Regression

The R? and the standard error of the regression are two measures of how well the
OLS regression line fits the data. The R? ranges between 0 and 1 and measures
the fraction of the variance of Y; that is explained by variation in X,. The standard
error of the regression measures how far Y, typically is from its predicted value.

The R?

The regression R? is the fraction of the sample variance of Y, explained by (or
predicted by) X,. The definitions of the predicted value and the residual (see Key
Concept 4.2) allow us to write the dependent variable Y, as the sum of the pre-
dicted value, Y, plus the residual i;:

Y=Y +d, (4.34)
In this notation, the R? is the ratio of the sample variance of ¥; to the sample vari-
ance of Y.

Mathematically, the R? can be written as the ratio of the explained sum of
squares to the total sum of squares. The explained sum of squares, or ESS, is
the sum of squared deviations of the predicted values of Y, Y;, from their aver-
age, and the total sum of squares, or TSS, is the sum of squared deviations of
Y; from its average:

ESS = i(fg -Y)%and (4.35)
i=1
TSS = i(y, -Y)?, (4.36)

i=1
where Equation (4.35) uses the fact that Y equals the sample average OLS pre-
dicted value (proven in Appendix 4.3).
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The R? is the ratio of the explained sum of squares to the total sum of squares:

_ ESS
TSS

R? (4.37)

Alternatively, the R? can be written in terms of the fraction of the variance
of Y, not explained by X,. The sum of squared residuals, or SSR, is the sum of
the squared OLS residuals:

SSR = 2. (4.38)
i=1

It is shown in Appendix 4.3 that TSS = ESS + SSR. Thus the R? also can be
expressed as one minus the ratio of the sum of squared residuals to the total
sum of squares:
R2=1-55R (4.39)
TSS
Finally, the R? of the regression of Y on the single regressor X is the square of the
correlation coefficient between Y and X.

The R? ranges between zero and one. If 3, =0, then X, explains none of the
variation of Y; and the predicted value of Y, based on the regression is just the sam-
ple average of Y. In this case, the explained sum of squares is zero and the sum of
squared residuals equals the total sum of squares; thus the R? is zero. In contrast,
if X, explains all of the variation of Y, then Y, = ¥/ for all i and every residual is
zero (that is, i, = 0), so that ESS = TSS and R? = 1. In general the R? does not
take on the extreme values of zero or one but falls somewhere in between. An R?
near one indicates that the regressor is good at predicting Y, while an R? near
zero indicates that the regressor is not very good at predicting Y.

The Standard Error of the Regression

The standard error of the regression, or SER, is an estimator of the standard

deviation of the regression error u,. Because the regression errors uy, . . ., u, are
unobserved, the SER is computed using their sample counterparts, the OLS resid-
uals i, . . ., u, The formula for the SER is
n
_ 1 ~ _ SSR
SER = s;, where s = ) ; 0= (4.40)

where the formula for s? uses the fact (proven in Appendix 4.3) that the sample
average of the OLS residuals is zero.
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4.9

The formula for the SER in Equation (4.40) is the same as the formula for
the sample standard deviation of Y given in Equation (3.7) in Section 3.2, except
that Y, - Y in Equation (3.7) is replaced by i, and the divisor in Equation (3.7)
is n — 1, whereas here it is n — 2. The reason for using the divisor n — 2 here
(instead of #) is the same as the reason for using the divisor n — 1 in Equation (3.7):
it corrects for a slight downward bias introduced because two regression coeffi-
cients were estimated. This is called a “degrees of freedom” correction; because
two coetlicients were estimated (f3, and f3;), two “degrees of freedom” of the data
were lost, so the divisor in this factor is n — 2. (The mathematics behind this 1s
discussed in Section 15.4.) When n is large, the difference between dividing by
n, by n — 1, or by n — 2 is negligible.

Heteroskedasticity and Homoskedasticity

Our only assumption about the distribution of #; conditional on X; is that it has
a mean of zero (the first least squares assumption). If, furthermore, the variance of
this conditional distribution does not depend on X, then the errors are said to be
homoskedastic. This section discusses homoskedasticity, its theoretical implica-
tions, the simplified formulas for the standard errors of the OLS estimators that
arise if the errors are homoskedastic, and the risks you run if you use these sim-
plified formulas in practice.

What Are Heteroskedasticity
and Homoskedasticity?

