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Using large non-linear models

One of the main practical applications of econometric work is the
oosmﬁ.ncoaoz and use of systems of equations in the form of econo-
metric models. The earlier parts of this book are typical of economet-
ric theory generally in that it concentrates largely on linear systems

m:& o.@:m:.onm. momcvﬁOmosorm<09a following set of simultaneous
€quations. <

AY = BX + u @8.1)

where Y is a vector of N endogenous variables, X is a vector of M
exogenous variable, u is a vector of N independently normally dis-
tributed error terms with zero mean, A is an N X N matrix of
parameters, and B is an N X M matrix of parameters. This model
can be solved analytically to give
Y=A7BX + ¢ 8.2
where
e=(AYu
€ will be normally distributed with E (£) =0 and a covariance matrix
we denote S.
The simulation properties of the model may easily be calculated as
dY;
m.ﬁ\.
where a;; is the i, j element of A1 B.

If the parameter B.mﬁoow A, B are estimated then the uncertainty
attached to a given simulation is given by the standard error of the
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reduced form coefficient a; and this may be calculated directly from
the covariance matrices of A and B.

For a linear system we can therefore derive analytical solutions for
the model and its simulation properties, as well as fully defining the
stochastic nature of the model! solution. Unfortunately almost all
models which are designed for practical use are non-linear and do not
fall within the scope of the analysis outlined above. Even when the
modeller restricts himself to using standard linear estimation tech-
niques the use of data transformations in estimation inevitably pro-
duces a final model which cannot be put into a linear framework.
Often linear estimation is carried out on logarithms of the variables
for a number of valid reasons. For example, it may reduce heterosce-
dasticity, or a constant elasticity relationship may often be regarded
as more theoretically reasonable than a linear formulation, etc.
However it is not generally possible to specify the whole model in
logarithmic form. For example, we cannot express linear identities in
this form (e.g. the opp identity). Thus there is no transformation of
the whole model which allows it to be put in the form of cquation
(8.1).

Once the linear form is abandoned then we must also abandon the
whole range of solution techniques described above. It is no longer
possible to derive explicit general solutions to the model or explicit
results about the simulation or stochastic properties of the model.
Instead, a range of numerical techniques has grown up for the solu-
tion and analysis of non-linear models. In this Chapter we outlinc a
number of these techniques. In section 8.1 we examine the solution
methods for deterministic models; section 8.2 considers deterministic
simulation methodology; and in section 8.3 we deal with problems
posed by rational expectations. The consequences of the stochastic
nature of models are addressed in section 8.4 and in section 8.5 we
give a brief description of optimal control.

8.1  Model solution procedures

Most econometric models which are used either for forecasting or for
simulation are both large and non-linear. It is therefore necessary to
resort to a numerical procedure in order to determine the solution t®
the model. There are two main types of solution technique which are
available, Newton and Gauss—Seidel (see Froeberg 1981 for a general
mathematical exposition). Of these two approaches Gauss—Seidel has
been almost universally adopted as the most practical for large econo-
metric models and will be the only method discussed here.
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In this section we will discuss the solution of what might be termed
‘conventional’ econometric models, that is, those which do not in-
clude explicit expectations of future endogenous variables. In section
8.3 we will discuss extensions of the standard solution techniques to
allow for full model consistent expectations.

The Gauss—Seidel solution technique

We represent an n-equation model in the following notation where a
linear form is adopted for convenience without loss of generality.

Yi=AY+BX i=1,2,....n 8.3)

so that there are n endogenous variables (Y) and m exogenous or
predetermined variables (X) and A; B; are suitably dimensioned
matrices. The Gauss-Seidel method proceeds by first assigning a
starting value to the Y vector. In practice this is often the actual
values of the Ys in the previous period. It then uses these values to
solve the equations, one at a time. After each single equation is
solved, that solution value is used to replace the initial guess for that
variable. So if Y is the initial guess and Y* is the new value, then for
any equation:

Y= AgxY* + AyY + BX (8.9

Where
_JAxi K<j
Axi = *o K >j

>.|o M>j
§|>§.§v\.

That is to say, we work our way through the model equations sequen-
tially solving each in turn. Any other endogenous variables in a
specific equation take either their original starting value ¥ if they are
higher in the ordering (and so have not yet been solved) or they take
their new solution values Y* if they are lower in the ordering (i.e.
they have already been solved). This process of continual updating
distinguishes the Gauss-Seidel technique from other schemes such as
the Jacobi method where the whole model is solved before any
updating takes place.

When all the equations have been solved, a check is made accord-
ing to some convergence criteria on |Y; — Y'¥. If the two estimates of
each Y are satisfactorily close a solution to the model has been

found; if not, then the Y* are redefined as ¥ and the process is

%

Model solution procedures 229

repeated for another iteration. A more complete exposition of the
Gauss—Seidel method may be found in Faddeev and Faddeva (1963),
and an early example of its application to econometric models is
Norman (1967).

In the linear case described above we know that if a solution exists
it is unique and that a solution will exist if all the equations are
linearly independent. The Gauss—Seidel technique in practice is not
guaranteed to find such a solution even when it exists and is unique.
The crucial factors in the success of the Gauss—Seidel approach is the
order in which the equations are solved (this is referred to as ‘the
ordering’ of the model) and the normalisation of the equations (that
is, which variables are chosen as being the dependent variable for a
particular equation).

There are a number of variants on the Gauss—Seidel technique
which have received attention. A good survey of the recent literature
may be found in Hughes-Hallett (1981). If we restate (8.3) in a more
compact form as

AY =B (8.5)
then the iteration procedure may be characterised as
Y = GY’ + C (8.6)

with some arbitrary starting value Y°. The various iteration pro-
cedures may be nested within this framework by varying the construc-
tion of G and C. If we define A =(P— Q) then G= P !Q and
C = P 'b. The way the A matrix is split determines the exact form
of the iteration procedure. The simplest procedure is the Jacobi
iteration which defines

=5’ 177 @7
The Gauss—-Seidel iteration is produced by setting
P=(D - E)
A;  ifi=1J -A;  ifi<lJ
wu?a ifixy mu“Q L ii>T
B.8)
The successive over-relaxation iterative method is defined by
P= W D(I — «aD7'E) 8.9

where D and E are defined above.
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. A vmam:_w:w important variant on these techniques allows for the
Incorporation of a damping factor y in the following way:

y©+) - %AQM\GV +0)+ (1 - %vv& 8.10)

456:. this is applied to the Gauss—Seidel iteration (8.8), the resulting
technique is often called ‘fast’ Gauss—Seidel. The importance of this
development is that while (8.6) can be shown to converge only if the
spectral radius of G <1 (see Young 1971), (8.10) can be shown to
converge on the much weaker assumption that the real parts of the
eigenvalues of G are all greater (y <0) or less (y > 0) than one (see
Hughes-Hallett 1981).

