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6.6 Summary

The implications of introducing expectations variables into both ana-
lytic and large-scale (econometric) models is now well established
(see, for example, Lucas and Sargent 1981, Sargent 1979, Cuthbert-
son and Taylor 1988, Wallis et al. 1986, Fair 1979). However, there is
much debate about how to model expectations variables and how
important expectations actually are in influencing economic behavi-
our. We have presented a wide variety of econometric techniques for
dealing with equations containing expectations terms. Although the
rational expectations assumption has tended to dominate the applied
(as well as the theoretical) literature we have also presented elemen-
tary ‘learning’ models of expectations formation which we believe will
be of increasing importance. Also one must recognise that survey
data on expectations can often be used directly in structural equations
containing unobservable expectations (e.g. Pesaran 1985). Expecta-
tions variables are used widely in structural behavioural equations and
we have analysed the main estimation methods used in the applied
literature.

7

State-space models and the
Kalman filter

State-space models were developed originally by control engineers
(Wiener 1949, Kalman 1960) but are receiving increasing attention in
the economics literature. There is a number of advantages in repre-
senting models in state-space form. We -noted in Chapter 2 that the
likelihood function can be written in terms of the one-step-ahead
prediction errors ¥, and their variance f;. The Kalman filter when
applied to a model in state-space form provides an algorithm for
producing ¥, and its variance. Since many models (for example all
ARMA models) can be represented in state-space form, the Kalman
filter provides a convenient general method of representing the likeli-
hood function for what may be very complex models. Two types of
model that are especially amenable to representation via the Kalman
filter are unobservable components models and time-varying para-
meter models. In unobservable components models we observe y,
(say actual income) which we assume consists of an unobserved per-
manent component 7, plus a white noise error &;:

y=a+¢g

The Kalman filter provides an optimal updating scheme for the un-
observable #, based on information about measured income, as it
sequentially becomes available. With this interpretation the unobserv-
able components model provides a method of generating an expecta-
tions series for permanent income ,.

In time-varying parameter models we have

ye =X + &
where (y,, x,) are observables. The problem is then to estimate B, as
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it varies through time. It is clear that the unobservable components
model and time-varying parameter models are ‘non-standard’, that is,
one cannot apply ‘least squares’ procedures (e.g. oLs, Iv, GLS)
directly to the above equations. However, each of the above models
can be ‘rewritten’ in terms of two distinct types of equation (called
the measurement and transition equations) which together are called
the state-space form. The Kalman filter can be applied to the state-
space form equations to yield a set of recursive equations; the latter
are then used to generate a series for ¥ and its variance which will
contain unknown parameters to be estimated. At this point, the
Kalman filter recursive equations have completed the required task.
Now standard maximum likelihood procedures are used to estimate
the unknown parameters.

The Kalman filter is a rather versatile construct, but its derivation
may involve unfamiliar concepts to some readers. Therefore we ap-
proach the issues involved from different standpoints. In section 7.1
we motivate our discussion of the state-space form and the Kalman
filter recursive algorithms in terms of the modelling of expectations in
u learning environment. The technical aspects are introduced via the
Thell-Goldberger (1961) pure and mixed estimator in section 7.2 and
the ‘full’ Kalman filter equations are then examined from the stand-
point of Bayes theorem. Bayes theorem allows one to combine prior
information with the data to yield an optimal posterior estimator. In
fact, the Theil-Goldberger estimator is a special case of the ‘general’
updating formulae of Bayes theorem. In section 7.3 we examine how
the unknown parameters in the Kalman-filter formulae can be esti-
mated using maximum likelihood and in particular we consider time-
varying parameter models. In section 7.4 we give some practical
examples of the use of the Kalman filter in applied economics (see
Note 1).

7.1  Expectations and learning and the state-space form

In this section we wish to motivate our discussion of the Kalman filter
by interpreting it in terms of agents forming expectations. The predo-
minant paradigm for modelling expectations is the rational expecta-
tions hypothesis REH, see Chapter 6. It assumes agents act ‘as if’ they
know the true model of the economy (up to a set of white noise
errors); a rather strong assumption that some may find a little im-
plausible. As Friedman (1979) clearly points out, the information
exploitation assumption of RE, namely that agents use efficiently
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whatever information is available, is largely uncontentious. It is the
information availability assumption that many economists find objec-
tionable. For agents that are (Muth, 1960) rational their predictions
are equal to the conditional mathematical expectation of the model
and hence their forecast errors are independent of any information
available at the time the forecast is made; the latter is the error-orth-
ogonality property of re. In early New Classical models (e.g. Sargent
and Wallace 1975) if the parameters of the model alter (usually taken
to be the parameters of the monetary policy reaction function), ag-
ents are assumed to know the ‘new’ parameter values immediately.
The latter also applies to changes in the functional form of behavi-
oural equations. In later work (e.g. Cyert and De Groot 1974, Bray
1982), agents are assumed to know the true structure of the model
but are initially ignorant of the true values of the one (or more) of
the parameters.

The results of these studies broadly suggest that agents expecta-
tions do eventually converge on the Muth rational solution. However,
where agents operate with a set of possible models, then even if one
of them is the true model, there is no guarantee that the learning
process converges to the true model (Blume and Easley 1982). One
would expect this conclusion to apply a fortiori when agents are not
allowed the luxury of having the true model in their set of models, or
where the parameters of the model vary over time. In this type of
situation we have the added complication that agents, during their
learning process, generate outcomes which are contaminated with
‘noise’ from the learning process as well as ‘noise’ from the underly-
ing true model.

Consideration of the information availability assumption has led
critics of the ReH to label it unrealistic. However, such critics have
not been able to provide an alternative ‘optimising’ framework to RrE,
particularly one that is empirically tractable. Friedman (1979) goes
some way along this route when he advocates that given the true
model y, = x, + u, (u,, white noise), agents may sequentially update
their estimate of the fixed true parameter vector f as more inform-
ation on (y,, x;) becomes available (e.g. time-varying parameter
models). Using the Kalman filter we extend Friedman’s framework to
include the case where (i) agents have some prior information about
B (at time ¢ = 0) and (ii) B is allowed to vary stochastically. Friedman
alludes to the latter outcome (Friedman 1979, pp. 33-4) when he
discusses the possibility that agents may perceive that a good affproxi-
mation to the complex ‘true’ model may be a simple (linear) model
but with time-varying parameters. Such a model may be analysed
using the Kalman filter (Kalman 1960), and the familiar recursive
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least squares learning procedure is a special case of this more general
procedure.

