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COINTEGRATION IN RECURSIVE SYSTEMS*
James Davidson and Stephen Hall

The theory of cointegration, developed in several recent papers such as Engle
and Granger (1987), Engle and Yoo (1987), Johansen (19884, b), Hendry
(1986) inter alia, has been almost exclusively concerned with closed (complete)
dynamic models. The exposition in Johansen (19884) makes this point
particularly clear, when a VAR system is specified which must contain all the
relevant variables for the dynamic process under discussion. This contrasts with
the most usual modelling framework in which a set of variables are modelled
conditionally on another set, often taken to be strongly exogenous in the sense
of Engle et al. (1983). This conditioning of the data generation process is central
to any practical exercise in structural form modelling, otherwise the size of the
data set under consideration quickly become intractable. In this paper we
consider how the concept of cointegration may be extended to conditional
models.

Every dynamic econometric equation which contains a levels solutions for an
integrated variable must by definition contain a cointegrating vector; yet it is
well-known that the cointegration of a set of variables implies nothing about
the direction of causality within the set. Such equations seem to assume the
long-run status of reduced forms, and the link with economic theory can
become obscured. We attempt to clarify the role of economic theory by
introducing the notion of target relationships which we assume to embody the
main features of the underlying economic behaviour. These target relationships
interact with the dynamic system to produce cointegrating vectors which may
be thought of as linear combinations of the target relations, although the
targets may not all be individually attainable. In this way it is possible for
economic theory to play an explicit role in the modelling of cointegrated
variables. '

A simple question which is often neglected is: why do we observe integrated
time series? In the context of a linear dynamic system, variables are integrated
either because they are driven by other integrated variables, or because the
dynamic processes generating them contain autoregressive roots of unity; in
other words, unit roots may be found in either the marginal or conditional sub-
systems, or of course both. In the former case we are able to draw a parallel
with the conventional stability analysis of dynamic systems, although additional
restrictions are involved in the case of higher orders of integration. In the latter
case, the existence of unit roots is shown to be identified with a rank deficiency
in the target relationships. There are two types of rank condition, which we call
insufficient targets and inconsistent targets respectively, which appear to have
distinctive behavioural interpretations.

* James Davidson acknowledges the support of the ESRC Macroeconomic Forecasting Consortium.
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Much of the methodology for our analysis is derived from Davidson (1990),
which examines the case of complete VAR processes. We begin, in Section I,
by outlining the structure of a conditional sub-system of equations which
determine the variables of interest. In Sections II and III we discuss the nature
of cointegration when the conditional sub-system is stable and unstable,
respectively. Section IV discusses the case of wage-price inflation as a simple
illustration these concepts, and Section V concludes.

I. THE ERROR CORRECTION SYSTEM

Let y, (nx 1) be a vector of endogenous variables observed at time ¢, and
z, (mx 1) a vector of variables which are exogenous in the sense of not being
Granger-caused by y,! A standard framework for modelling the joint
generation process of y, given z, is the autoregressive distributed lag (ADL)
system,

BL)y,+I'(L)z,=u,, . (1)

where B(z) = 27 B, 7' and I'(z) = 22 T, 2, ze C, are matrix polynomials of
finite maximum order p, of dimension nXn and nXxm respectively, and u,
(nx 1) is a vector of unobserved disturbances. (See e.g. Wallis (1977) for a
survey of the properties of these models.) Strictly speaking, we should refer to
(1) as a conditional sub-system of the complete system determining both y, and
z,. We will assume z, is generated by a closed VAR,

OL)z,=v, (2)

(the marginal subsystem) such that there is no dynamic feedback from y to z.
In fact, no part of the analysis will depend upon either the contemporaneous
or serial independence of u, and v,, although the statistical treatment would
obviously be simpler in the independent case.

Asis well known, the system can be solved fory, in terms of current and lagged
z, and w, if and only if the roots of [B(z)| = o all lie outside the unit circle, in
which case the inverse B(z) ™! is an r-summable polynomial for all finite . The
system is then said to be stable, and it has the so-called final form representation

y; =I(L)z,+B(L) " u, (3)

where I1(z) = —B(z)'I'(z) is likewise summable to all finite orders. If z, has
been fixed at z and u, at o for an infinite number of periods, then y, = y = Ilz,
where the matrix IT = II(1) is the sum of the lag weights, or matrix of total
multipliers.? If likewise B =B(1) and I' =T'(1), it is easy to show that
II=-BT.