. To make some of these ideas a little clearer, a simple two-dimen-
sional example of the Gauss—Seidel technique is given in Figure 8.1.
An initial value is assigned to x, of x#'; the first equation is then
solved for x; using x4#'; this yields x{. This value is used to solve the
second equation to yield x7. The new value of x# is then used to
solve the first equation again and this finds x£. The solution pro-
cedure then converges in the direction of the arrows towards the
solution. If the equations had been normalised arbitrarily in the
reverse way so that equation 2 had been solved first for x;, the

mmmoa::: would have moved away from the solution and would have
diverged indefinitely.

X3

/_ Equation 1

Equation 2

XA+ —>

D € T S

X ﬂ X _w X1
Figure8.1 The Gauss-Seidel solution procedure.
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8.2 Types of deterministic model solution

Users of large models have developed a range of different types of
model solutions which are useful both in analysing a model and in
using models in an applied framework. These techniques have not
been discussed widely in the literature and so we will provide a
summary of the more basic procedures here.

Suppose we write an N equation model in the following notation
(again linearity is used for simplicity without loss of generality).

Y = B(L)Y + y(L)Y + CZ (8.11)

where Y is the vector of N endogenous variables, B(L) is a matrix
lag polynomial (L =0,1,2,...) where all the leading diagonals are
zero, y(L) is a matrix lag polynomial (L =1,2,...) where all off
diagonal elements are zero and C is an N X M vector of coefficients
on the M exogenous variable Z. In the notation y(L)Y will contain
all the lagged dependent variables in each equation and B(L)Y will
contain all the lagged and contemporaneous endogenous (but not
dependent) variables. This split simply isolates the lagged dependent
variables in each equation in the y matrix.

We may then define a dynamic solution to this model as Y! where

Y! = B(L)Y! + y(L)Y! + CZ 8.12)

That is, all lagged and contemporaneous endogenous variables take
their solution values.
A very useful form of solution is defined as:

Y? = B(L)Y + y(L)Y + CZ (8.13)

where Y is a given value of Y, usually an historical realisation. A
model solution such as (8.13) is often referred to as a single-equation
residual solution, all the inputs to each equation take some known
value. Each equation is therefore treated in isolation and Y — Y? will
define a vector of single equation residuals which are exactly analog-
ous to the residuals produced during estimation of a linear model.

A single-equation residual solution is particularly useful in asses-
sing the recent performance of a model equation and it is a useful
guide in tracking down the sources of errors which occur during a
dynamic solution. If we define the dynamic residuals produced by,a
solution such as (8.12) as UP =Y — Y! and the single equation
residual as US = Y — Y? then it may easily be shown that for a linear
model the information in UP and US is identical. Each presents the
same information in a different form; it is however, often much easier
to deal with one than the other.
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>=. important use for the single equation residuals IS is in con-
structing a me_o_ simulation. Suppose we wish to increase Z by A
then the solution outlined in (8.12) will become

Y2 = B(L)Y? + y(L)Y? + C(Z + A)
The simulation effect will therefore be
Y’ - Y!= B(LY(Y? - YY) + f(LXY? - YY) + cA
and the effect of A may be expressed as
3
Y -y¥!'=[I-B(L) - y(L)]"1cA 8.14)

In the linear case defined above the simulation effect is a constant
<m~=o. and does not depend on the initial condition Y. For a general
non-linear model this will not be true and so it is often desirable to
calculate a simulation from a base which is particularly relevant
vm_.rwvm the actual historical data. In order to do this, Y1, the Boanm
solution, must exactly reproduce the base data Y, which ow: be done

by adding the single-equation residuals (U i
. to th
solution. This can be seen as: (U7 to the dynamic model

Y = B(L)Y* + y(L)Y* + CZ + US

Y =B(L)Y*+ y(L)Y*+ CZ +Y — y?2 \ (8.15)
and by the substituting for Y2 from (8.13) and rearranging, we get

(Y* = Y) = B(LXY* - Y) + y(L)(Y* - Y)

The solution to the equation is obviousl Y*=Y i

solution to the model with US added mw Y (the _MMM mmw_ﬂ.%m QFWMMJ_M
o.m_oc_mﬁ the single-equation residual). This result holds for both the
_52:. and the non-linear case, the only problem being that in the
non-linear case the solution to the model may not be unique.

g A m:.m_ .mo_cmoa. method which is sometimes used as a model
o_“MMMMMMSM _HWo single-equation dynamic solution, which may be

Y* = B(L)Y + yL)Y* + CcZ (8.16)

where U\Ah.v 1S a matrix lag polynomial with zero off diagonal terms
wsa B(L) is a matrix lag polynomial with zeros on the diagonal. This
is mxwoaw analogous to the dynamic forecast produced by a .mmumrw
equation. Each equation is treated in isolation and equation solution
<m_E.wm are entered as lagged values only in the ‘own’ equation (but
not in other equations). This may be a useful way of isolating dy-

namic instability in a model or detectin .
. g the source of a
bad dynamic performance. particularly
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8.3  Rational expectations and non-linear models

In this section we examine some of the special problems which arise
when a model includes explicit expectations terms and when we wish
to solve the model on the basis of model consistent or ‘rational’
expectations. The introduction of such terms raises both conceptual
and practical problems. We will first discuss some of the conceptual
problems of using expectations in non-linear models and will then
examine some of the practical suggestions for dealing with the solu-
tion problem and the need for terminal conditions.

Before embarking on the details of model simulation and solution,
there is an important conceptual problem which must be considered.
The theoretical literature about rational expectations has evolved
almost solely within a framework of small linear models. Within this
framework it is accepted as axiomatic that a rational individual is
interested in forming an estimate of the expected values of all rele-
vant variables. That is to say, he will try to arrive at an estimate of
the conditional mean of the probability distribution. Now, as the
deterministic forecast of a linear model with normally distributed
error processes coincides with the conditional mean of the probability
distributor of the model, there is no conflict and the deterministic
model solution may be used. Unfortunately (as discussed below) this
is not the case for a non-linear model. The deterministic forecast of a
stochastic non-linear model is not the mean of the probability dis-
tribution of the model. If the model represents a non-linear mapping
from the error terms to the endogenous variables then the determin-
istic forecast may have no well-defined place on the probability dis-
tribution. This train of reasoning leads us towards carrying out sto-
chastic simulations so as to estimate the mean forecast of the model.
There is, however, a further complication; the expected values of any
non-linear identities in the model are not given by the expected values
of their component parts. Thus the expected real exchange rate will
not equal the expected nominal exchange rate deflated by some
expected relative price.

Of course, it does not follow that a set of expectations has to be
consistent. If individuals have a quadratic loss function in their fore-
cast errors and they use a non-linear model and are fully ratigpal,
then they should act on the basis of a mutually inconsistent set of
expectations. Indeed, as we are dealing with many individuals, it may
well be reasonable to think of these individuals as being different
groups which hold inconsistent expectations about a number of vari-
ables. An exporting firm may form expectations about the real ex-
change rate while individuals hold price expectations and agents in
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financial markets have an expectation of the nominal exchange rate.
All these expectations can be optimal, based on the same model and
information set, and yet be inconsistent with each other.