The Kalman filter, although widely used in certain branches of the
engineering literature and by applied statisticians, is only just emerg-
ing as a possible useful tool of the applied economist (see, for
example, Lawson 1980, Harvey et al. 1986, Cuthbertson and Taylor
1986). For certain models the Kalman filter may be viewed as mi-
micking a learning process by agents. For example, the Kalman filter
may be interpreted as a form of adaptive expectations where the
adjustment parameter is updated each period, based on new inform-
ation. This formalises Flemming’s (1976) idea of a ‘change of gear’
when forming expectations. It is well known that adaptive expecta-
tions is optimal (in the sense of producing unbiased forecasts) only
when the data generation process is IMA(1,1) or ARIMA(1,1,1). The
Kalman filter, however, is optimal under more general conditions,
and in fact produces minimum mean square estimators (MMse) under
normality. Therefore agents, given the assumed information set, do
not make systematic forecast errors. The Kalman filter therefore
confronts directly the question of how agents learn about the time
series behaviour of economic variables; agents are not assumed to
know instantaneously the ‘true’ model but they do use information
optimally (or efficiently). The Kalman filter can also be applied to
unobservable components models and it therefore formalises the
‘signal extraction problem’ presented in Lucas’s (1972) derivation of
the ‘surprise supply function’. Note that the Kalman filter does not
provide a panacea, it provides merely a tractable alternative to the
‘extreme’ information assumption of the REH, based on optimising
behaviour in the face of uncertainty about the evolution of the para-
meters of the assumed model.

The rest of this chapter is organised as follows. We begin with a
discussion of fixed coefficient adaptive expectations models that
proved so popular in the empirical literature prior to the advent of
rational expectations in the 1970s. We then present a simple adaptive
expectations model in which the adaptive coefficient varies through
time. Our final example utilises the signal extraction problem that an
individual faces when trying to estimate his permanent income say,
faced only with information on his measured income. This stochastic
trend model embodies sequential learning in a time series context and
allows us to demonstrate how this model is represented in state-space
form: a prerequisite for understanding the application of the Kalman
filter in more general situations.

«
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Fixed coefficient-adaptive models

It is now well understood that if (the logarithm of) measured income
Y is accurately represented by an IMA(1, 1) process

Ve=Ye1+ & — (1 - O)g (7.1)
then the optimal updating equation for expected income,

v\w\TH = NC:_DTHY where Q,_; = A%TT mT\.v\.uH:.s
is (see Note 2):

Yiji-1 = Yi-yi-2 = O(y1 — yi-1/i—2) 7.2)

This is nothing more than first-order adaptive expectations with the
fixed updating coefficient related to the moving average parameter in
the data generation process. The above approach is easily generalised
to include a ‘change-of-gear’ (Flemming 1976). If the growth rather
than the level of income is IMA(1, 1) then first-order adaptive expecta-
tions applied to the growth in income is optimal. ‘Optimal’ in this
context is taken to mean that expectations are correct on average
(and have minimum mean square prediction errors). Although
Granger (1966) finds that a number of economic time series arc
adequately represented as IMA(1, 1) processes and therefore fixed coef-
ficient adaptive expectations are optimal, nevertheless the model does
not allow agents to learn slowly about their new environment as new
information becomes available. For these adaptive models to be op-
timal, when the data generation process undergoes a ‘change of gear’,
agents must instantaneously acquire knowledge of the ‘new’ moving
average coefficient. Thus ironically, the above adaptive expectations
model also requires a rather extreme information availability assump-
tion when the stochastic behaviour of a variable alters.

Variable parameter adaptive expectations

Consider an agent who has sequential observations on his measured
income (in logarithms) y, which he views as consisting of an unob-
served permanent component 7, and a zero mean (unobserved) ‘sur-
prise’ element s,. The agent has an initial or prior estimategof per-
manent income 7, and wishes to update this estimate as information
on measured income becomes available. Clearly to ‘solve’ this prob-
lem the agent must have some view (or model) of how permanent
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income varies over time. For expositional reasons we assume the
transition equation describing the evolution of m, is a random walk.
Our final assumption is that the agent perceives that a fraction k, of
the surprise s, in measured income, constitutes permanent income
and (1 — k,)s, is considered to be an addition to transitory income.
Note that the coefficient k, varies through time and for the moment
we assume the value of k, in each successive period is known by the
agent. (The Kalman filter provides a method of estimating and optim-
ally updating k, as we see in section 7.2). The model assumed by the
agent is therefore (see Note 3):

i

y,=m, + (1 = k,)s; ‘measurement equation’  (7.3)

mo=m_ + ks, ‘transition equation’ 7.9
with
E 5, =5{-1=0; and E(ms,-j)) =0 (j=0, )

The measurement equation has measured income y, as the sum of
permanent 7, and transitory income (1 — k;)s;, while the transition
equation represents the assumed evolution of 7, through time.

Substituting (7.4) in (7.3):

Ye =T + 5 (7.5)

Multiplying (7.5) by k, and substituting from (7.4) for ks, we obtain
the updating equation for 7, in the form of a variable parameter
adaptive model:

o=y + k(ye — mi-1) (7.6)

Thus given an initial estimate of permanent income 7y, knowing k,
and y,, the updating equation (7.6) can be used to give all future
values of permanent income. The analogy with the fixed parameter
adaptive model is completed by noting that the equations (7.3) and
(7.4) may be written as an IMA(1, 1) model with a time-varying moving
average coefficient. Equation (7.3) minus itself lagged one period
yields:

Ay, = Am; + (1 = kp)s, — (1 — k-1)si1 (7.7a)
Substituting for A, from (7.4) we obtain our IMA(1, 1) representation:
Ay, =5, — (1 = ki-1)$11 (7.7b)

In using the updating equation (7.6) for 7, the key missing element is
how the agent forms and updates the coefficient k, which turns out to
be analogous to the ‘Kalman gain’. To demonstrate some preliminary

«
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intuitive insights into how agents estimate the Kalman gain we con-
sider the example of the generalised stochastic trend (GsT) model.