! See Granger (1969). The essential property required is the block-triangularity of the VAR generating
the variables, which will often coincide with the concept of strong exogeneity in the sense of Engle et al.
(1983) ; however, it will be seen in Section II below that cases arise where this assumption may be violated.

% To simplify the numerous partitioned matrix expressions which will arise, P will always be taken to
denote P(1), for any matrix polynomial P(z) which has been previously defined.
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Now suppose that an economic theory of long-run equilibrium suggests a set
of static relations amongst the variables,

By+TIz=o. (4)

These will be called the target relations, since they are assumed to be formulated
in terms of the goals of economic agents. If we observe the variables of the
system at a point in time ¢, as y, and z,, then the vector e, = By, +I'z, defines
the ‘target error’ at time ¢. If the target relations are equal in number to the
endogenous variables and [B| # o, the static system has a unique solution

y=-BTz (5)

Obviously, if (1) is our model of the dynamic adjustment process which
relates the paths of y, and z,, we require

IM=-B'T=-BTT. (6)

But the matrices B and B, and I and I are evidently different. The sums of the
estimated coefficients of the ADL will not yield estimates of the parameters of
interest in the target relations, but linear combinations of them. We can write

B=CB, I =CI, (7)

where C (nxn) is a matrix which is nonsingular if both B and B are. The
conventional analysis of the ADL model does not define this matrix, and
focuses instead on the matrix of total multipliers II in the long-run analysis.
However, the identification of the target relations is a problem wholly distinct
from the conventional identification of the ADL (as treated in Hsiao (1983) for
example), although it is a simple matter of verifying the usual rank and order
conditions on [B:I'].?

The elements of C are known as the error correction coefficients of the
system, terminology which is better understood if we adopt an error correction
parameterisation for the system. Using the equivalence

D D
P(z) = X P,/ = ¥ P¥(1—2)F, (8)
j=0 k=0
we have
— P ‘ .
B(L)y,+I(L)z, = C(By,+Tz)+ X [B" Aly,+ T'"A’z].* (9)
j=1

3 To appreciate the distinction, compare Hatanaka’s conditions (Hatanaka, 1975) for the identification
of the ADL system, based on zero restrictions on [B(L):T'(L)]. These conditions are neither necessary nor
sufficient for identification of [B:T']. (See also Granger (1986), Section IV, and Bewley (1979).)

4 For purposes of estimation or prediction, the EC model can be further rearranged to eliminate the
multiple occurrence of current y, and z,, as

p-1
B,A?y,+T A%z, + ¥ (B Ay, +T} Nz,_,)+C(By, ;+Tz,_,) =u,
=1

where

7 7
Bf = T B¥and I} = T I'¥,

k=0 k=0
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If the system is unstable because |B(z)| = o possesses one or more roots of
unity, the conventional analysis of final forms breaks down, and it used to be
said that in this case the sub-system had no solution. It is more proper to say
that there may exist a solution of reduced rank, such that there exist one or
more linear combinations of e, which are I(0). It is immediate that in this case
|B| = o, which implies that either C or B, or both, have rank less than n. When
there are unit roots in the autoregressive components, ADL models generate
integrated variables. The case of a stable conditional sub-process in which the
exogenous variables contain trends corresponds in this framework to the case
where |®(z)| = o has unit roots, whereas in the unstable case |B(z)| = o will
also contain unit roots.

II. COINTEGRATION IN THE STABLE CASE

Stability implies that if z, is a stationary process with fixed mean p,, say, then
y; is also stationary with mean p, = IIp,. On the other hand, suppose z, is
integrated to order d. A scalar stochastic sequence ¥, is said (e.g. by Engle and
Granger (1987)) to be integrated to order d (I(d)) if d is the smallest positive
integer such that A%, is representable as a stationary, invertible ARMA process
(termed I(0)) with zero mean. A vector sequence is said to be I(d) if at least one
of its elements is I(d).> We shall assume that the disturbance vectors u, and v,
are I(o) processes.