These problems are perhaps most easily presented by stating a
general non-linear model in the following form. Let

Y, = f(Y;, Y§, X;, B, Q) 8.17)
i=0,1,...t,j=t+1,..,T,k=0,1,...,T

where Y, is a set of N endogenous variables, X is a set of M
exogenous variables, B is the full parameter set of the model and Q
is the variance-covariance matrix of all stochastic terms in the model
(both parameters and error terms). In traditional macromodels the
terms Y, future expected endogenous variables, may be viewed as
having been substituted out of the model by some explicit expecta-
tions generating submodel:

M\M"WA%@ N«ku Y ﬁv A@.H“v
i=0,1,2...6,j=t+41,..,T, k=0,1,..., ¢

where y are parameters and ¢ is a covariance matrix of stochastic
terms. We may substitute (8.18) into (8.17) to eliminate the future
terms in the endogenous variables, Y;. The model may then be solved
in the traditional way. However, this procedure fails to identify expli-
citly the expectations formation procedure (8.18) so there is a loss of
estimation efficiency. Further, if due to some regime change there is
a shift in either the functional form of (8.18) or in its parameters,
then, in the reduced form, of (8.17) and (8.18), the parameters will
alter as the parameters in (8.18) alter under the new regime.
However, if we deal with (8.17) and (8.18) separately , any change in
the expectations formation mechanism is isolated in (8.18) and the
structure (8.17) will be invariant to this form of structural change.
This is the Lucas (1976) critique discussed in Chapter 6, but here in a
whole model context.

Perhaps the simplest form of solution to this problem would be to
derive an explicit model for expectations formation (8.18) and then
use a complete structural model in the form of the set of equations
(8.17) and (8.18) taken together. Certainly if we had a good idea of
how expectations are actually formed the ideal situation would consist
of explicit models of (8.18). However, in the absence of such infor-
mation practitioners often invoke the rational expectations hypothe-
sis. Under this assumption it is assumed that the expectations will
coincide with the expected value of the actual forecast of the model:

M\M = \A%@ M\“v X\C h, ﬁwv A&.h@v

.
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h=i,..,T,i=0,.. ,h j=h+1,...,T,
k=1,...,T

In fact, most implementations on large models do not conform
fully to (8.19) as the solution is carried out in a deterministic fashion
so that Q is ignored. It is well known that for a non-linear model the
deterministic forecast will differ from the mean (or expected value) of
the model’s density function. So under the REH assumption the usual
procedure is to define

Y5 =f(Yo, Y§, Xi., B) (8.20)
h=12,..,T,i=0,1,..,h,j=h+1,...,T,
k=1,2,..., T

We will call an explicit expectations mechanism such as (8.18) an
‘expectations model’ solution. The deterministic model mo_cmmvz such
as (8.14) we refer to as a ‘consistent solution’ and a stochastic solu-
tion such as (8.19) a ‘rational solution’. o
Carrying out a specific explicit expectations model solution invol-
ves no special problems, as the standard model solution procedures
outlined above are quite able to cope with these models. The prob-
lems raised by the consistent solution have been the subject of recent
attention in the literature. Very little attention has been paid to the
rational solution of non-linear models, although Hall and Henry
(1988) are an exception to this. The rest of this section will concen-
trate on the work which has dealt with consistent solution techniques.
There are currently a number of techniques in use for solving
models with consistent expectations; the first to be used widely was
the Fair (1979), Anderson (1979) iterative technique. A more recent
approach using optimal control is the Holly m:&. Nma.nov .Ccmwv pe-
nalty function method. An approach from the engineering 5@383 is
the multiple shooting technique. Finally there is the iterative tech-
nique outlined in Hall (1985b). All these techniques address the same
problem, although the relationship between them is not always o_.om_‘.
We will discuss the problem of model solution within a linear
framework. This is done so that matrix notation may be used; none,
of the conclusions to be drawn are dependent on the assumption of
linearity. .
We begin by stating a general linear deterministic simultaneous
model as

a(L)Y, = B(L)X, 8.21)
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where a(L) and B(L) are matrix lag polynomials (which may include
lead terms), Y is a vector of N endogenous variables and X is a
vector of M exogenous variables. Now, if we want to solve this
Bo%..\_ over a fixed time period, 1... 7T, subject to suitable initial and
terminal conditions Z, we may restate the problem, in a more expli-
cit framework, as

AY' = BX' + CZ' 8.22)

where Y .w:a X are stacked vectors over all the time periods 1...T
and CZ’ is the initial and terminal conditions, that is, any lags which
need values before the start of the solution (period 0) or expectations

beyond the end of the solution (period T). It is worth actually writing
out in full the left-hand side of (8.16):

o oL oL7?) (LD ] J_l
a(L) @ (L) . Y2
a(L?) a(L) @ . Y3

a(L3) ao(L?) (L) @

a(L*) oL ol L) .

| a(LTY) Ca JLyr ]

(8.23)

If the full A matrix is actually lower triangular, having only zeros
above the leading diagonal, then the model contains no consistent
expectation terms and it may be solved in the usual way, one period
at a time. When the upper triangle is not empty, one of the special
approaches mentioned earlier must be employed.

The approach outlined in Hall (1985b) is simply to deal directly
with the equation system set out in (8.22) and (8.23). So we may
normalise the model by defining A = D — E and then use any of the
standard iterative techniques (Gauss—Seidel, Fast, Gauss-Seidel,
etc.) to solve the model.

Both the Fair-Anderson and the penalty function techniques make
use of a separate split in the A matrix before the normalisation
procedure is made. Both techniques begin by defining A = (P - U),
where P is the principal diagonal and all the lower triangular ele-
ments of A and U are minus the upper triangular elements of 4. We
can then rewrite (8.22) as

PY'=UY' + BX' + CZ' (8.24)

This isolates all the lead terms and they can then be treated separ-
ately. This is done by defining a new vector, Y, where the consistent
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solution is defined by Y* = Y. The model may then be written as
PY' = UY® + BX' + CZ' (8.25)

The Fair—Anderson procedure begins by setting arbitrary values
for Y*, solving (8.25), as a model without consistent expectations,
and then updating the estimate of Y* with the solution values. This
procedure iterates until Y = Y*.

The penalty function method proceeds in a similar fashion to
achieve consistency by viewing the variables Y* as control variables
and then minimising a function Q = £(Y — Y*)? using standard op-
timal control algorithms. This function has a minimum when Y = Y?¢
and consistency is achieved.

The advantage of both these techniques is that the actual model
solution procedure is reduced to a period-by-period problem without
any consistent expectation terms entering. The added cost of this is
obviously the cost of the extra iteration procedure in the Fair—Ander-
son technique and the cost of the optimal control exercise in the case
of the penalty function approach. In effect these are both very sens-
ible procedures to adopt while the upper triangle of A is very sparse.
As A becomes more dense the costs can rise enormously.