Definitions of heteroskedasticity and homoskedasticity. The error term
u, 1s homoskedastic if the variance of the conditional distribution of u; given X;
is constant for i = 1, . . ., n and in particular does not depend on X,. Otherwise,
the error term is heteroskedastic.

As an illustration, return to Figure 4.4. The distribution of the errors u; is
shown for various values of x. Because this distribution applies specifically for the
indicated value of x, this is the conditional distribution of u; given X, = x. As
drawn in that figure, all these conditional distributions have the same spread; more
precisely, the variance of these distributions is the same for the various values of
x. That 1s, in Figure 4.4, the conditional variance of u, given X; = x does not
depend on x;, so the errors illustrated in Figure 4.4 are homoskedastic.
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In contrast, Figure 4.7 illustrates a case in which the conditional distribution
of u; spreads out as x increases. For small values of x, this distribution is tight, but
for larger values of x, it has a greater spread. Thus, in Figure 4.7 the variance of
u; given X; = x increases with x, so that the errors in Figure 4.7 are heteroskedastic.

The definitions of heteroskedasticity and homoskedasticity are summarized
in Key Concept 4.8.

Example. These terms are a mouthful and the definitions might seem abstract.
To help clarify them with an example, we digress from the student-teacher
ratio/test score problem and instead return to the example of earnings of male
versus female college graduates considered in Section 3.5. Let MALE, be a binary
variable that equals 1 for male college graduates and equals O for female gradu-
ates. The binary variable regression model relating someone’s earnings to his or
her gender is

Earnings, = B, + p;MALE, + u; (4.41)
fori =1, ..., n. Because the regressor is binary, 3, is the difterence in the pop-
ulation means of the two groups, in this case, the difference in mean earnings
between men and women who graduated from college.

FIGURE 4.7 An Example of Heteroskedasticity
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Key
Concept
4.8

Heteroskedasticity and Homoskedasticity

The error term u; is homoskedastic if the variance of the conditional distribu-
tion of u; given X, var(u;| X; = x), is constant for i = 1, . . ., n, and in particu-
lar does not depend on x; otherwise, the error term is heteroskedastic.

The definition of homoskedasticity states that the variance of u; does not
depend on the regressor. Here the regressor is MALE,, so at issue is whether the
variance of the error term depends on MALE,. In other words, is the variance of
the error term the same for men and for women? If so, the error is homoskedas-
tic; if not, it is heteroskedastic.

Deciding whether the variance of u; depends on MALE;, requires thinking
hard about what the error term actually is. In this regard, it is useful to write Equa-
tion (4.41) as two separate equations, one for men and one for women:

Earnings; = 3, + u; (women) and (4.42)
Earnings; = f, + B + u; (men). (4.43)

Thus, for women, u, is the deviation of the i woman’ earnings from the popu-
lation mean earnings for women (f3), and for men, u, is the deviation of the i™®
man’s earnings from the population mean earnings for men (f, + f3;). It follows
that the statement, “the variance of u; does not depend on MALE,” is equivalent
to the statement, “the variance of earnings is the same for men as it is for women.”
In other words, in this example, the error term is homoskedastic if the variance
of the population distribution of earnings is the same for men and women; if these
variances differ, the error term is heteroskedastic.

Mathematical Implications of Homoskedasticity

The OLS estimators remain unbiased and asymptotically normal. Because
the least squares assumptions in Key Concept 4.3 place no restrictions on the
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conditional variance, they apply to both the general case of heteroskedasticity
and the special case of homoskedasticity. Therefore, the OLS estimators remain
unbiased and consistent even if the errors are homoskedastic. In addition, the OLS
estimators have sampling distributions that are normal in large samples even if the
errors are homoskedastic. Whether the errors are homoskedastic or heteroskedas-
tic, the OLS estimator is unbiased, consistent, and asymptotically normal.

Efficiency of the OLS estimator. If the least squares assumptions in Key
Concept 4.3 hold and in addition the errors are homoskedastic, then the OLS
estimators 3, and f3, are efficient among all estimators that are linearin Y;, . . ., Y,
and are unbiased, conditional on X, ..., X,. That is, the OLS estimators have
the smallest variance of all unbiased estimators that are weighted averages of
Y, ..., Y, In other words, if, in addition to the least squares assumptions, the
errors are homoskedastic, then the OLS estimators ﬁo and [§1 are the best linear
unbiased estimators, or BLUE. This result was stated for the sample average
Y in Key Concept 3.3 and it extends to OLS under homoskedasticity. This result,
which 1s known as the Gauss-Markov theorem, is proven in Chapter 15.