THEOREM 1. Stability implies (1) y, s I(d') for d < d, (ii) e, is I(d") for
d” < d—1. (See Appendix for proof.)
If n, of the elements of the n-vector Ilz, are I(d), we can accordingly say that
the vector (y,, z,) is cointegrated with cointegrating rank n,,° with cointegrating
vectors lying in the space spanned by the rows of [B:T].

So for the case d = 1 the relatively novel concept of cointegration meshes
" naturally with the established concept of stability. It implies that the target
errors e, are 1(d”) for &’ < o,” stochastic processes with zero mean and finite
variance. However, when 4 > 1 stability does not guarantee this last condition.
In the case e, ~ I(d”) for " < o we will say that z, and vy, are fully cointegrated,
and except when 4= 1 this condition calls for some restrictions on the
parameters of the model.

It is convenient to write the model in block-triangular VAR form, as

B(L) LML) ||y _[w]|n"
= (10)
o O(L)]|z v, |m.
® For the purposes of general dynamic modelling the Engle-Granger definition is somewhat restrictive; a
more general definition of an integrated process might permit some heterogeneity in the definition of an I(0)
process, and also allow deterministic components to be present. However, none of the theoretical results of
the present paper hinge on the precise definition of I(o). The Engle-Granger definition can therefore be
adopted with no loss of generality.
¢ In Granger’s terminology, the vector sequence x, (r X 1) is cointegrated, or CI(d, b), if there exists a fixed
n-vector & such that &'x, ~ [(d—b), for b > 1. If there exist n, linearly independent cointegrating vectors, x,
is said to have cointegrating rank n,.
? Except in very special circumstances full cointegration would imply d” = o; but to specify conditions
which would rule out the case of ‘over-differenced’ e, would be distracting, and of marginal importance.
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Since it is assumed that z, is I(d), d > o, it follows that [@(z)| = o possesses
at least one unit root, ® having rank ¢ < m, where |B(z)| = o has no unit roots
and B has full rank.

THEOREM 2. Let B have rank n and @ have rank t < m in (10), and define
J(z) =B(z) I1+I'(z). (11)

The vector (y,,z,)’ is_fully cointegrated if no element of J(2)@O(z)™" has a pole at 1, and
only if no row of J ()@ (z)~* has all elements with a pole at 1. (See Appendix for proof.)

Writing J(z) = 22, J(1 —z)’ by analogy with (8), observe that J* = o by
definition of II, and hence it is possible to write J(z) = (1—2) J(z) where
J(z) = 2o J9* (1—2z)/, which reproduces the result of Theorem 1; at least
one pole of unity in @(z)™* is always cancelled by J(z). More generally, the
significant feature of this result is that cointegration of y, and z,is a restriction
across the parameters of both the conditional and marginal sub-processes. The
parameter restrictions involved can be explored further using Theorems
3.2-3.5 of Davidson (1990).

One question immediately posed is answered by the following corollary,
whose proof is just an extension of the argument for the case j = o which
followed Theorem 2:

COROLLARY 1. Necessary and sufficient conditions for 'y, to be fully cointegrated with
all 1(d) marginal sub-processes z, are that J¥ = o for o <j < min (d—1, p).

These conditions, called trend neutrality conditions of the conditional sub-model,
are necessary for the outputs of the conditional model to track the inputs when
the latter are subject to arbitrary trends of a certain order. Noting how J = o
by definition, they can be interpreted as restrictions by which the dynamic
components of the model ‘mimic’ the long-run components; the relationships
between A’y, and Az, for 1 <j < d— 1, have to match those between y, and z,,
so that the responses are the same at each frequency.

Models with these characteristics were investigated in a number of papers
from the early 8os, including Currie (1981), Patterson and Ryding (1984),
Davidson (1984), Kloek (1985) and Pagan (1985). These authors generally
considered the case of deterministic z, (polynomial trends), in which case (3)
shows that y, will be the sum of a deterministic function of time and an I(o)
stochastic process. The expected path of the system can be obtained by setting
u, to zero, and is called the ‘growth steady state’ of the system. Letting the
relation TI(z) = IT+TI*(z) (1 —z) define IT*(z) (as in the proof of Theorem 1),
this has the form

y, = lz,+11*(L) Az,. (12)