The relationship between (8.23) and the multiple shooting tech-
niques is a little less obvious. Any of the above techniques would
proceed by normalising the model on the principal diagonal and then
proceeding from there. The multiple shooting technique however first
normalises the model on any lead terms. In terms of (8.23) this is
rather like moving any rows with non-zero upper triangular elements
down the model until the non-zero elements are on the diagonal. The
model is then normalised on this new leading diagonal, which leads to
some variables being determined twice. The initial period variables
are then chosen so as to make the terminal values of the endogenous
variables conform with the terminal conditions.

A simple example makes this more clear. Suppose we have an
equation

E, = E . + aX, (8.26)
where Er = Z. We renormalise this equation to give
Ey1 = E, — aX, Am.N&

This equation can now be used to solve the whole path of E,, given
Ey and X,. We search over alternative values of E, so that the
solution for Er, the terminal value, is equal to the (pre-set) terminal
condition (see below).
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Hro m%m.sﬂmmo of the multiple shooting technique is that it emp-
:mm._mam the importance of model normalisation and suggests ways in
.i_m_os the normalisation can be improved. The disadvantage is that it
is in o._-_v~ very special cases where renormalisation is actually possible
If a single equation can be renormalised as a single unit, as in Em
case of (8.26), then the approach is quite straightforward. However
most cases would involve renormalising whole blocks of the Boaom
and this would not generally be feasible. An employment equation

s&._or includes expected output cannot be renormalised as a single
unit, for example.

Specifying terminal conditions for a model with consistent
expectation

w.amoa one can solve a model which involves future expectations to
yield a o.ozmmmﬁa solution, a suitable set of terminal conditions must
_u.o supplied. There has for some time been confusion over the distinc-
tion between terminal conditions and transversality conditions, in fact
the two are quite different. This may be appreciated _unmavdw the
following example, suppose we wish to minimise the following inter-
temporal cost function, where X7 is the desired, or target, value:

S L x - xr el
C=2 5 (X~ XD+ 5 (X, — X)? (8.28)
which implies the following Euler equation (i.e. set 6C/6X, = 0)
aXt=(a+2b)X, — b(X,4; + X,_y) (8.29)
A suitable transversality condition for this problem is
3 —_ *) —
lim (X, —XH=0 (8.30)

mowzoﬁwn m.m.ixo-maa horizon problem does not require a trans-
versality condition. Instead, the Euler equations take on a special

form as they approach the terminal date. For :
three-period problem: . example, consider the

3
C =2 (af2)(X; = XD + (b)(X, = X,-1)? @8.31)
The three first-order conditions are
aXt = ? +2b) X, - b(Xy — X,) (8.32a)
aX%¥=(a+2b)X, - b(X, + X3) (8.32b)
aX%¥ = (a+ b)X; — bX, (8.32¢)
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The transversality condition (8.30) may be derived by letting ‘¢’ in
(8.32) go to infinity. But in the finite horizon case no transversality
condition is necessary; instead the problem is dealt with by special
equations appearing towards the terminal period.

The proper analogy for a macromodel would seem to be that we
may interpret terminal conditions as transversality conditions if we
solve the model over an infinite horizon. This is obviously impract-
jcal. It is wrong, however, to view the finite solution to the model
with a terminal condition as being a version of (8.32) unless we
recognize that this implies that all planning horizons end at the
terminal period, as in (8.31) above.

A better interpretation of the terminal condition is that they
should force the model solution to be on the infinite time horizon
solution path at period T. Let us define Y to be the solution path of
the model solved over an infinite time horizon subject to a set of
transversality conditions derived by driving the model’'s own equ-
ations to infinity. Then, if we solve the model over the finite period
1, 2,...,T subject to Yr=Yr, the finite solution Y;, i=1,...,T
will be equal to the infinite solution path for the first T periods. So
we may achieve part of the infinite horizon solution path without
solving the model to infinity. _

The obvious difficulty here is that we cannot know what Y is until
after an infinite model solution has been achieved. However, bearing
this interpretation of the terminal conditions in mind we are able to
make a more precise interpretation of the various suggestions which
have been made. In particular, the Minford and Mathews (1978)
suggestion that equilibrium values should be used, is based on the
idea that they are using a market clearing model which quickly moves
towards its equilibrium. So after a few initial periods have been
passed, the infinite time solution path should be the steady-state
equilibrium. Similarly the Holly and Beenstock (1980) suggestion of
projecting constant growth rates as a terminal condition may be seen
as a suggestion that the infinite time solution path is characterised by
steady growth rates. The Fair (1979) idea of testing the terminal
condition by extending the solution period until no significant change
occurs in the early part of the solution period may also be seen as a
way of fixing the terminal conditions on the infinite time solution
path.

[ 4

8.4 The analysis of stochastic models

By their very nature models are stochastic simply because no descrip-
tion of the world can ever be so complete that the models fit the data
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perfectly. So the full specification of an econometric model must
include a set of error terms on the behavioural equations. For a linear
model, as long as the error terms are normally distributed with zero
mean, the stochastic part of the model is largely redundant. Ignoring
the error terms completely gives rise to a deterministic forecast which
is identical to the mean forecast of the stochastic model and which is
optimal on almost any criterion. However, as soon as the model
becomes non-linear this is no longer the case. There is then no
general analytical relationship between the deterministic solution and
the solution to the full stochastic model. In this section we explore
the consequences of the stochastic nature of large models and discuss
some of the numerical techniques for analysing non-linear models.

Stochastic simulation is a numerical computer technique which al-
lows us to investigate the uncertainty which is associated inevitably
with any large econometric model. Because such models are generally
non-linear and highly complex, an analytic investigation of the effects
and importance of their stochastic nature is impossible. Stochastic
simulations bypass the analytic problems by simply performing large
numbers of model simulations; each simulation differs from the others
because of the different set of ‘shocks’ administered to the model.
These shocks may be added to the equations, the parameters, or even
the exogenous variables; the shocks are random drawings from a
particular distribution. Given this Tepeated experiment it is then poss-
ible to calculate a range of statistics such as the mean, the standard
deviation and the higher moments of the solution of the model
variables. As the number of simulations undertaken increases, these
summary statistics should provide a good guide to the stochastic
performance of the whole model.