A.nmam.ﬁ:w& stochastic trend model

Instead of assuming that the agent knows k,, the proportion of any
surprise s, that accrues as permanent income, we adopt the weaker
assumption that the shocks to permanent and measured income are
statistically independent. In addition we assume that the growth in
permanent income Aw, is time varying with parameter y,_; which
itself evolves as a random walk (Harvey and Todd 1983). Hence the
agents best approximation to his stochastic environment is assumed to
be characterised as:

y=m+¢g (7.8a)
T =M1+ Y1+ & (7.8b)
Yt = Yi-1 + @ (7.8¢)

which may be represented in matrix form (known as the state-space
form) as:

y=x'B, + ¢, Measurement equation (7.9a)
(t=1,2,...n)
B:=TBi-1+ 1, Transition equation (7.9b)
where
x' =[1, 0]
Be=(m, v.)
N 1
= 1)
N = (&, w,)

&, ;, w, are zero mean, error terms independent of each other and
Var(g,) = o%; Var (§,) = Qmw Var (0,) = 02,

In the measurement equation, observed data on income y, again
mo:mmwa of a permanent 7, and transitory component ¢,. The grewth
in permanent income Am, is assumed to equal a stochastic growth
coefficient y,_; (plus a random error term, £,) and y,_; itself evolves
as a random walk. The system (7.9a) and (7.9b) may appear a little
strange to applied economists used to dealing with the usual fixed
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regression parameter model. In this unobservable components model
only y, is observed and the agent faces a ‘signal extraction problem’
to determine how much of any change in y, can be attributed to a
change in permanent income (the ‘signal’) and how much is due to
transitory income &, (the ‘noise’), (Lucas, 1972). However this par-
ticular unobservable components model may be given an intuitive
interpretation in which y, and 7, are perceived by the agent as being
generated by a stochastic trend. This is easily seen by noting that
given an initial estimate of 7, successive substitution in (7.8b) yields

mo=m + M_ Yi-1 + M & (7.10)
i= =
und hence:
v = AS. + M SLV + u, (7.11)
where
:,!Mﬁ\+mhuww+m~

=
To see why (7.10) and (7.11) embody a stochastic trend, consider the
special cane where w, = 0 (for all ¢). From (7.8¢c), y, = y,_, = v say,
henoe (7.10) and (7.11) reduce to:

Yo=m+ yd +u (7.12)
=7y + yd + Nw AQ.HUV

Equations (7.12) and (7.13) are global linear trend models with mov-
ing average error terms (see Note 4).

wo:_q::.m to the signal extraction problem, assume for simplicity
that w, = 07, = 0 and that the agent knows the values of o2 and Qm.
Assume also that with information on y up to period ¢t—1 (which
could be ‘time zero’) he has formed a prior estimate of the unobserv-
able, permanent income for time ¢, namely 7,,_;. The key question
is how the agent optimally uses information to update his estimate of
7 when new information on y, arrives. To gain some intuitive insights
consider the two polar cases 62 =0 and 0% = 0. In the first case there
is no measurement noise (y, =m,) and we would expect all of his
forecast error

“w=0 - WSLV = - ﬂn\.uuv
to be included in his estimate of permanent income, that is

Ty = MWy + (e = w&\TC
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The converse applies for an 0, and here 7, = 7,/,_;. In the inter-
mediate case (02, Qm # 0) the proportion of the forecast error added
to 7,1 will depend upon the agents’ perception of the relative
variance of o2 and Var (@¢/—1)- The latter is equal to the sum of his
prior estimate of the variance of 7 (say, 03) and his sampling error
for m, (i.e. o). Hence, if the updating equation is

T = a1 + k(y — w&\uluv (7.14)
then we might expect
k; = (o§ + od)/(0? + (o} + o})) (7.15)

It is easily seen that k =1 for 02 =0 and k =0 for 0} = 03 = 0. Thus
our intuitive arguments have led us to interpret our model both in
terms of a stochastic trend and as a variable parameter partial adjust-
ment model. The adjustment parameter k, is known as the Kalman
gain and equation (7.14) will be seen to be the updating equation for
the ‘unobservable’ permanent income variable. Given an initial esti-
mate 7 and knowing k,, equation (7.14) provides a recursion for-
mula for updating 7, as new information on y, arrives.

Having provided an intuitive interpretation of our unobserved
components model we now turn to our main task which is to derive
the general equations for the Kalman filter. These equations provide
a general formula for the Kalman gain and updating equations for a
wide variety of possible models.

7.2  The econometrics of the Kalman filter

The econometrics of the Kalman filter can appear rather formidable
to the applied economist when reading the engineering or statistical
literature. One of our aims in this section is therefore to present the
econometrics of the Kalman filter using conventional procedures. We
begin by deriving the formulae for one-step-ahead prediction errors in
the general linear model. These results are then used to reinterpret
the Theil-Goldberger ‘pure and mixed’ estimator in terms of a ‘one-
shot’ Kalman filter. The prior ‘guesses’ for the parameters and error
variances are combined with the sample data to yield an ‘optimal’
‘posterior’ estimator based on both sets of information. We then use
the stochastic trend model as a concrete example with which
develop the general formulae used in the Kalman filter. The Kalman
filter is then seen to be a useful algorithm to generate the variables
needed in the (prediction error decomposition of the) likelihood
function: the key variables are the one-step-ahead prediction errors
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¥, and their variance-covariance matrix (F, or f;). We then present
an alternative derivation of the Kalman filter equations in terms of
Bayes theorem and maximum likelihood, which will reinforce the
(somewhat difficult) concepts involved, when dealing with the general
formulation of the state-space model.

Prediction in the general linear model

Given the true fixed parameter model

Y=XB+¢ (7.16)
where we assume a scalar covariance matrix:
e ~ N(0, V) = N(0, 6*I) (1.17)

and E(X'e) =0, X is(n X k); Y and € are (n X 1); Bis (k x 1).
The oLs estimator b, is BLUE:

by = (X'X)"'X'Y (7.18)
with variance—-covariance matrix:

Cov(bg) = Py = o*(X'X)™! (7.19)
and using (7.16) and (7.18) we obtain the familiar result

bg— B=(X'X)"'X'¢e (7.20)

Of particular interest given what follows is the problem of predict-
ing q ‘new’ observations Y, based on new information on X, where
X, is (¢ X k), and the estimator by,. We assume an unchanged
structural model over the forecast horizon:

Yi=X18+ ¢ (7.21)
& ~ N(0, V) = N(0 0%1,) (7.22)

where ¢; is (¢ X 1) uncorrelated with €. The prediction Y= X b is
an unbiased predictor of the values of Y in the forecast period. The
covariance matrix of the one-step-ahead forecast errors ¥, =Y, -7,
is:
F = Cov(%) = E(X (B — bo) + &1)(X1 (B —bo) + &)’
(7.23)
where F is (g X g). Substitute from (7.20) for (8 — b):

F = E(X{(Covbhy) X + €,¢)) = QNCDANCCLME + 1)
(7.24a)

“
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or F= Akaokm + d\nv A-N.NA&V

The variance of Y; around ¥, depends on the uncertainty in estimat-
ing the parameters in § (Cov(bg) = Py) and also on the intrinsic
uncertainty in equation (7.16), V; = ¢°1,.

If we have one additional observation on the x-variables, the X is
replaced by xi(1 X k) and Y, ¥ and F are scalars. Hence (7.24b)
becomes:

f = [x{Pox; + 0?] (7.25)

which we will use in our discussion of the stochastic trend model later
in this section.