If the errors are heteroskedastic, then OLS is no longer BLUE. In theory, if
the errors are heteroskedastic then it is possible to construct an estimator that has
a smaller variance than the OLS estimator. This method is called weighted least
squares, in which the observations are weighted by the inverse of the square root
of the conditional variance of u; given X; Because of this weighting, the errors
in this weighted regression are homoskedastic so OLS, applied to this weighted
regression, is BLUE. Although theoretically elegant, the problem with weighted
least squares in practice is that you must know how the conditional variance of
u; actually depends on X, which is rarely known in applications. Because
weighted least squares is mainly of theoretical interest, we defer further discus-
sion to Chapter 15.

Homoskedasticity-only variance formula. 1f the error term is homoskedas-
tic, then the formulas for the variances of ﬁ() and 3, in Key Concept 4.4 simplify.
Consequently, if the errors are homoskedastic, then there is a specialized formula
that can be used for the standard errors of [30 and B1- These formulas are given in
Appendix 4.4. In the special case that X is a binary variable, the estimator of the
variance of f3; under homoskedasticity (that is, the square of the standard error of
/31 under homoskedasticity) is the so-called pooled variance formula for the dif-
ference in means, discussed in footnote 1 in Section 3.4.

Because these alternative formulas are derived for the special case that the
errors are homoskedastic and do not apply if the errors are heteroskedastic, they



128

CHAPTER 4  Linear Regression with One Regressor

will be referred to as the “homoskedasticity-only” formulas for the variance
and standard error of the OLS estimators. As the name suggests, if the errors
are heteroskedastic then the homoskedasticity-only standard errors are
inappropriate. Specifically, if the errors are heteroskedastic, then the f-statistic
computed using the homoskedasticity-only standard error does not have a stan-
dard normal distribution, even in large samples. In fact, the correct critical val-
ues to use for this homoskedasticity-only t-statistic depend on the precise
nature of the heteroskedasticity, so those critical values cannot be tabulated.
Similarly, if the errors are heteroskedastic but a confidence interval is con-
structed as £1.96 homoskedasticity-only standard errors, in general the prob-
ability that this interval contains the true value of the coefficient is not 95%,
even in large samples.

In contrast, because homoskedasticity is a special case of heteroskedasticity, the
estimators 651 and 6/520 of the variances of f3; and 3, given in Equations (4.19) and
(4.59) produce valid statistical inferences whether the errors are heteroskedastic or
homoskedastic. Thus hypothesis tests and confidence intervals based on those stan-
dard errors are valid whether or not the errors are heteroskedastic. Because the stan-
dard errors we have used so far (i.e., those based on Equations (4.19) and (4.59))
lead to statistical inferences that are valid whether or not the errors are het-
eroskedastic, they are called heteroskedasticity-robust standard errors.

What Does This Mean in Practice?

Which is more realistic, heteroskedasticity or homoskedasticity? The
answer to this question depends on the application. However, the issues can be clar-
ified by returning to the example of the gender gap in earnings among college grad-
uates. Familiarity with how people are paid in the world around us gives some clues
as to which assumption is more sensible. For many years—and, to a lesser extent,
today—women were not found in the top-paying jobs: there have always been
poorly paid men, but there have rarely been highly paid women. This suggests that
the distribution of earnings among women is tighter than among men. In other
words, the variance of the error term in Equation (4.42) for women is plausibly less
than the variance of the error term in Equation (4.43) for men. Thus, the presence
of a “glass ceiling” for women’s jobs and pay suggests that the error term in the
binary variable regression model in Equation (4.41) is heteroskedastic. Unless there
are compelling reasons to the contrary—and we can think of none—it makes sense
to treat the error term in this example as heteroskedastic.

As this example of modeling earnings illustrates, heteroskedasticity arises in
many econometric applications. At a general level, economic theory rarely gives
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any reason to believe that the errors are homoskedastic. It therefore is prudent to
assume that the errors might be heteroskedastic unless you have compelling rea-
sons to believe otherwise.