For any behavioural equation of a macromodel there is always
some degree of uncertainty about its general specification, the actual
values of its parameters and the importance of any error term. Typic-
ally, when an econometric model is used either for forecasting or
simulation the stochastic nature of the model will be ignored. All
error terms will be set, at least initially, to zero and the parameter
estimates will be taken as known with certainty. It is natural to ask
what the standard error of the deterministic forecast is and stochastic
simulation can provide this answer. However, a much more important
problem lies in the meaning of the deterministic forecast itself. It is
well known that if the model is non-linear then the mean of the
forecast will differ from the deterministic solution value. It has re-
cently been pointed out (Hall 1984, Wallis 1984) that for some types
of non-linearity the deterministic forecast may be quite meaningless
and highly misleading as to the model’s true forecast. A simple
example can demonstrate this:
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Let Y=aX +u
W =Y +v 8.33
Z=YW

where u, v are stochastic error processes, «, f§ mno.wwqwaoaoa and X,
Y, W, Z are variables. The reduced form solution is

Z = Ba?’X? + 2afXu + Xv + Pu® + uv
Y=aX +u 8.349)
W=afX +Bu+t+v

The equations for Y and W are simple linear onzm&o:m, SO assuming
E(u) = E(v) = 0, the expected value of Y and W will be equal to the
deterministic model forecast. This is not true @. N however, as ﬁ.ro
term in E(u?) will be positive. So the QoﬁoZEEmmu.n mo—”oowmr .i—:nr
sets u? = 0 will be an extreme point on the probability distribution of
the random variable u2. Any error at all will make u V.o m.:n s0 the
deterministic forecast is a highly biased and misleading indication of
tic model forecast.
nramﬂm ﬂmﬂ.ﬂma shown below that there are three cnowa.u classes of model.
First, there are linear models and the aoﬂo:.a:mm:o forecast of such
models is equal to the mean of the mnogwm:o linear Bo.aa_, .EE all
endogenous variables are normally distributed around &_m point (as-
suming normal error processes). Second, there are non-linear models
which represent bijective mapping @.oB.En.aﬂon terms on to the
endogenous variables. A bijective mapping is a unique oao..ﬁo-oao
mapping in both the function and its inverse. (The quadratic term
discussed above is not bijective as its inverse is not a true one-to-one
function.) The deterministic forecast of such m.ano._ can c.a shown mo
be the median of a (generally) skewed probability n.&:c:r.o:. In auzm
case the median, the mode and the mean of the vnogcm_:w density
functions of the model are different. Forecasting a_o.ao&ms seems a
reasonable option especially considering some .anm:wc_o properties
of the mean and the mode, discussed below. .ME&.:% ﬂ.ro 2.:& categ-
ory is a non-linear model which is also non-bijective; in this case .ﬂ.ro
deterministic forecast has no well-defined m_moo on Eo. probability
density functions of the model. It can even lie at some highly unrep-
resentative extreme point, as shown above. . . .
The example given above shows that a fairly simple mo:s. of a.ou-__-
nearity, which certainly exists in most large models, can give rise to
non-bijective terms in the reduced form. So unless considerable i.c.uw
is undertaken to define and investigate the shape Om. the vﬁgc_rﬁ
function of such models we have great difficulty interpreting any
deterministic model results.

I
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Stochastic simulations are useful therefore in defining and quantify-
ing the uncertainty associated with a model forecast or simulation.
But far more importantly they allow us to have a firm basis for
interpreting the results of a deterministic model solution. If we know
that the deterministic forecast is close to the mean value and that the
probability distribution is near to being normal, then the model may
be used in deterministic solution mode with some confidence. Until
we have that information a serious problem of interpretation exists.

Interpreting the deterministic solution

When we are faced with the problem of having to choose a single
point forecast from a skewed probability distribution there is no
single point on the distribution which should be chosen in all circum-
stances. Instead, the optimal predictor will depend on the specific loss
function of the forecaster (see Dunham Jackson 1921). For example,
with a quadratic loss function and if g; (i=1,...N)is a set of real
numbers:

N

Sy = M (x — a)? (8.35)

then §, may be minimised with respect to x by setting x equal to the

arithmetic mean of the ;. In a forecasting context, if x is a point

forecast and the g; are all possible outcomes, then the optimal fore-
cast is the mean of the probability distribution of the a;.

The quadratic loss function is perhaps the most immediately ap-

pealing choice but it is by no means the only one. A clear alternative

Is to minimise the absolute error of the forecast:

N
$2= 2 |(x - a)| (8.36)

i=1
§2 will take a minimum value when x is equal to the median of the
distribution of a;.
Both of the above loss functions consider the whole set of possible

errors. A more restrictive loss function might be to maximise the
probability of picking the correct value:

83 = —|MaxPR(x — g;) = 0 (8.37)
This function will be minimised when x is set equal to the mode of
the a;.

.O_omn._w. in the case of a normal distribution all three loss functions
will deliver the same point estimate. The final function (83) is in
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general unappealing as it gives no weight to the shape of the density
function and in a highly perverse case could lead to extreme forecasts
on the boundary of the density function. When considering the other
two functions it may be argued that it is desirable to penalise large
errors with a proportionately greater weight than small errors, so at
first sight we may prefer the quadratic function.

There is, however, only highly undesirable property of the mean
which makes it difficult to accept as a coherent forecast. This is that
the mean forecast of the model is likely to violate any non-linear
identities in the model. We can see quite easily that linear identities
will hold in the mean forecast as

MAM.«..V = MMA&L A“.w@v
But we know that
E(XY) = E(X).E(Y) + Cov(XY) 8.39

So any relationships which involve deriving a variable from the pro-
duct of two other endogenous variables which are not independent of
each other will not hold in expected values. This is not a trivial
problem as most large macro models have many such identities, in
particular the nominal value of a variable is often derived as the
product of the real quantity of the variable and its price (for example,
real disposable income, real wages or the real exchange rate). In
general we would not expect the price (P) of a good to be independ-
ent of the quantity (Q) traded. The covariance of the two must
therefore be non-zero and the mean value of revenue (R = PQ) will
not equal the mean quantity multiplied by the mean price.

There are, of course, several alternatives which could be used to
derive a coherent forecast based on the expected values of the model.
One would be to derive the expected values of the behavioural
equations, E(X) and E(Y), and then calculate any identities on the
basis of these values, i.e. set arbitrarily E(XY) = E(X)E(Y). There
are two objections to this. First, if the identity feeds back into the
model then the value calculated will not be the same as the value
used in the model. Second, if we report the means because our loss
function is quadratic, then to impose the identities is to behave
sub-optimally. This point raises the second major objection to requir-
ing coherency; it may be that rather than abandon the mean forecast
we should actually abandon the coherency requirement. Part of the
popular appeal of large models among forecasters is that they ensure
that a large number of accounting identities are observed simultan-
eously. This may, however, be a mistake if the forecaster is simply
interested in minimising his squared forecast error. However, if a
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forecasting group places some weight on the coherency of its forecast
then it may well be that the use of mean forecasts is simply too
simplistic.

The importance of the non-linearities present in large econometric
models should not be underestimated. The interpretation of the sto-
chastic nature of the endogenous variable is rendered particularly
difficult by this problem. While we appear to have a good deal of
information about the density function of the error terms of the
model, the only information usually available on the endogenous
variables is the deterministic forecast. Generally we have no way of
even knowing where the deterministic solution lies on the density
function.

Hall (1989) provides an analysis of this question and he establishes
a proof for an important class of models that the deterministic solu-
tion is in fact the median of the distribution of the endogenous
variables. When the distribution of the endogenous variables is
skewed the normal measures of central tendency (the mean, the
mode and the median) will of course differ and there is no strong
reason to chose one measure over another. Indeed each can be
justified as the optimal choice for a particular loss function. So
establishing that the deterministic solution is the median of the dis-
tribution is an important justification for the use of non-stochastic
model solutions, although clearly only a stochastic solution procedure
can provide information on the overall shape of the distribution.