The dependence of the steady state on terms in Az, which have not been
intended or justified theoretically in the design of a conditional model is a
disturbing feature which modellers have sought to eliminate by imposing
parameter restrictions. But such restrictions limit very severely the variety of
permissible dynamic structures, and are usually rejected empirically. Just
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how severe they are can be seen by considering the case d—1 > p, where
Corollary 1 gives J(z) = o, or

I =—BY%, j=o,..,p (13)

as necessary and sufficient. Using (13) in the error correction form (g), we
obtain

Y4
B(L)y,+I'(L)z, = By,+I'z,+ ¥ [BYAly, + T¥A/ 2,]
j=1

D
=B(y,—Ilz,)+ X BmAj(Yz_sz)
j=1
= B(L)(y,—Ilz,) = u, (14)
which solves as _
By,+Iz, = BB(L)'u,. ' (15)
“We can recognise this as the common factor model, the system without
systematic dynamics but with a p*™ order VAR disturbance. Whether or not
such restrictions are plausible, it is worth noting that if p = 1 (15) is the only
dynamic specification which is compatible with cointegration of any order. In
a distributed lag model, high order lags of 'y, or z, are required for cointegration
to be compatible with highly integrated exogenous processes without the model
collapsing to (15).

The behavioural interpretation of trend neutrality is that the model
dynamics are due to targeting errors in a stochastic or uncertain environment.
Adjustment to smooth exogenous changes (‘smooth’ implying a low-order
polynomial in time) is actually instantaneous. By contrast, the partial
adjustment (positive mean lag) hypothesis, which typically has an interpret-
ation in terms of the costs of change, implies that a moving target (even if
moving predictably) is never attained.

However, the need for trend neutrality may often be the consequence of an
improper assumption of exogeneity. The modeller observes cointegration
between the input and output series of his estimated conditional model, and is
tempted to impose neutrality restrictions to ensure the same property will hold
in respect or arbitrarily chosen input paths in simulation exercises. Cointe-
gration in the data will be due to the necessary condition of Theorem 2 being
satisfied, but only the conditions of Corollary 1 can impose it on the model
without sacrificing the assumption that [B(z):I'(z)] and ©®(z) are variation-
free in the sense of Engle et al. (1983). This critique of exogeneity assumptions
is familiar from the rational expectations literature, but clearly can be much
more general, extending to any form of ex post error correction behaviour in an
evolving environment.

III. COINTEGRATION IN THE UNSTABLE CASE

The assumption that the number of linearly independent target relations is
equal to the number of dynamic adjustment equations, and that the two are
linked by a nonsingular matrix C of error correction coefficients is implicitly
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‘conventional’;® but there is really no reason why either more or fewer than n
targets should not be specified. In a general equilibrium framework the targets
might be thought of as characterising the goals of particular groups of agents.
One type of target is a notional demand or supply schedule. Another might
merely specify a desired growth path, or steady-state value for a variable.
Different groups of agents are obviously capable of targeting different paths for
the same variable, just as demand and supply schedules do not always intersect
at feasible points. There is no reason to suppose that only compatible targets
leading to a unique solution to the conditional system will be pursued. On the
other hand, a deficiency of target relations is also possible, with certain
variables having indeterminate long-run values, or no long-run constraints on
their behaviour relative to other variables. Any situation where a random
shock is expected not to be transitory, but to be built in to the subsequent path
of the variable, might be modelled in a similar way as ‘indeterminate’;
demographic variables for example.

To free the number of target relations, we can assume that [B:T]
has n+m columns but any number of rows, and that C has n rows but a
column dimension to match that of [B:T']. Of course, a maximum of n(n+ m)
parameters can be solved from estimates of [B:I'] = C[B:I'] so there w#i
sometimes be an identification problem in estimation, although this is not our
present concern. The question of interest is the dynamic properties of the model
resulting from a particular configuration of targets and adjustment processes.
When rank(C) = rank(B) = n, and rank([B:T]) > n, the conditional model
will be dynamically stable in the sense of Section II. There will be » ‘effective’
linearly independent targets, captured in the rows of [B:I']. If there are more
than 7 linearly independent ‘underlying’ targets they cannot all be attained
simultaneously, but n linear combinations of them will be attainable, the
weights being supplied by the rows of C.