Practical implications. The main issue of practical relevance in this discus-
sion 1s whether one should use heteroskedasticity-robust or homoskedasticity-
only standard errors. In this regard, it is useful to imagine computing both, then
choosing between them. If the homoskedasticity-only and heteroskedasticity-
robust standard errors are the same, nothing is lost by using the heteroskedastic-
ity-robust standard errors; if they differ, however, then you should use the more
reliable ones that allow for heteroskedasticity. The simplest thing, then, is always
to use the heteroskedasticity-robust standard errors.

For historical reasons, many software programs use the homoskedasticity-only
standard errors as their default setting, so it is up to the user to specify the option
of heteroskedasticity-robust standard errors. The details of how to implement
heteroskedasticity-robust standard errors depend on the software package you use.

All the empirical examples in this book employ heteroskedasticity-robust stan-
dard errors unless explicitly stated otherwise.2

Conclusion

Return for a moment to the problem that started this chapter, the superintendent
who is considering hiring additional teachers to cut the student-teacher ratio.
What have we learned that she might find useful?

Our regression analysis, based on the 420 observations for 1998 in the Cali-
fornia test score data set, showed that there was a negative relationship between
the student-teacher ratio and test scores: districts with smaller classes have higher
test scores. The coefficient is moderately large, in a practical sense: districts with
2 fewer students per teacher have, on average, test scores that are 4.6 points higher.
This corresponds to moving a district at the 50® percentile of the distribution of
test scores to approximately the 60 percentile.

2In case this book is used in conjunction with other texts, it might be helpful to note that some
textbooks add homoskedasticity to the list of least squares assumptions. As just discussed, how-
ever, this additional assumption is not needed for the validity of OLS regression analysis as long
as heteroskedasticity-robust standard errors are used.
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The coefficient on the student-teacher ratio is statistically significantly dif-
ferent from 0 at the 5% significance level. The population coefficient might be
0, and we might simply have estimated our negative coefficient by random sam-
pling variation. However, the probability of doing so (and of obtaining a t-sta-
tistic on f3; as large as we did) purely by random variation over potential samples
is exceedingly small, approximately 0.001%. A 95% confidence interval for f3; is
-3.30 < 3, < —1.26.

We have made considerable progress towards answering the superintendent’s
question. Yet, a nagging concern remains. We estimated a negative relationship
between the student-teacher ratio and test scores, but is this relationship necessarily
the causal one that the superintendent needs to make her decision? We have found
that districts with lower student-teacher ratios have, on average, higher test scores.
But does this mean that reducing the student-teacher ratio will in fact increase scores?

There is, in fact, reason to worry that it might not. Hiring more teachers,
after all, costs money, so wealthier school districts can better afford smaller classes.
But students at wealthier schools also have other advantages over their poorer
neighbors, including better facilities, newer books, and better-paid teachers.
Moreover, students at wealthier schools tend themselves to come from more afflu-
ent families, and thus have other advantages not directly associated with their
school. For example, California has a large immigrant community; these immi-
grants tend to be poorer than the overall population and, in many cases, their chil-
dren are not native English speakers. It thus might be that our negative estimated
relationship between test scores and the student-teacher ratio is a consequence of
small classes being found in conjunction with many other factors that are, in fact,
the real cause of the lower test scores.

These other factors, or “omitted variables,” could mean that the OLS analy-
sis done so far in fact has little value to the superintendent. Indeed, it could be
misleading: changing the student-teacher ratio alone would not change these
other factors that determine a child’s performance at school. To address this prob-
lem, we need a method that will allow us to isolate the effect on test scores of
changing the student-teacher ratio, holding these other factors constant. That method
is multiple regression analysis, the topic of Chapter 5.

Summary

1. The population regression line, 3, + 3, X, is the mean of Y as a function of the

value of X. The slope, f3;, is the expected change in Y associated with a 1-unit
change in X. The intercept, f3,, determines the level (or height) of the regression
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line. Key Concept 4.1 summarizes the terminology of the population linear
regression model.

. The population regression line can be estimated using sample observations
(Y, X),i=1, ..., nby ordinary least squares (OLS). The OLS estimators of the
regression intercept and slope are denoted by f3, and f3,.

. There are three key assumptions for the linear regression model: (1) The regres-
sion errors, #;, have a mean of zero conditional on the regressors X;; (2) the sam-
ple observations are i.1.d. random draws from the population; and (3) the random
variables have four moments. If these assumptions hold, the OLS estimators
and [%1 are (1) unbiased; (2) consistent; and (3) normally distributed when the sam-
ple is large.