The numerical procedure of stochastic simulation

In this section we discuss a range of techniques which are known
generally as stochastic simulation. Conceptually this is a very simple
procedure. Suppose we have a non-linear model expressed in a gen-
eral non-linear final form as

Y = Y(X, 4, U) (8.40)

where Y is a vector of endogenous variables, X is a vector of
exogenous variables, A is a set of parameters and U is a set of
stochastic error terms. If both A and U are stochastic with mean zero
and covariance matrix 24 and X then Y will also be stochastic with
a vector of means Y’ and a covariance matrix Zy. Unfortunately the
analytical calculation of £y and Y’ is impossible for anything but the
most simple form of non-linearities and even in these cases the size of
a large model would often render the problem intractable.

The technique of stochastic simulation avoids the analytical calcula-
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tion of £y and Y’ by constructing a numerical approximation which
is asymptotically equivalent to the true density function of Y. This
approximation is carried out simply by repeatedly simulating (8.40)
with values of A and U drawn from their distributions, defined
above. The solution values for Y are then collected together and the
moments of the distribution may be calculated. As the number of
repetitions becomes very large the estimates of the moments of the
distribution converge on £y and Y'. Further details and application
of this approach may be found in Hall and Henry (1988), Fair (1984),
Bianch and Calzolari (1982). We will now discuss a few of the details
of the application of this technique.

Structural errors and additive errors

Despite the fact that most large models are non-linear they are
generally estimated by single equation linear techniques, typically
ors. This is done by subjecting the variables to various transform-
ations, for example, by taking the log of a variable, In X. When the
equations are coded into the actual computer model the dependent
variable is always transformed back into the ‘pure’ variable, X. This
means that a random error added to the end of such an equation will
not play the same role, or have the same properties as the estimated
residual. An example will make this clear. If an equation of the form

Alog(Y) = aAlog(X) + U
is estimated, then this will often be coded as
Y = expflogY,-1 + aAlog(X) + B] + A (8.41)

A is an additional ‘residual’ used for shocking the equation. B is the
structural error term, normally set to zero, which will be a transform-
ation of the estimation error U. Other forms of non-linearity are
treated analogously. It is possible therefore to apply random shocks
to either the A- or the B-residuals. The B or structural residuals
depend on the estimation assumption of normality but there is no
general reason to expect the B-residuals to be normally distributed,

rather than the A-residuals.
L 3

Univariate and multivariate residual shocks

The distinction between structural (B) and additive (A) residuals has
been made above but when we apply shocks to either of these sets of
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residuals we must also decide whether these shocks are to be univari-
ate or multivariate ones. Univariate shocks are simply random, norm-
ally distributed shocks which have a given variance but are completely
independent of each other.

Multivariate shocks will also generally be distributed normally with
a given variance but they will also have some covariance structure
between the individual shocks. In its simplest form we may allow for
the fact that the error terms of different equations have some non-
zero contemporaneous covariances. As an extension we may allow
also for the covariance of the error terms in different equations to be
related over different time periods.

The main argument for considering the covariances of the error
terms in a model which has been estimated by oLs on the assumption
of zero covariance in the equation error terms is that often the
estimation assumptions are not actually fulfilled. An equation may be
subject either to simultaneous equation bias or to omitted variable
bias, or both, and the covariance structure of the error terms across
equations may contain a great deal of information on this misspecifi-
cation. For example, if current income were incorrectly omitted from
the consumption function, then the covariance of the error term in
the consumption equation and the other income-generating equations
should pick up this omission.

There are currently three main techniques used to generate addit-
ive residual shocks which follow the covariance structure of the error
terms of the whole model. Only one of these techniques can be used
for large models however. The simplest technique is the Mariano and
Brown (1981) approach; they use observed residuals from an N
period model solution to carry out N static, one-period replications.
This limits the number of replications to thirty or forty at the most as
well as allowing the calculation of only the one-quarter-ahead static
error bounds. A more useful technique is Nagar (1969); this uses an
estimate of the full covariance structure of the model to apply shocks
to the residuals. The problem here is that the covariance matrix must
be estimated from observed residuals so that there must be more data
points available than equation residuals. This will not generally be the
case for a large model and so the initial covariance matrix cannot be
defined. The final, and more useful, technique is the McCarthy al-
gorithm (1972). This approach generates a vector of shocks by using
the formula:

S =T%,U

where S is the vector of random shocks, r is a 1 X T vector of
random numbers which are distributed N(0,1) and U is a Tx M
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matrix of disturbances from T observations of M true structural
equations.

This technique therefore only requires a set of equation errors over
T periods; T may be any length although the properties of S only
tend to those of the true structural errors as 7T tends to infinity.
Therefore this gives an asymptotic estimate of the true covariance
matrix. The McCarthy technique has been extended to take account
also of serial correlation in the error terms, although this extension
will not be discussed here.

Handling parameter uncertainty

The variance of the forecast errors is made up from two sources, the
variance of the true error term (U) and the parameter uncertainty,
represented by the covariance matrix of the parameters. In stochastic
simulation exercises it is relatively easy to take account of the va-
riance of U but it is extremely difficult to make proper allowance for
the variance of A in a satisfactory manner when the model is large. It
is, of course, easy to shock the parameters by applying random
shocks which are normal and have the parameters’ estimated standard
error. This procedure is, however, not satisfactory as it ignores the
covariances between the parameters in any given equation as well as
the covariances of the parameters across different equations. When
these covariances are ignored there is a significant possibility that all
the shocks in a given equation may be applied in the same direction,
causing the dependent variable to change by an enormous amount,
even changing sign. This need happen to only one equation in any
run for the model to fail. Making allowance for the parameter cova-
riance is therefore vital as this will mean that, on average, if one
parameter falls then another will move in a compensating fashion so
that the level of the dependent variable is maintained within ‘sensible’
bounds.

Three main techniques are used to deal with the problem of
stochastic parameters, none of them being entirely satisfactory. These
techniques are:

1. Stochastic simulation and re-estimation (see Schink 1971) Random
shocks are added to the error term of the model so as to generate
new values for the endogenous variables. These new values are then
used to re-estimate the entire model and carry out a forecast run. The
process is repeated many times so that the forecast errors can be
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calculated. This technique is almost completely satisfactory in the
sense that it generates sets of parameter values which take full ac-
count of all the covariances between the parameters themselves and
between the parameters and the error terms. The disadvantage is, of
course, that it is almost infeasible to consider 500 or 1000 replications
of this technique for a large model.

2. Monte Carlo on coefficients (see Cooper and Fisher 1974) Shocks
are applied to the parameters as well as to the random errors of each
equation. The disadvantage here is that in the case of a large model
where system estimation techniques are impractical, it is very hard, if
not impossible, to carry out the necessary decomposition of the para-
meter covariance matrix. The normal technique used here when deal-
ing with a large model is simply to ignore the cross-equation covari-
ances and deal only with variance of the parameters. This clearly
represents an important loss of information.