Theil-Goldberger (1-G) estimation and the Kalman filter

The 1-6 pure and mixed estimator considers the problem of how best
to combine prior information on the parameter vector # and informa-
tion on B generated by our sample of observations. It is assumed that
the agent (econometrician) makes an initial informed guess concern-
ing the mean value of the true parameters B, denote this guess hj.
The uncertainty surrounding this prior ‘guess’ is summarised in the
‘guess’ about the prior covariance matrix, P§ Hence:

B = bt + wf (7.26)
of ~ N(0, P§) (7.27)

where wf is a vector of ‘prior’ error terms and P§ is the (possibly
non-scalar) non-diagonal prior covariance matrix. 8 is (k X 1), b is
known, P§ is the known (k X k) covariance matrix (often assumed
diagonal in practice (MacDonald 1988), or simplified in some way.

b§ ~ N(B, PY) (7.28)

Hence, the agent has both prior and sample information, the latter
consists of Y which is (n X 1) and X which is (n X k), which may be
represented:

) = ()2 () &=NG i
orY,+ X0+ ¢, (7.30)
where Y,= Aw\mv
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%= (7)

Sumﬁ*n,vuA% (e w@?ﬁTA% w.wv

(7.31)

We have assumed zero covariance between the prior estimation error
o§ and the error term ¢ in the regression equation. (In addition we
assume zero covariance between w§ and X and ¢ and X.)

The Theil-Goldberger pure and mixed estimator may be viewed as
‘one-shot’ application of the Kalman filter which provides an updating
equation for B and its covariance matrix based on the prior and
sample information. The posterior estimates of 8 say b; is BLUE and
its covariance matrix we denote Cov(b;) = P;.

GLS applied to (7.30) yields:

by = (X Vil X,) U XWVE'Yy) (7.32)
with covariance matrix
Cov(by) = P, = (X,ViiXx,)™! (7.33)

Equations (7.32) and (7.33) may be interpreted as updating equations
for B and its covariance matrix although this is not apparent from the
normal textbook GLS formulae above. However, it is shown in the
appendix that (7.32) and (7.33) can be rewritten in the intuitively
appealing form:

P{l=(PH) !+ (X'V71X) (7.34a)

P, =(I - KX)P} (7.34b)

by =b} + K(Y — Xb}) = b+ KV (7.35)

where K = P§X'F! (7.36)
F = Cov(¥) = (V + XP{X") (7.37)
v=Y - Y = (Y - Xb}) (7.38)

Equation (7.34a) is the updating equation for the inverse of the
covariance of b;. The (k X k) inverse of the posterior covariance,
P71, is simply the sum of the inverse of the prior covariance (P¥)~!
and the sample covariance (for the ‘unrestricted’ GLS estimator) that
is (X'V71X). Equation (7.3a) may be rewritten in terms of the
Kalman gain and is given in (7.34b).

Equation (7.35), the updating equation for 8, expresses the up-
dated estimate b, as the sum of the prior estimate b§ and the product
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of the Kalman gain K and the error ¥ in forecasting Y using the prior
estimate b§. The Kalman gain depends upon ‘relative variances’
namely the variance of b§ (= P§) relative to the variance of the
‘one-step-ahead’ prediction error Cov(¥) = F = (V + XP}X").

We are now ready to present the complete state-space formulation
which underlie most applications of the Kalman filter that are likely
to be used by applied economists. The increased generality is pro-
vided by relaxing the assumption of fixed underlying true parameter
vector f; the parameter vector is now assumed to vary through time
but in a systematic way. It is this additional complexity that allows
the Kalman filter to be used in estimating unobservable components
and variable parameter models (which may be used to generate
‘plausible’ expectations variables without invoking the extreme RE,
‘axiom of correct specification’).

In the Theil-Goldberger model, B is non-stochastic and the esti-
mator b; is ‘optimal’ where optimal is synonymous with BLUE.
However, when B is stochastic in the sense that it is randomly drawn
from a prior distribution before the observations on Y are generated,
then b, retains its ‘optimal’ properties in that it is unbiased and is the
minimum mean square estimator of 8 (given that Y is multi-variate
normal). Thus with B stochastic, the Kalman filter will provide ‘ra-
tional’ predictions. The agent utilises information at time 1 — 1 to
provide unbiased estimators of 8, which have minimum variance. As
new information on Y at time ¢ arrives, the agent combines this with
his current priors to optimally update his estimate of both the para-
meter vector B and its covariance. It is in this sense that the Kalman
filter may be viewed as mimicking a sequential optimal learning
process. The predictions are ‘rational’ in the sense that the agent
optimally exploits current and past information when learning about
his stochastic environment.

State-space formulation and Kalman filtering

In developing the Kalman filter recursion formulae, conceptually, we
move from our ‘one-shot’ Theil-Goldberger formulation to one where
the estimates are updated each time period. Thus, in place of by, P,
we have prior estimates by and Pyj based on information at t= 0
and we use these to provide updated estimates b;, P; as information
on the scalar y, for t = 1 becomes available. The recursion formulae
then provide estimates b, , P,y (t=1, ... n). In order to
update our estimate of the (k X I) vector § in each period, we need
to know the stochastic process by which g alters through time. This is
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given by the so called ‘transition equation’. Our complete state-space
model (see Note 5) is:

y=x'B +¢

(t=1,2,... n) Measurement equation (7.39)
B:=TB,—1 + Ry, Transition equation (7.40)
bo=Bo+ W Prior estimate (7.41)
g, ~ N(0, 0?)
n. ~ N, Q)
Yo ~ N(0, ¥)

where x" is (1 X k), B, is (kx1): T, Q, ¥y, R are (k X k) and we
take V = 0°1.

We have already demonstrated how the stochastic trend model
(7.8a-7.8c) may be represented in state-space form (with R = I).
Equation (7.41) represents our initial guesses (or starting values) for
the parameter vector f and its covariance matrix W.

It is important to keep in mind what information the agent is
assumed to possess. At t =0, he has an initial fixed estimate by of
the true parameter vector By and its covariance matrix, that is
bo~ N(By, Wy). He knows the structure of the model in the form of
the fixed vector x, fixed matrices Q, R, T and the fixed variance of
the measurement equation o?. The problem the agent faces is to
utilise the information contained in the sequential data y, to update
optimally his estimates of B, and its covariance matrix.

If we can reduce the three equation system (7.39-7.41) to the
Theil-Goldberger formulation then we can apply the appropriate GLs
formulae to produce optimal posterior (or one-step-ahead) estimates
of B and its covariance matrix; these constitute the Kalman filter
updating equations.