. Hypothesis testing for regression coefficients is analogous to hypothesis testing for
the population mean: use the t-statistic to calculate the p-values and either accept
or reject the null hypothesis. Like a confidence interval for the population mean,
a 95% confidence interval for a regression coefficient is computed as the estima-
tor +1.96 standard errors.

. When X is binary, the regression model can be used to estimate and test hypothe-
ses about the difference between the population means of the “X = 0” group and
the “X =1” group.

. The R? and standard error of the regression (SER) are measures of how close the
values of Y; are to the estimated regression line. The R? is between 0 and 1, with
a larger value indicating that the Y;’s are closer to the line. The standard error of
the regression is an estimator of the standard deviation of the regression error.

. In general the error u, is heteroskedastic, that is, the variance of u; at a given value
of X, var(u;|X; = x) depends on x. A special case is when the error is
homoskedastic, that is, var(u;| X; = x) is constant. Homoskedasticity-only stan-
dard errors do not produce valid statistical inferences when the errors are
heteroskedastic, but heteroskedasticity-robust standard errors do.

Key Terms

linear regression model with

a single regressor (94)
dependent variable (94)
independent variable (94)
regressor (94)
population regression line (94)
population regression function (94)

population intercept and
slope (94)
population coefficients (94)
parameters (94)
error term (94)
ordinary least squares (OLS) estimator (99)
OLS regression line (99)
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predicted value (99)

residual (99)

least squares assumptions (103)
standard error of ﬂA1 (112)
t-statistic (113)

p-value (113)

confidence interval for 3, (117)

regression R? (122)

explained sum of squares (ESS) (122)

total sum of squares (TSS) (122)

sum of squared residuals (SSR) (123)

standard error of the regression (SER) (123)

heteroskedasticity and homoskedasticity
(124)

confidence level (117)
indicator variable (119)

best linear unbiased estimator (BLUE) (127)

weighted least squares (127)

dummy variable (119) homoskedasticity-only standard errors (128)

coettecient multiplying variable D, (120)
coeftecient on D, (120)

heteroskedasticity-robust standard error
(128)

Review the Concepts

4.1 Explain the difference between f; and f8;; between the residual 7, and the
regression error #; and between the OLS predicted value }A’, and E(Y;| X)).

4.2 Outline the procedures for computing the p-value of a two-sided test of
H,: uy = 0 using an 1.1.d. set of observations Y, i = 1, ..., n. Outline the
procedures for computing the p-value of a two-sided test of H,: f; = 0 in
a regression model using an i.1.d. set of observations (Y}, X,), i=1,..., n.

4.3 Explain how you could use a regression model to estimate the wage gen-
der gap using the data from Section 3.5. What are the dependent and
independent variables?

4.4 Sketch a hypothetical scatterplot of data for an estimated regression
with R? = 0.9. Sketch a hypothetical scatterplot of data for a regression with
R*=0.5.

Exercises

Solutions to exercises denoted by * can be found on the text website at
www.aw.com/stock_watson.

*4.1 Suppose that a researcher, using data on class size (CS) and average test scores
from 100 third-grade classes, estimates the OLS regression,

/\
TestScore = 520.4 —5.82 x CS, R2 = 0.08, SER = 11.5.
(20.4) (2.21)
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a. A classroom has 22 students. What is the regression’s prediction for
that classroom’s average test score?

b. Last year a classroom had 19 students, and this year it has 23 students.
What is the regression’s prediction for the change in the classroom
average test score?

c. Construct a 95% confidence interval for 8, the regression slope
coefficient.

d. Calculate the p-value for the two-sided test of the null hypothesis
H,: 3; = 0. Do you reject the null hypothesis at the 5% level? At
the 1% level?

e. The sample average class size across the 100 classrooms is 21.4. What
is the sample average of the test scores across the 100 classrooms?
(Hint: Review the formulas for the OLS estimators.)

f. What is the sample standard deviation of test scores across the 100
classrooms? (Hint: Review the formulas for the R? and SER.)