On the other hand, suppose rank(B) <z, implying instability of the
conditional sub-system. If rank(C) < n, this will typically imply that certain
dynamic equations are insensitive to the targets, and determine only the rates
of change of the variables concerned without reference to the level, either
absolutely or relative to other variables. And if rank([B:T']) <n, the
implication is that there are fewer targets than variables determined by the
system. A third possibility is that rank(C) =n and rank([B:I']) >, but
rank(B) = s < n. This implies that although there are at least » targets, no more
than s of them (or linear combinations of them) can be attained within the
conditional subsystem. In this case the conditional targets are inconsistent,
although they could be attainable if agents were able to gain some influence
over z,.

Whichever of the above scenarios is in effect, there are just three distinct
classes of model to be distinguished when we come to consider the directly
estimable matrix [B:I'] = C[B:I']. The first is the stable case already
considered, in which B has full rank »; the cases we are now concerned with are

8 That is to say: it is not the error correction framework which is conventional, but the form of EC model
implicit in the stability assumption.
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those where B has rank s < 7, such that |B(z)| = o possesses unit roots, and the
conditional process is integrating.? Then we either find rank([B:T']) = rank(B)
=5, or rank([B:I']) > s. In the first case we will say that instability comes
about through an insufficiency of targets. On the other hand, when rank([B:I'])
= n, the instability is attributed to the inconsistency of the targets. More
generally, of course, we may find the mixed case where s < rank([B:I']) < n.

THEOREM 3. (i) The maximum cointegrating rank of the complete system in (10) is
s+t. (i) The maximum cointegrating rank for the vector (y,, z,)" is s. (See Appendix
for proof.)

What part (ii) of the theorem means is that if the number of linearly
independent target relations in the conditional subsystem (rows of [B:T'])
exceeds s, not all the targets are attainable, in the sense that the target error is
an I(o) process. At most a set of s linear combinations of the targets will be fully
cointegrating vectors.®

This typology of models can be related to the categorisation of integrating
processes into balanced and unbalanced cases, which is introduced by Johansen
(1988b) and discussed in Davidson (1990). Briefly, an integrating closed VAR
process A(L)x, = ¢, ((n+m) X 1), in which |A(z)| = o contains unit roots, is
said to be balanced if it can be written in the form

AL)x! =¢, (16)

where |A(z)| = 0 has all roots outside the unit circle, and

x* = [xu +AI11 A, x2t:| )
! Agy (L) x,,

Here the A, correspond to the square partition of A such that rank(A,,) =
rank(A), and A,,(L) is a diagonal matrix having powers of A on the diagonal.
Such systems were shown by Johansen (see Johansen (19884), Davidson
(1990)) to be fully cointegrating with cointegrating rank equal to rank(A).
Evidently, this is a property that models with insufficient targets may possess,
but is incompatible with inconsistent targets models, which by definition have
more target relations (rows of A) than cointegrating vectors.

The next question is therefore to consider whether an insufficient targets sub-
system actually is fully cointegrating. This may be answered with reference to
the theorems in Davidson (1990). The arguments parallel the stable case rather
closely, and will not be derived in detail. A condition that will always be
necessary is that the closed VAR system with dynamic structure represented by
B(z) should be fully cointegrating. In addition, there are conditions which call

(17)

® If the marginal process is also integrating we will have ‘two-tier’ integration, so that z, is I(1) and y,
is I(2), for example: a block-recursive structure of unstable sub-models is just one way in which higher orders
of integration may arise.

1 The one exception here is when the rows of T are linearly dependent on the rows of @, so that the rank

BT
of [ 0] is s+¢, in spite of rank([B:I']) > 5. The targets can then be attained because they impose
o

conditions which the marginal process happens to obey. Strictly speaking, target inconsistency is a condition
on the whole system (ruling out this case), not just on the conditional subsystem.
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generally for dependence between the parameters of the conditional and
marginal processes, and are best exemplified by the strong conditions under
which the system is fully cointegrating with rank s under any exogenous process
integrated up to order d. The requisite condition can be shown to be

BY) ry o . )
siftrara =g ] o<ismnie-rn 0

which generalises the condition of Corollary 1. Observe that in that case the
restriction held automatically for j = o by virtue of the stability condition. It
can be verified that (18) holds for j = o because of the insufficient targets
condition that B and [B:I'] have the same rank; i.e. that B, B I';, =Ty,
1=1, 2.