Given b, the unbiased predictor of 8, is

by = Thy (7.42)
The covariance of b, around the true value S, is defined as:

Cov(bip) = Pip = E(b1p — B1) (bip — B1)’ (7.43)
Substituting for B, from (7.41) in (7.40) and using (7.42):

(B1 — bip) = —Tyo + Ry = wy, say (7.44)

The prediction error in forecasting B;, namely (bip— By) is a
weighted average of the ‘prior uncertainty’, v, and the uncertainty in
the transition equation for 8, namely, 7;. From (7.43) and (7.44) the
covariance of this prediction error is the (k X k) matrix Pyp:
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Piyp = E(wywi) = (TP,T' + RQR’) (7.45)

Equations (7.42) and (7.45) are the prediction equations for t = 1, for
the state vector B; and its covariance matrix, which may be calculated
‘without any reference to the observations y,. Suppose the agent now
receives a single observation y;. The sample and prior information
may now be arranged as in the Theil-Goldberger model:

@“\cv - S Pt Awﬂv (7.46)

g ~ N(0, o)
w; ~ N(0, Pyp)

Comparing (7.46) with our Theil-Goldberger formulation (7.29) we
have:

where

b}
Py

bip (7.47a)
Py (7.47b)

]

With the above substitutions, we can use the updating formulac
(7.34) to (7.38) to calculate the (k x 1) vector for the Kalman gain
for t=1: ,

Ky = PypxFi' = Pypoxfi! (7.48)
where in this model F; is a scalar, denoted fi:

Fy = f1 = (x'Pypx + 0?) (7.49)
The optimal updating equation for b, is:

by = bip + Ki(y1 — x'byp) (7.50)
with (k X k) covariance matrix:

Py = (I - Kix")Pyy (7.51)

The updated values b,, P; are then used in equations (7.42) and
(7.45) respectively, to generate new predictions byn and P,j. Esti-
mates b, and P, are then updated sequentially using (7.48) and (7.51)
as information on y, becomes available. The Kalman filter also gengr-
ates one-step-ahead prediction errors for y,, that is, ¥, =y, — y tfi-1
and their variance f, (a matrix if we have a vector of observations on
a set of variables at time f) which can be used directly in the
prediction error decomposition form of the likelihood function and
estimated by maximum likelihood (see section 7.3).
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We have now demonstrated that the Kalman filter may be interp-
reted in terms of conventional least squares procedures. Furthermore,
the updating equation for b may be interpreted as adaptive expecta-
tions with a time varying parameter K;:

b, = by + K(y: — R-F\TD (7.52)
where

K, = Py axf;! (1.53)

fi=(x'Py1x + 0?) (7.54)

K, may be viewed as representing the degree of uncertainty surround-
ing the new information y,. For any given forecast error
¥ = (y; — x'b;—1) the adjustment to b, is smaller the larger the
variance of past forecast errors, since

fit = (Var(m) .

Throughout we have assumed that the variance—covariance mat-
rices are known to the agent, and to the econometrician. In the
practical implementation of the Kalman filter one can either assume
‘plausible’ values for these and conduct a sensitivity analysis (e.g.
Lawson 1980) or the covariance matrices may be estimated (see
below).

Two further points need to be mentioned. First, at any point in
time the prediction equations (7.42) and (7.45) can be used to gener-
ate multi-period predictions based on information at ¢. For example

bisny = T'b;, and  Fiinpe = X brapye

and the latter can be used directly in multi-period, forward-looking
models (e.g. Sargent 1979, Cuthbertson and Taylor 1986) of the form:

Z,=MZi o+ M Mﬂmq?ﬁ (7.55)

where .., replaces y i/

Second, an agent at time ¢t = T may wish to use all past sample
information to provide a ‘smoothed’ estimate of the unobservable
(permanent income) w, (the first element of B;) rather than utilising
his current one-step-ahead prediction. The updating equations (7.50)
and (7.51) can be used in reverse to obtain b,yr and P,r. These
smoothed estimates of 7, could provide a proxy for permanent in-
come (see below).

-
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Some special cases

We now consider how recursive least squares and our intuitive results
on the stochastic trend model may be viewed as special cases of the
Kalman filter equations derived in the previous section.

Our simple unobservable components model (with y,_, = 0) is:

ye=m + & (7.56)

m=ma+ & (7.57)
In state-space form, the model has

X=T=18,=m,V =0%,Q=0%,¥, =0}l (1.58)
Substituting (7.58) in the prediction equations (7.42) and (7.45):

Ty =Me)p-1 (7.59)
Pip= 0%, = 0} + o} (7.60a)
and the updating equations using (7.48)—(7.51) are:
M = my-1 + k(Yo — Teje-1) (7.60b)
o =(1- FvQW\TH (7.61)

k; = QW\TZQW\T_ + QWVL = AQW + vaQQm + va + QWVL
(7.62)

which confirm our earlier intuitive ideas on the updating equation for
7, given in equations (7.14) and (7.15).

In recursive least squares an initial ¢ — 1 (> k) observations can be
used to provide an initial estimate b,_; with covariance matrix P,_;:

b1 = (X' X)7H (X'Y)
P, = (X' X)74
The oLs model may then be represented in state-space form as
yo =xiB+e (=12,...n)
B: =Tpi-1+ Ry,

with &, ~ N(0, 0?) .
n =0, Q,R=0
T =1

and vo = v?- -~ ZAETT WT-v
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The prediction equations are then extremely straightforward:
F\Tu =b,,
Py1=P,, = QNA\M\PMJMM_

while the updating equations, given the scalar y, and the vector x,
are:

b,=b,1+ Ky, — .x“?\va
P =(- N?«UN‘..\NL
where
K, =X'X)2if
and
f; = Var(%,) = o*(1 + x}(X' X)) 4x,)

The series ¥,/ \w\n is also referred to as the ‘recursive residuals’ and
forms the basis for the CUSUM and CUSUMSQ tests for parameter
stability (see Chapter 4). Note that recursive least squares is not a
variable parameter model since we do not assume a specific model of

‘how B varies through time since we believe the true B is constant.

The Kalman filter is merely an algorithm for ‘repeating’ OLS as we
extend the sample. We expect to see S settle down to a constant
value as more data is added, since the underlying ‘true’ model has 8
as a constant in the population.

General form of the Kalman filter using Bayes theorem
We now wish to generalise the equations for the Kalman filter and

present the derivation in terms of Bayes theorem. Again it is impor-
tant to focus on what is known (to the econometrician) and what is to

be estimated. We have a set of m state variables = (81, B ... Bm)
which are not observed directly and instead of a single series we have
n measurement variables y, = (y1; . .. yp,) for time periods t =1, 2, 3

... T, which are observed directly. The model then has two distinct
blocks.