4.2 Suppose that a researcher, using wage data on 250 randomly selected male
workers and 280 female workers, estimates the OLS regression,

——
Wage = 12.68 + 2.79 Male, R> = 0.06, SER = 3.10
(0.18) (0.84)

where Wage is measured in $/hour and Male is a binary variable that is equal
to one if the person is a male and 0 if the person is a female. Define the wage
gender gap as the difference in mean earnings between men and women.
a. What is the estimated gender gap?

b. Is the estimated gender gap significantly different from zero? (Compute
the p-value for testing the null hypothesis that there is no gender gap.)

c. Construct a 95% confidence interval for the gender gap.
d. In the sample, what is the mean wage of women? Of men?

e. Another researcher uses these same data, but regresses Wages on Female, a
variable that is equal to one if the person is female and zero if the person
a male. What are the regression estimates calculated from this regression?

—~
Wage = + Female, R> = , SER =

*4.3 Show that the first least squares assumption, E(i;| X;) = 0, implies that
E(Y;| X)) = By + B X
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4.4 Show t hat ﬁo is an unbiased estimator of 3. (Hint: use the fact that BA1 is
unbiased, which is shown in Appendix 4.3).

4.5 Suppose that a random sample of 200 20-year-old men is selected from a
population and their height and weight is recorded. A regression of weight
on height yields:

e
Weight = =99.41 + 3.94 Height, R> = 0.81, SER = 10.2,
(2.15) (0.31)

where Weight is measured in pounds and Height is measured in inches.

a. What is the regression’s weight prediction for someone who is 70
inches tall? 65 inches tall? 74 inches tall?

b. A person has a late growth spurt and grows 1.5 inches over the course
of a year. What is the regression’s prediction for the increase in the
person’s weight?

c. Construct a 99% confidence interval for the weight gain in (b).

d. Suppose that instead of measuring weight and height in pounds and
inches, they are measured in kilograms and centimeters. What are the
regression estimates from this new kilogram-centimeter regression?

(Give all results, estimated coefficients, standard errors, R? and SER.)

4.6 Starting from Equation (4.15), derive the variance of i, under homoskedas-
ticity given in Equation (4.61) in Appendix 4.4.

APPENDIX
4.1 | The California Test Score Data Set

The California Standardized Testing and Reporting data set contains data on test perfor-
mance, school characteristics, and student demographic backgrounds. The data used here
are from all 420 K—6 and K-8 districts in California with data available for 1998 and 1999.
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Test scores are the average of the reading and math scores on the Stanford 9 Achievement
Test, a standardized test administered to fifth-grade students. School characteristics (aver-
aged across the district) include enrollment, number of teachers (measured as “full-time-
equivalents”), number of computers per classroom, and expenditures per student. The
student-teacher ratio used here is the number of full-time equivalent teachers in the dis-
trict, divided by the number of students. Demographic variables for the students also are
averaged across the district. The demographic variables include the percentage of students
in the public assistance program CalWorks (formerly AFDC), the percentage of students
that qualify for a reduced price lunch, and the percentage of students that are English
learners (that is, students for whom English is a second language). All of these data were

obtained from the California Department of Education (www.cde.ca.gov).

APPENDIX
4.2 | Derivation of the OLS Estimators

This appendix uses calculus to derive the formulas for the OLS estimators given in Key

Concept 4.2. To minimize the sum of squared prediction mistakes > (Y; = b, = b;X,)? (Equa-
i=1

tion (4.6)), first take the partial derivatives with respect to b, and by:

d

(Y~ by — b, X)> :—22 - b,X,) and (4.44)
91’0 i=1

E(Y by — b, X,)? = —22 Y, = by~ b, X)X, (4.45)
abl i=1 i=1

The OLS estimators, [}0 and f3,, are the values of by and b, that minimize Z(Y by = b, X,)?
or, equivalently, the values of b, and b, for which the derivatives in Equatlons (4.44) and
(4.45) equal zero. Accordingly, setting these derivatives equal to zero, collecting terms, and

dividing by n shows that the OLS estimators, [30 and f3;, must satisfy the two equations,

Y =B, - B, X =0and (4.46)

1 A — A
T2 XY =By X =By gEX?:o. (4.47)
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Solving this pair of equations for 3, and f3; yields

1 n . n . _
g}}xlx -XY 21<Xl =X)(Y, -Y)
hi=", = 449
;ElX? - (X)? 21<X,v -X)?

by=Y -, X. (4.49)
Equations (4.48) and (4.49) are the formulas for f3, and B, given in Key Concept 4.2; the
formula §; = sy,/s% is obtained by dividing the numerator and denominator in Equation
(4.48) by n — 1.