3. Analytical simulation of coefficients (see Bianchi and Calzolari
1980) An analytical formula is involved for the parameter uncertainty
term which concerns the partial derivative of the parameters with
respect to the endogenous variables. These partial derivatives are
evaluated by using finite difference which involves many model simu-
lations. The analytical formula also involves using an estimate of the
variance-covariance matrix of the parameters.

It seems that the only feasible method in the case of a large model
is to use procedure 2 and follow the assumption of Cooper and Fisher
(1974), Fair (1980), Haitovsky and Wallace (1972) and assume the
cross-equation covariances are all zero.

Variance reduction techniques

The main procedure used to reduce the uncertainty of the estimate of
the mean of the distribution is the technique of antithetic errors. This
means that the sets of residual errors to be applied in each simulation
are not completely independent of the other sets, but instead are
generated in pairs, where the second set of each pair is minus the first
set. This produces a group of errors which are perfectly symmetric
around the mean of the error process. A substantial increase is given
in the efficiency of the estimate of the mean of the endogenous
variables but it does not increase the efficiency of the estimate of the
variance.
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Estimating the uncertainty of a model’s simulation properties

From the point of view of economic policy formation, E.o main
interest in any macro model is its simulation ?.ovonmo.m. It is z.gowm
properties which determine the policy Eomoavzo:m.ir_nr are given
by the model, no matter whether a simple set of policy mzogw:,\om is
examined or if a complex analysis involving optimal control is E.am.
When evaluating a large model an important aspect of its vnovoa:.o?
which is often ignored, is the density function of the simulation
effects. To say that the deterministic effect of a rise in government
expenditure is to raise Gpp is of little use until we are able to say
what the margin of error surrounding this estimate is.

The original work in this area was undertaken by Fair (1980) and
the approach is summarised in Fair (1984).

An analytical framework

Let Y, be the set of i endogenous variables in a general non-linear
model, X,, be a set of n exogenous variables, Q represents the
variance—covariance matrix of all stochastic elements in the model
(error terms and parameters) and B is a vector of parameter esti-
mates. It is then possible to state the model in reduced form as

%«..« = M\%Abu w.. Nv AQ.ANV

The deterministic model solution would be given by ignoring the
stochastic parts of the model as:

YR = Y.(B, X) (8.43)

Conventional stochastic simulation techniques allow us to estimate
the expected value of the endogenous variables conditional on an
estimate of the variance—covariance matrix.

¢ = Yy(Q, B, X) (8.44)

A model simulation exercise consists of solving the model for some
base set of exogenous values (X') and then comparing this with
another solution carried out on the basis of a different set of exoggn-
ous variables (X™). So the effect of the deterministic simulation will

be
dP = Yi(B, X") — Yu(B, X") (8.45)

and similarly the difference in expected values of the stochastic simu-
lation will be



@ T T TR T TV TY

F=YUQ, B X" - YiQ, B, X (8.46)

In order to assess the uncertainty of a model’s simulation properties
we need to investigate the probability density function of d;. As with
conventional stochastic simulations, if the model is non-linear we will
generally expect d? to differ from di. Also it is clear that when we
are dealing with non-linear models the variance of d; will depend on
both the stochastic parameters and the stochastic error terms. It is
only in the case of a linear model that the variance of d; is due to
only the parameter uncertainty. This point can be appreciated easily
by referring back to the simple model of (8.33). The reduced form
equation for W, a linear part of the model, is

W=0aBX +BU+V 8.47)
A simulation on X would give
d¥ = ap(x" - x7) (8.48)

the error terms U, V drop out, and the density function of d¥ is due
solely to the stochastic nature of & and B. However, the situation is
different for Z, the reduced form equation here is

Z = Ba’X? + 2aBXU + aXV + BU? + UV (8.49)
So
d? = Ba?((X™)? ~ (X")?) + 20BU(X" - XV
+aV(XT - x1) (8.50)
Here both the second and third term include the stochastic variables

U and V, so the density function of d? depends in part on the
density function of U and V.

Calculating the uncertainty of a model’s simulation properties

Here we present the algorithm of Hall (1985) which efficiently pro-
vides estimates of the density function of a model’s simulation proper-
ties.

1. Given the covariance matrices of the parameters and the error
terms, draw a set of random parameters B* and a set of residuals
U*.

2. Using the set of parameters and errors (B*, U*), solve the model
for a base set of exogenous variables X! to give ¥!. The out-
come of the model conditional on B*, U* and X!.
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3. Using the same set of parameters and errors (B*, U*), solve the

model for a simulation set of exogenous variables XU to give

P, the outcome of the model conditional on B*, U* and X

Compute d’ = I — P1

. Repeat steps 1 to 4, J times, when J is the desired number of
trials.

6. Given the J values of d, compute the mean and variance of d.

8.5  Optimal control of non-linear models

Wherever a model is used for policy analysis we are essentially trying
to find the best setting for some group of instruments, given our
understanding of the economy which is formalised in the model. The
formal framework for any such analysis is clearly that of optimal
control, even if in practice the analysis is conducted in a less formal
way using only simulation methodology. The problem statement in its
most general form is quite straightforward; let the model be

filY, X, A,Q)=0 (8.51)

where Y is a vector of endogenous variables, X are the exogenous
variables, A the parameters and Q is the full covariance matrix of the
stochastic elements (from both the error terms and parameter esti-
mates). The problem statement then simply involves specifying an
objective function which is to be minimised,

Min E(J) = E[J(Y, X, Q)] (8.52)

Note that we are minimising the expectation of some general function
(J) of the stochastic model. We then minimise (8.52) subject to the
model (8.51) with respect to a set of control variables C which are
some subset of the exogenous variables X such that (X)=(z,0)
where Z is all the exogenous variables not under the control of the
policy maker.

For the case where the model is linear and the objective function is
quadratic, a well-defined analytical solution exists which is detailed in
a number of books, Intriligator (1971) or Hall and Henry (1988), agd
will not be discussed here. When the model is non-linear however,
analytical solutions no longer exist and we must again resort to
numerical procedures. The deterministic case is relatively easy to deal
with, if we normalise (8.51) with fixed parameters such that

Y = h(Y, X) (8.53)
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and then state the reduced form of the system (assuming that this
exists) as

Yi = hi(X) (8.54)

We may then state the problem (8.52) as the unconstrained minimisa-
tion problem

Min = J[h{X), X]
or
MinJ = g[hXZ, C), Z, C] = g'(Z, C)

which is simply a problem of minimising a non-linear function with
respect to a set of variables C; this problem was dealt with earlier
when we considered maximum likelihood procedures. In practice
because although many econometric models are large they are also
fairly simple systems and so a number of particularly efficient al-
gorithms have been developed (for example, Fair 1984, Holly et al.
1979 discuss such algorithms). Conceptually however we are simply
maximising a non-linear function and any of the standard techniques
could be used.