The measurement equation for time ¢ is:
y. = X,B, + & t=1,2...T (7.63)
&~ N0, V)

where X, is an n X m known matrix and &, is an n X 1 vector of
error terms with mean zero and covariance matrix V,.
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As mentioned above, while the values of B, are assumed to be
unobservable we do need to make some assumption about the me-
chanism which governs the generation of f,. This takes the form of
the transition equation:

B:=TBi-1 + Remy (7.64)
n.~ NQ, Q))

where T, and R, are again known m X m matrices and 7, is an
m X 1 vector of disturbances with mean zero and covariance matrix
Q..

We assume 7, and g, are uncorrelated (for all ¢), that B, ; is
independent of the error term 7, in the transition equation and finally
that B, is uncorrelated with the measurement error &,:

E(nig;) =0 forall i, j
E(Bi-1,m) =0 (7.65)
E(B:e;) =0

Equations (7.63) and (7.64) together make up the state-space model.
At first sight these two equations look fairly standard but the time
subscripts must be intepreted very precisely. Equation (7.63) contains
only current dated values of B, while (7.64) contains only a single
lagged value, B,_,. These restrictions do not rule out more complex
dynamic models but they do mean that such models must be re-
parameterised into the state-space form of (7.63) and (7.64).

Some simple examples may make this clearer. Suppose we have an
AR(1) model in the scalar y,.

V=ay,1+n

Then the state-space form is:
y. = B (measurement equation) (7.66)
B: = afi—1 + 1, (transition equation) (7.67)

where X, =1, T, = a, an unknown scalar constant, R, =1, &, =0.
Consider next the AR(2) model:

Y=oyt @y + 1 .

Here the reparameterisation requires the creation of an additional
state variable and the state-space form is:

y: = B (measurement equation)
(7.68)
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B
Ba: = Bii—1 (transition equation) (7.69b)

a1B1-1 + a2f5,—1 + 71, (transition equation) (7.69a)

In matrix form we have:

X, =(1,0) B: = (B Bar) M = (Me> M2r)
_ (™ [£%) _ 1 0

S IR )
The above may appear a little strange but clearly such a reparameter-
isation allows the model to be expressed in state-space form. In the
second case note that extra lags (y,—,) in the original model are dealt
with simply by defining extra state variables, B, = (B, B.). Note
that although T,, R, have time subscripts, in many econometric
applications these are constant matrices/vectors. The Kalman filter
assumes T is known; estimation of 7 which contains the unknown
parameters (o, a;) is discussed in section (7.3) on maximum likeli-
hood estimation.

The state-space form which is a first-order dynamic system (equa-
tion (7.64)) has quite wide relevance in mathematics generally. For
example, the analysis of the stability of a dynamic system by the
calculation of eigenvalues is carried out usually on the state-space
form of a model. One final point which is worth bearing in mind
when considering the relationship between structural economic mod-
els and the state-space form is that the latter is essentially a type of
reduced form of the structural model. However it does not allow
simultaneous interactions between the observed variables and so if
the structural form is over-identified it is not possible to use the
state-space form to represent uniquely the structural parameters of
the model.

The Kalman filter

The intuition behind the Kalman filter is fairly simple. We have an
initial guess of By and its covariance P,. In (7.63) and (7.64) we
know the values of T,, X;, R,, V, and Q, and further, we have
observations on y,. With this information the Kalman filter provides
an ‘optimal’ forecast of the unobserved B, (t =1, 2, T). The notion
of ‘optimal’ needs to be made a little more specific. Kalman and Bucy
(1961) use the minimum mean square error (MMSE) criterion as their
definition of optimality. However, if we make the additional assump-
tion that the error terms (&,, 7,) are normally distributed, then the
Kalman filter also provides the maximum likelihood estimator of S,.

A
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The latter approach is intuitively appealing and we present the deriva-
tion of the Kalman filter from the perspective of maximum likelihood
using Bayes theorem.

We have an initial estimate of §,-; namely b,_; (at ¢t — 1 =0 say)
and an initial estimate of its covariance matrix P,_;. The unbiased
predictor of B, based on information at ¢ — 1, that is 8,,_, , is given
by the transition equation

Biji-1 = T:Bi1 (7.70a)

We discussed earlier, see equation (7.45), the estimate of the cova-
riance matrix based on information at ¢ — 1:

Cov Qwa\“lgv = mu“\TH = (T,P,.,T; + R.Q/R}) (7.70b)

Equations (7.70a) and (7.70b) are the prediction equations for the
state vector B, and its covariance which may be calculated without
any reference to the observations y,. We can use this information at
t—1 to predict y, at time ¢, and the covariance matrix of the
one-step-ahead prediction errors F;:

Yijr-1 = X (Brj—1
The one-step-ahead prediction error ¥, is
v, = 5 = Y1
with covariance matrix:
F, =Cov(y,) = (X Py 1 X; + V) (7.70c)
We can now state the probability density functions for ,, €, and y,:
p1(B;) = Crexp[-0.5(8; — F\THYAwN\T_VLAF = By-1)]
(7.71)
Coexp[-0.5(y, — X, BV (y: — X.B)]  (1.72)
Csexp[-0.5(y, - N%wn\a..av\ﬁnﬂc: =X B1/r-1)]
(7.73)

where C;, C; and C; can be evaluated but are complex and add
nothing to the present exposition.

Now the ‘optimal’ estimate of B, is taken to be that value whiche
maximises the conditional probability of 8,, given the observed values
of y,. As B, and &, are uncorrelated their joint probability density
function is simply

P4(Bis €) = pi(B:).p2(ey) 7.79)

pa(€,)
p3(yr)
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It is also possible to show that the joint probability density function of
B, and y, is

Ps(Bes yo) = pa(Brs €) = P1(B)-pa(y: — X.B:) (7.75)

Finally using Bayes’ decision rule we can state the probability density
function of 8, conditional on y, as:

pe(B:/y:) = p(Be» y)/Pr(y,)

= p1(By)-p2(y: — X.B:)/p3(y:) (7.76)

and it is this quantity which we wish to maximise by a suitable
‘estimate’ of B,, which we denote b,. The first- and second-order
conditions for a maximum are that

3pe(Bilys)
————— =0 and
3B: A
Now differentiating Q 76):

3ps _ 1B =% mmn [p2(y: — X.B)] + —wm.. EZFV_ENAS - X.B:)

3B p3(ye)
=0 7.7

is negative definite.

mh%mn_v\b_

which implies that

[p1(B)] =7 mp [p2(ye — X:B)]