APPENDIX

4.3 | Sampling Distribution of the OLS Estimator
|

In this appendix, we show that the OLS estimator f3, is unbiased and, in large samples, has
the normal sampling distribution given in Key Concept 4.4

Representation of 3, in Terms of the Regressors and Errors

‘We start by providing an expression for f3; in terms of the regressors and errors. Because
Y= i -

Bo+ /X +u, Y=Y = (X, — X) + u; — u, so the numerator of the formula for j;
in Equation (4.48) is

n

DX = X)(Y,
=1

2<X X)[By(X; = X) + (u, = i0)]
= mE(X,- -X)2+ E(Xf = X)(u, — i)
i=1 i

(4.50)
i=1
Now E(X X) (=) =

E(X X)u, —E(X X)ii —Z(X = X)u,, where the final equality
follows from the deﬁnmon of X, Wthh implies that E(X X )i —[EX - nX] u=0.
Substituting E(X X)(u; =) =

E (X - X )u; into the ﬁnal expression in Equation (4.50)
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yields E(X X WY = Y) = [512(X X)2+ E(X X)u,. Substituting this expression in
turn 1nto the formula for [31 in Equatlon (4. 48) ylelds

*E(X X)u,

n

*E

Br=p + (4.51)

Proof That j3; Is Unbiased

The expectation of f; is obtained by taking the expectation of both sides of Equation
(4.51). Thus,

1 n
A otk
E(p) =8 + E

P2 X2
. (4.52)
%E(X;Y)E(Mxl, X))
= p, + E|—= T - =B,
E;(Xi—X)Z

where the second equality in Equation (4.52) follows by using the law of iterated expec-
tations (Section 2.3). By the second least squares assumption, u; is distributed indepen-
dently of X for all observations other than i, so E(u;| X, . .., X)) = E(u;| X,). By the first
least squares assumption, however, E(u;| X;) = 0. Thus, the numerator in the final term in
Equation (4.52) is zero, so E(ﬁl) = f;; that is, the OLS estimator is unbiased.

Large-Sample Normal Distribution of the OLS Estimator

The large-sample normal approximation to the limiting distribution of B1 (Key Concept
4.4) is obtained by considering the behavior of the final term in Equation (4.51).

First consider the numerator of this term. Because X is consistent, if the sample size
is large, X is nearly equal to uiy. Thus, to a close approximation, the term in the numer-
ator of Equation (4.51) is the sample average v, where v; = (X, — tiy)u,. By the first least
squares assumption, v; has a mean of zero. By the second least squares assumption, v;1s 1.i.d.

The variance of v, is 62 = var[(X; = ux)u,;] which, by the third least squares assumption, is
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nonzero and finite. Therefore, v satisfies all the requirements of the central limit theorem
(Key Concept 2.7). Thus, 7/, is, in large samples, distributed N(0,1), where 62 = 62/n.
Thus the distribution of 7 is well approximated by the N(0, 62/#) distribution.

Next consider the expression in the denominator in Equation (4.51); this is the sam-
ple variance of X (except dividing by # rather than n — 1, which is inconsequential if # is
large). As discussed in Section 3.2 (Equation (3.8)), the sample variance is a consistent
estimator of the population variance, so in large samples it is arbitrarily close to the pop-
ulation variance of X.

Combining these two results, we have that, in large samples, [§1 - B, Uv/var(X,),
0?), where of =

B B
var(v)/ [var(X)]? = var[(X; = ux)u]/ {n[var(X)]*}, which is the expression in Equation (4.14).

so that the sampling distribution of f; is, in large samples, N(B,,

Some Additional Algebraic Facts About OLS

The OLS residuals and predicted values satisfy:

1 n .
E{Z} 0= 0, (4.53)
1 n .
ﬁ; V=Y, (4.54)
gﬁ,xi =0and 5, = 0, and (4.55)
TSS = SSR + ESS. (4.56)

Equations (4.53) through (4.56) say that the sample average of the OLS residuals is zero;
the sample average of the OLS predicted values equals Y; the sample covariance s,y
between the OLS residuals and the regressors is zero; and the total sum of squares is the
sum of the sum of squared residuals and the explained sum of squares (the ESS, TSS, and
SSR are defined in Equations (4.35), (4.36), and (4.38)).

To verify Equation (4.53), note that the definition of 3 lets us write the OLS resid-
uals as i, = Y, = B, = B, X, = (Y, = Y) = B,(X; = X); thus

But the definition of Y and X imply that E(Y, Y)=0and E(X X) =0, s0 Eu = 0.