In the inconsistent targets case, full cointegration with maximum rank is
known to fail. We will merely illustrate the contention that any actual
cointegrating vectors are formed as linear combinations of the targets, with
weights are derived from the higher-order dynamic components of the system.
For simplicity, take the case where the closed model with dynamic structure
B(z) is balanced. It is then possible to write the system as

P S SR

where [B(z)| = o has all its roots outside the unit circle, and

Y* — [Yu +B;11B12Y2t]
! Ay (L)ys

by exact analogy with (16). Thus, in the transformed system the conditional
sub-model is actually stable, and the analysis of Section II can be applied.
Following the approach of Theorem 2 we can write IT = —B™'T', where the
matrix B has its first s columns those of B, and its last n—s columns composed
of the corresponding elements of one or other of the matrices B, j = 1,...,p.
We must therefore address the issue of whether

~ +B!B,,y ] B B, T z
*_ Iz = [Yu 11 P12 ¥ar| 4 1P P2 11 12 || Z1t 21
v ’ Agy (L) ya, B,, B, Ly Toollzy (21)

is I(0), and the first s elements of the vector in particular, of course, since these
do not involve differences. Any fully cointegrating vectors which may exist for
(V1o Yoo Z1> Zo) Must be obtained as linear combinations of the rows of

[I;:Byi By ETN (I, —B,;B; I, :E7N ([, —B,;B;; Ty)]
_E_ ([Bll B12 rll r12] B12B [B21 B22 l—‘21 r22])
=E'[I: —B,,B;!]C[B:T] (22)
where E = B,, —B,, B;!B,,, and the first equality follows from the fact that

B,, = B,; B;1 B,,. In this example, the weights given to each target relation in
the construction of the cointegrating vector depend not only on the error

(20)
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correction coefficients C, but on the elements of B, and hence on the coefficients
of Aly, for j > 0. We can interpret this by saying that a target relation is
relatively strongly represented in (22) if the rate of adjustment towards it is
relatively rapid, and conversely.

Recalling the earlier suggestion that an inconsistent targets model could
represent a bargaining process, we note that the dynamics of the model would
in this case represent the relative influence of different groups of agents in their
response to exogenous environmental changes, determining the extent to which
the different parties tend to prevail in the long run. The cointegrating vectors
such as (22) might be identified with a Nash bargaining solution to the contest
between agents pursuing inconsistent targets.

IV. AN ILLUSTRATION: WAGES AND PRICES

Wages and prices are a highly suggestive case for several reasons. Inflation in
the United Kingdom is an I(1) series, so that the (log) price and wage levels are
I(2); these variables are cointegrated but not fully cointegrated, for the log of
real wages is also I(1). (See Hall, 1986 and Davidson and Hall, 19g90). Further,
in an economy with a permissive monetary policy and a floating exchange rate
(as characterised the United Kingdom over extended periods of the last 20
years) there can apparently be no theory of the equilibrium price level; in our
terminology, no-one is pursuing a nominal target. Imagine a macroeconomic
system in which the targets related only to real wages — or equivalently, only
to prices expressed in wage units. In such a model, the columns of B
corresponding to the logs of wages and prices respectively would be equal and
opposite; hence, B would be singular.

We are reminded that 20 years ago, in an influential paper, Lipsey and
Parkin (1970) estimated a model of UK inflation with the general form

p=agtai+a,m+a,g (23)
W="by+b,p+b, U+ b, (24)

where p, w, m, 7 and ¢ are the proportionate rates of change of retail prices,
wage rates, import prices lagged one quarter, the percentage of the labour force
unionised, and output per head, respectively, while U is the unemployment
rate. This paper was the subject of a critique by Kenneth Wallis (Wallis, 1971),
who pointed out amongst other things that when the equations were estimated

by FIML, the estimation collapsed as the estimated matrix [ Ib _Ial]
-9

tended to singularity.