[P1(B)IP2(y: — X:B)]

m?
(7.78)
Using (7.71) and (7.72) respectively we have:
3[p1(B))/3B: = —Piji-1(B: — Bue-1)P1(B) (7.79a)
3lpa(y: — X B)VRB: = X Vi(y: — xB)p2(y: — X.B1)]
(7.79b)

Substituting (7.79a) and (7.79b) in (7.78) and rearranging:
N‘:\wuqn - NE%LV = W%IHA? - v%lb (7.80)
Rearranging terms we get
b, = G%L + _HWﬂ..H + NU\MHNLLN:\MXS - NB‘_TC
(7.81)

«

Maximum likelihood and the Kalman filter 213

or by defining an updating matrix P, as

= (Pl + X\vilx )™ (7.82)
then (7.81) is rewritten as
v. = W%L + W.\M\“«\“A%. - N.B;TC (7.83)

Equation (7.82) may be put into a slightly more convenient form by
using the matrix inversion lemma (see Harvey (1983) page 118) to
yield an equivalent formula:

P, = WN_TH - Wn_ulknﬁ.‘iuﬂ_ﬁ._?ﬁ (7.84)
and this may be substituted into (7.83) which upon rearranging gives
= v%i + muu_TTNq:u“lHQ“ - NK\:_TC (7.85)

Equations (7.84) and (7.85) are the standard updating equations of
the Kalman filter. The filter works recursively through time: given an
initial estimate of the state B,_; and the covariance matrix P,_, we
can form predictions of B, and P, as new information on y, becomes
available. The one-step-ahead prediction errors ¥, = (y, — X b, |)
and their covariance F,, can then be used as an input into the
prediction error decomposition of the likelihood function.

7.3  Maximum likelihood and the Kalman filter

Let us turn now to a specific practical example. Consider using the
Kalman filter and the state-space form to estimate the AR(2) model
above. When we derive the prediction and updating equations for the
Kalman filter we assume the covariance matrices (Q,, V,) are known
as are the matrices X,, T, and R, and we have observations on y,.
In our AR(2) example we will assume Q and V are fixed scalar
covariance Bmﬁdoom @ = QQN V = 0%, and we noted that T =
(a1, @;). Clearly, 02, o2 and T are not known, these are precisely
what we wish to estimate. (Note that X, and R, are fixed and
known.) However, in using the Kalman filter we can assume any
initial values for a;, as, Qw and o2 and derive recursive values for b ®
P, and ¥, conditional on these initial guesses. Hence, these V,, F,,
Q., V, and of course y, can be fed into the prediction error decom-
position of the likelihood function and a suitable Bmx_ﬁ_mm:on rou-
tine used to choose that combination of o, a;,, Qw, o2 that maximises
the likelihood. The Kalman filter here merely acts as a useful
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algorithm to yield the likelihood function. This procedure is summar-
ised in Figure 7.1 for our AR(2) model.

What is known and fixed (e.g. X,, R, for our AR(2) model)
throughout the maximisation procedure and what is to be maximised
(ie. Q,=0%l, Q,=02l, T,= f(a;, a;)) varies depending on the
problem under consideration. But the procedure remains the same.
Once the model is cast in state-space form and starting values pro-
vided, the Kalman filter generates the inputs to the likelihood func-
tion which can then be maximised by the numerical optimisation
procedures described in Chapter 2. This makes the Kalman filter a
particularly powerful tool, as it is possible to estimate both the
unobserved part of a model (such as a time-varying parameter) or an
expectations variable (e.g. stochastic trend) plus the parameters of
the system, (e.g. the variances) in one operation.

Given A7 = (Ty, X, R, Vi Q
\

> Run the Kalman fitert =1... T
Derive prediction errors v,

Y

Calculate the likelihood function
conditional on the initial

Choose new values of T;
V, = o?land Q = o?lto increase

the likelihood value guesses for the unknown parameters
A Y
No - Is likelihood function
atamaximum?
Yes
Y

Stop, T, Vi = 62I, Q = c3lare
the ML estimates

Figure 7.1 The logical structure of maximum likelihood estimation with the
Kalman filter.
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Smoothing

We have discussed how the Kalman filter yields ‘optimal’ predictors
of the state vector b, ,,—; based on information at t—1. The Kalman
filter may also be used to produce smoothed estimates. These are the
best estimates of B,, given all information, t=1, 2, ... T in the
sample. ‘Smoothing’ is a process whereby we ‘look back’ from ¢t = T,
to obtain best estimates for T — 1, T — 2, etc. On the last ‘round’ of
the Kalman filter we obtain b; and its covariance matrix Pr (at
t = T). The smoothing equations are recursive equations that work
backwards from by, Pr. If b,r and P, denote the smoothed estima-
tor and its covariance then the smoothing equations are:

byr = by + PH(bisyr — Ti11by) (7.86)
and

Pyr = P, + PPiiyr — Pryy)) PY (7.87)
where

P¥=P,T\py Py t=T-1,T-2,...1

and byt = br and Prjp = Pr. There is little or no ‘intuitive feel’ one
can give to these smoothing recursions. However, in terms of the
stochastic trend model, say for income y,, then smoothed estimates of
m, may be viewed as a measure of permanent income. In the case of
time-varying parameters, the smoothed estimates may be interpreted
as the best estimates obtainable with all the data available, even
though the parameters are still assumed to vary over time.

Time-varying parameter models and the state-space form

It is possible to cast many models in state-space form. We have
already demonstrated this for some ARMA models, the unobservable
components/stochastic trend model and for recursive least squares.
We now analyse how two forms of time-varying parameter model
may be cast in state-space form. The Kalman filter and the prediction
error decomposition of the likelihood function may then be used to
estimate these models. .
The state-space formulation (7.3) and (7.4) provides a very general
form of time-varying parameter model and in fact this may be further
generalised by adding a matrix of constant terms to the transition
equation. In practical applications such a general model will usually
prove unmanageable and some simplification is required. Consider
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first, the random coefficient model. Here the parameters have a
constant mean value but are allowed to stochastically deviate around
the mean. The state-space form is:

Random coefficient model
(a) Measurement equation
e=XB: + ¢ (7.88)

where B, is an (m X 1) unknown state vector: B, = (B, Bz ...
Bm), X, is (T X m) data matrix.