To verify Equation (4.54), note that Y; = Y + i, 50 EY ZY + Eu = E)j,

where the second equality is a consequence of Equation (4. 53)
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To verify Equation (4.55), note that iﬁ[ = 0 implies jﬁfX,- = iﬁf(X,- - )?), SO
i=1 i=1 i=1
2Xi= 2 1= Y) = (X - X)] (X~ X)
= = (4.57)
n . _ L _
=2 V(X -X) -4 (X,-X)* =0,
i=1 i=1

where the final equality in Equation (4.57) is obtained using the formula for f, in Equa-
tion (4.48). This result, combined with the preceding results, implies that s,y = 0.

Equation (4.56) follows from the previous results and some algebra:

TSS = 2 E(Y Y+ Y -Y)
i=1

= Sm- 5y +E ¥ - Y>2+22 — ) -Y)
i=1
= SSR + ESS + 22&,.2 = SSR + ESS, (4.58)
i=1

where the final equality follows from il:t,-?; = iﬁi (Bo + B X)) =By + By iﬁiXi = 0 by the

previous results.

APPENDIX

4.4 | Formulas for OLS Standard Errors

This appendix discusses the formulas for OLS standard errors. These are first presented
under the least squares assumptions in Key Concept 4.3, which allow for heteroskedas-
ticity; these are the “heteroskedasticity-robust” standard errors. Formulas for the vari-
ance of the OLS estimators and the associated standard errors are then given for the

special case of homoskedasticity.

Heteroskedasticity-Robust Standard Errors

The estimator 6 defined in Equation (4.19) is obtained by replacing the population vari-
ances in Equatlon (4.14) by the corresponding sample variances, with a modification. The
variance in the numerator of Equation (4.14) is estimated by ;- ,E(X X)2ii?2, where the
divisor n — 2 (instead of #) incorporates a degrees-of-freedom adJustment to correct for

downward bias, analogously to the degrees-of-freedom adjustment used in the definition
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of the SER in Section 4.8. The variance in the denominator is estimated by %EI (X - X)%
Replacing var[(X; — uy)u,] and var(X;) in Equation (4.14) by these two estimators yields
@}21 in Equation(4.19). The consistency of heteroskedasticity-robust standard errors is dis-

cussed in Section 15.3.

The estimator of the variance of f3 is

R
CLIE (4.59)

0/30 - n 1 n n 2
2

where IAJi =1- [X/%iX?]X,-. The standard error of f, is SE(f,) = \/6/;2 . The reason-
i=1 0

ing behind the estimator 6/2 is the same as behind 6[521 and stems from replacing population

j\i
expectations with sample averages.

Homoskedasticity-Only Variances

Under homoskedasticity, the conditional variance of u; given X; is a constant, that is,

var(u;| X)) = 2. If the errors are homoskedastic, the formulas in Key Concept 4.4 sim-

plify to
2
2 % nd (4.60)
o =—> .
P o
E(X?
3 = ( ;)oj. (4.61)
0 noy

To derive Equation (4.60), write the numerator in Equation (4.14) as var[(X; — t)u] =
E({(X; = uxu; = E[(X; = uu]}?) = E{[(X; = wu]*} = E[(X; = uy)’u?] = E[(X; =
y)?var(u;| X;)], where the second equality follows because E[(X; = ux)u,] = 0 (by the
first least squares assumption) and where the final equality follows from the law of iter-
ated expectations (Section 2.3). If u; is homoskedastic, then var(u,| X)) =07 so E[(X; =
ux)?var(u;| X)] = 62 E[(X; = uy)?] = 62 o2. The result in Equation (4.60) follows by
substituting this expression into the numerator of Equation (4.14) and simplifying. A

similar calculation yields Equation (4.61).
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Homoskedasticity-Only Standard Errors

The homoskedasticity-only standard errors are obtained by substituting sample means and
variances for the population means and variances in Equations (4.60) and (4.61), and by

estimating the variance of u; by the square of the SER. The homoskedasticity-only esti-
mators of these variances are

2
6/%1 = WL (homoskedasticity-only) and (4.62)
2% =Xy
1< P
[2)s
5/220 = ”L (homoskedasticity-only), (4.63)
(X~ Xy
=1

where 57 is given in Equation (4.40). The homoskedasticity-only standard errors are the
square roots of '55' and 5;1