Lipsey and Parkin’s model, with its primitive dynamics, is now something of
an historical curiosity, and results like Wallis’s have rarely been replicated
since. The interesting point is that the evidence reported by Wallis is consistent
with an interpretation of his application of FIML as an attempt to estimate the
target matrix for an unstable conditional subsystem. The fact that rates of
change rather than log-levels are being modelled is immaterial, since
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differencing a system which generates I(2) variables (logs of w and p) as
functions of I(1) variables does not eliminate the singularity; it means only that
w and p are I(1) variables generated by I(0) variables.!* Elsewhere (Davidson
and Hall, 1990) we have developed a dynamic model containing target
relationships similar in spirit to Lipsey and Parkin’s equations, although set up
in levels and enlarged by linking domestic to import prices through the
exchange rate. While this model does not answer the crucial questions we posed
concerning the origins of nominal instability, the empirical evidence that it is
only the real wage which matters is very strong and echoes Wallis’s earlier
finding, in data which scarcely overlap the original.

V. CONCLUSION

In this paper we have set out a framework for the analysis of linear, dynamic
macroeconomic systems generating integrated variables. We have shown that
the phenomena of integration and cointegration are associated with certain
restrictions on the coefficients of these systems. It remains a considerable
challenge to devise well-founded theories of economic behaviour which
embody these restrictions; but since we observe nonstationarity in mean as a
generic property of macroeconomic time series, it is a challenge which cannot
ultimately be bucked, unless the linear paradigm is itself to be abandoned.

London School of Economics
Bank of England

APPENDIX
Proof of Theorem 1. Define IT*(L) by the relation Il(z) = Il(z) = IT*(z)(1—2)
(compare Engle and Granger (1987) equation (3.2), or Lemma 2.1 of
Davidson (1990)). Rewrite (3) as
y, = lz,+I1*(L) Az,+B(L) u,,

where the matrix polynomial Ilz, is at most I(d), and IT*(L)Az,+ B(L) 'u, is
at most I(d—1) since both IT*(z) and B(z)™' are summable matrices by
assumption. This implies (i), and since it also implies that y,—Ilz, is at most
I(d—1), using (6) yields (ii). W '

Proof of Theorem 2.

P el ewlle % 2

_[BL) J(L)][yt—ﬂzt]

L o O]l =z
SRRl e

11 Note: either L-P’s Phillips-style wage inflation equation containing U is mis-specified (as we would
argue) or w must depend on the integral of U.
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Hence
B(L)B'e, = B(L) (y,~IIz,) = u,— J(L) O(L)"v,.

Under the necessary and sufficient conditions of the theorem, J(L) @ (L) v, is
I(0); a pole at 1 in J(L) @(L)™" is necessary to integrate an element of v,, and
hence the absence of a pole is sufficient for J(L) @(L)'v, ~ I(0); but zero
elements of v, (corresponding to identities) are not ruled out, and hence it is
only the absence of a complete row of integrating elements in J(L) @(L)™!
which is necessary.

Since the sum of two I(0) vectors is at most I(o), B(L)B™ e, is I(d") for
d’ < o. But |B(z)| = 0 has no unit roots, and hence e, is integrated to the same
order as B(L) B™'e, (by, e.g. Theorem 2.1 (ii) of Davidson (19go)). [ |

Proof of Theorem 3. Consider a threefold partition for the system in (10) such
that
B, B, I, T s
B I" 11 12 11 12
A=[o ®]= By, By, Iy TIpp| n—s
0

b

where B, is square of rank s5.'* Define the nonsingular matrix

I o o $
T=|-B,B;] I o| n—s
o o I m
such that
B, B, I'j Ty, $
TA=| o o I} T¥%| n—s,
o (0 m

where I'y; =T, —B, B ')}, Ty, =T,,—B,, B/I T'},. Since the cointegrating
vectors of the complete system lie in the space spanned by the rows of A, they
also lie in the space spanned by the rows of TA. And since z, is determined by
the recursive subsystem @(L) z, = v,, we know that the cointegrating vectors
for z, lie in the space spanned by the rows of @, and their maximum number
is t =rank(®). In particular, the rows of [I's;T'%] ((r—s) xm) cannot be
cointegrating vectors for z, unless they are linearly dependent on the rows of ©.
There are at most s cointegrating vectors for (y;, z;)" in the space spanned by
[B,,B;,I';; I';,], proving (ii), and since these rows are linearly independent of
the rows of @, (i) also follows. [ |
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