The problem takes on a different order of complexity when the
non-linear model is stochastic. In this case there is no widely accepted
procedure for calculating the optimal solution. This problem has been
addressed by Chow (1976) from a theoretical standpoint and he
outlines an algorithm which calculates optimal control rules for sto-
chastic non-linear models. The Chow algorithm, in essence, works by
iterating over a number of linearisations of the stochastic model using
standard dynamic control theory to optimise the stochastic linearised
model at each iteration. The key feature of the algorithm is that it is
the stochastic model which is linearised not the deterministic model.
To linearise a large stochastic model once would be enormously
difficult and to include this as part of an iteration procedure would be
an order of magnitude more complex, and as far as we know the
Chow (1976) algorithm has never been implemented in its full form.

A few applications exists of stochastic optimal control of fairly
small models, such as Bray (1975), but this work has generally pro-
ceeded by linearising the deterministic model rather than the full
stochastic model. These applications then tend to produce solutions
close to the deterministic solution (as we would expect) — indeed, if
they were performed using fixed parameters and only error term
uncertainty this algorithm converges on the deterministic solution.

Hall and Stephenson (1989) propose an algorithm which combines
the technique of stochastic simulation with optimal control. It enables
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one to calculate a very close approximation to the full stochastic
optimal control solution. Their algorithm has the following form.

If the model has the general form of (8.51) then we may define Y*
to be the solution to (8.51) subject to the full stochastic processes of
the model.

E[f(Y* X,Q, A, U)] =0 i=I N (8.55)

and Y* will be the mathematical expectation of Y, and U is a vector
of error terms. Now define ¥ to be the deterministic model solution,

f=1%, X,0, E(4),0]=0 i=1, N (8.56)

That is the variance—covariance matrix if the parameters are set to
zero and the error terms take their mean value, which is assumed to
be zero without loss of generality.

We know that, when the model is not linear:

Y # v+ !

We may extend this framework to include optimal control by splitting
the X vector into two sections Z, a vector of exogenous variables
and C a vector of control variables. We then need only to specify a
suitable objective function which is to be minimised.

We will examine the standard case of a conventional quadratic
objective function:

E:H&M}§|NL @.57)
where ¥, is the desired value for variable Y; and (8.57) is to be
minimised subject to the model.

f(Y,Z2,C,Q A U)=0 (8.58)

with respect to the control variables C. Again without loss of general-
1ty, we assume a one-period time horizon so as to simplify the
notation, the multi-period extension is trivial.

Now we may rewrite (8.57) in the following way:

E(J)

N
M}Eﬁ + Y?-2v,7) (8.59)

N
M_}EQWV + Y - 2YE(Y) (8.60)
and given that E(Y;)? = E(Y,)E(Y;) + Var(Y))

N

E(J) = Mim?ﬁé + Var(Y)) + ¥? - 2¥,E(Y))] (8.61)
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and we may define E(Y;) =¥, + E(d;), the expected value of Y;
equals the deterministic model solution Y; plus the expected devi-
ation of the deterministic value from the mean value E(d;). Then,
substituting this into (8.61) gives:

N
E(J) = > A[?.¥; + E(d)E(d) + 2P .E(d)
i=1

+ Var(Y;) + Y? - 2¥, ¥, - 2Y.E(d)] (8.62)

The advantage of (8.62) over (8.57) is that the stochastic elements of
the solution have been isolated in the terms Var(Y;) and E(d;) and
we are able to provide numerical estimates for both of these terms
through the use of stochastic simulation. This suggests the possibility
of an algorithm to solve the stochastic problem which has the follow-
ing step-by-step form:

1. Calculate the optimal solution to the deterministic problem given
by (8.57) subject to (8.51), let the solution be C*.

2. Perform a set of stochastic simulation around the base given by
C* to produce estimates of Var(Y;) and d; (i=1,2,..., N).

3. Using these estimates of d; and Var(Y;) we can now minimise
(8.62) subject to (8.51) to produce a new optimal solution C’. If
C’ is within a convergence criteria of C*(|C’' — C*| < eps) for Eps
suitably small then stop; if the convergence criteria is not met
then set C* = C’ and return to step 2.

This algorithm, at convergence will, still entail a small degree of
approximation although this will be much less than the usual method
of producing a linear approximation to the non-linear model. The
conventional procedure of linearising the deterministic model, dis-
cussed in Kendrick (1981) would involve producing a linear approxi-
mation to the model and then appealing to the certainty equivalence
theorem to solve the resulting deterministic quadratic-linear model.
The problem with this approach is that when the objective function is
quadratic and the parameters are known this procedure simply repro-
duces the deterministic solution.

We can see the source of the above approximation by noting that
in general Var(Y;) and d; are both functions of the control variables
C. We may simplify the notation by considering an example with only
one control variable (C) and one state variable Y. Then, following
the notation in (8.62) we may define

Y= f(0) (8.63)
Var(Y) = g(C) (8.64)
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E(d) = h(C) (8.65)
These terms may then be substituted into (8.62) to give

E(J) = f(O)f(C) + h(C)h(C) + 2f(C)h(C) + g(C)
+ Y2 - 2Yf(C) - 2Yh(C) (8.66)

This is now an unconstrained function in C which will be minimised
when the following Foc is met:

2f(O)f' + 2h(C)R’ + 2f(C)R' + 2R(CO)f'
+ g —2Yf —2YW =0 (8.67)

In the algorithm given above during the calculation of the optimal
solution the partial derivatives g’ and h' are set to zero so the
solution which is calculated will be characterised by

2f(O)f' + 2h(C)f' =2Yf =0

The standard technique of linearising the model would also set
h(C) = 0 and so this term would also be lost in the approximation. It
must be appreciated at this point that #(C), the deviation between
the deterministic value of Y and its expected value, is of a quite
different order of magnitude to g’ and A’, the derivatives of the
deviation and the variance with respect to C. For most model appli-
cations g’ and A’ are likely to be so small that ignoring them is a
reasonable approximation to make. However, if it is felt that a
particular model is so non-linear that this is a damaging assumption
then it is possible to reduce this level of approximation by estimating
a simple linear approximation of g(C) and h(C). Two sets of sto-
chastic simulation could be performed for different levels of C and a
simple linear function for g(C) and A(C) could be calculated. Under
normal circumstances however the main effect of the stochastic parts
of the model will be captured by the term h(C).

Finally, it is perhaps worth noting that the well-known certainty
equivalence theorem can be demonstrated via equations (8.62) and
(8.67). Certainty equivalence states that if the objective function is
quadratic and the model is linear then the optimal and control trajec-
tory for the stochastic problem is identical to the solution to the
deterministic problem when all stochastic terms take their expectedg
value. When the model is linear, #(C) =g’ = h’ =0 and so (8.67)
reduces to

2f(O)f = 2Yf =0 (8.68)

which is identical to the roc for the deterministic model.




436 Using large non-linear models

8.6 Summary

This chapter has reviewed a range of techniques which allow large
non-linear models to be analysed in much the same way that we are
familiar with for small linear models. We have shown how model
solutions can be obtained, how the stochastic properties of models
can be investigated and how various forms of simulation and optimal
control procedures may be defined. While these procedures may
often be extremely complex from a numerical perspective, modern
computers bring such techniques within the realms of feasibility even
for very large models.
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