(b) Transition equations

B = ¢1 + My
: (7.89)
B = ¢2 + Nt
Note that ¢; = (i =1, 2, ... m) are constants and &, 7y, ... 1,, are

normally distributed error terms with zero mean, constant variance
(and are independent of each other). This formulation allows the
parameters to depart from their expected values of B;(i=1, 2, ...
m), but this departure is temporary, as at any point in time the
expected value of 8; is ¢;, a constant. So trend-like behaviour in the
parameters is ruled out. The transition equation is straightforward
and for m =2 is:

B:=Thi-1+ ¢ + U
where

T=0 O B=Gumd o=

Our second-time varying parameter model might be referred to as a
‘systematically varying parameter model’. In this case the parameters
follow a random walk, which is much less restrictive than the random
coefficient model. We have:

Systematically varying parameters
(a) Measurement equation

ye = X.B: + ¢ (7.90)

%
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(b) Transition equation

Bit = Bi-1 + M
: ; (7.91)

Bmi = Bmi-1 + Nime

This model allows considerable scope for systematic variation in the
parameters but note that B8;_, does not affect B; (i # j), so the T
matrix in (7.4) is assumed to be diagonal. It is also usual to assume
that Q, is diagonal. The assumption of diagonality may be easily
relaxed, although it is often not wise to do so. A further restriction in
(7.91) is that the variation in f§, is random rather than being caused
by some observed variable. If for example we have a prior belief that
the random parameter B;, is related to some observed variable y,
then we should build this into the estimation process. This can be
done by making one of the measurement equations non-stochastic. A
simple two-variable example will demonstrate this.

Measurement equation

Y = Xubu + &

(7.92)
Y2 = B
Transition equation
Bir = T1Ba-1 + My (71.93)

Bae = Bar—1 + M

Note that the second measurement equation in (7.92) has no error
term (or its variance is zero) so B, = y,,. In (7.93) B, is a function
of B,,_1, so by including the extra measurement equation we are able
to build the prior information about the dependence of B;, on y,,
(i.e. By = T1yy.—1 + M,) into the transition equation.

7.4  Applied work using the Kalman filter .

A model of the exchange rate

Our first example of estimation using time-varying parameters is a
model of the exchange rate. Hall (1987) presents a structural equation
for the log of the real exchange rate:
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E = AEfy1 + AE,y + Asr, + Agro
+ AsTB, + A¢TB,_, (1.94)

where E, is the log of the real (Sterling) effective exchange rate, r, is
the real interest rate differential between UK short-term rates and
world rates (proxied by the real three-month Eurodollar rate and the
real three-month Treasury Bill rate) and TB the log of the ratio of
exports to imports which is a measure of the real trade balance. The
theoretical derivation of this equation will not be repeated here, it
may be derived in a number of ways. For example, Hall (1987b) uses
a stock equilibrium model with government intervention whereas
Curry and Hall (1989) use a model which characterises capital mar-
kets as exhibiting both stock and flow elements in equilibrium. At a
pragmatic level it may even be thought of as a general encompassing
model of a wide range of models, for example if Ag = As = A; =0,
then the model reduces to the open arbitrage model (see Cuthbertson
and Taylor 1987, Chapter 5, or Cuthbertson and Gripaios 1992
Chapters 5 and 6).

Earlier work estimated (7.94) under the Rational Expectations
Hypothesis (ReH) using the errors in variables (1v) methods described
in Chapter 6 for the expectations variable E¢,;. Here we concentrate
on constructing a learning model for the expected exchange rate
which has time-varying parameters. We can then use the forecasts of
E,., as inputs into the structural exchange rate equation (7.94).

We may rearrange (7.94) to give

w+~ = wmma + wmmuln + mu~.~ + whﬂ~l~
+ BsTB, + B¢TB,_, (7.95)

Hall (1987) assumes that the reduced form equations for r.and T,
are:

re= Ci(L)r,—1 + Co(L)GDP,_1 + C3(L)P,_4 (7.96)
TB, = Dy(L)TB,_; + Dy(L)GDP,_; + D5(L)OP,_,
+ Dy(L)E,_, (71.97)

where OP is the log of real oil prices, P is the rate of domestic
inflation (i.e. the change in the log of the RPI) and Gpp is the log of
the real output measurement of GDP. C;, D; are polynomial lag
operators.

Hall (1987) then demonstrates that equations (7.95)-(7.97) yield
the following equation for the evolution of the exchange rate:

(E, - E, 1) = B, + B, (OP, ; - OP,_ ;) + Bj(r,—2)
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+ wSAWNTN - ~.uTuv + B4(GDP,_; — GDP,_3)
+ wm.AﬂTN - Tw,v + mim\.“lm Q.gv

Because equations (7.96) and (7.97) are ‘rules of thumb’ used by
agents when forecasting 7, and TB,, Hall assumes the parameters are
likely to be time-varying and hence the B; coefficients in (7.98) have
‘t> subscripts.

Note that all lagged information is dated ¢ — 2 or greater so that
when we forecast E, . in (7.95) the information set will be dated at
t—1. The time-varying parameters are assumed to be generated by a
random walk:

By = By—1 + M (7.99)

The measurement equation is (7.98) with y, =(E, — E,_;) as the
dependent variable and the known X, matrix consisting of the RHS
variables in (7.98). The state vector B, is the vector of time varying
parameters B; (i=0, 1, 2, ... 7) and the transition equation(s) are
given in (7.93).

As demonstrated in equations (7.84) and (7.85) above we can
apply the Kalman filter to (7.98) and (7.99), conditional on the
variance of the error term in (7.98) and the covariance matrix for
(7.99) which is assumed to be diagonal. In fact the likelihood function
may be concentrated so that only the ratio of the variance of (each
of) the state equation(s) to the measurement equation is estimated.
Hall finds that the residuals from the measurement equation (7.98)
are reasonably well behaved, the Ljung—Box tests for serial correla-
tion are 1B(1)=0.1, LB(2)=2.4, 1B(4) =25 LB(8)=5.6,
1B(16) = 17.3 which indicates a lack of serial correlation in the error
process. The latter suggests that there are no important variables
omitted from (7.98).

Hall (1987) shows the graphs of some of the time-varying para-
meters which will not be included here to save space. The overall
conclusions are that all the parameters exhibit marked variation over
time with no strong tendency to converge on a stable parameter
value; they also show a tendency to jump markedly in 1978. Interp-
reting the movement in the parameter values is not straightforward as
we must remember that they reflect market expectations not underl-
ing structural parameters. For example, in the early part of the period
a positive interest rate differential seems to be associated with an
expected rise in the exchange rate; this effect seems to disappear
during the 1980s. Part of the explanation for this may be given by a
corresponding movement in the coefficient on the lagged exchange
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rate from zero to nearly minus one. When this coefficient is zero the
exchange rate is a first difference formulation so that it is essentially a
random walk. When it is minus one the equation determines the level
of the exchange rate rather than its change. An intepretation of these
coefficients movements is as follows. As the commitment of the
government towards controlling inflation strengthened in the 1980s
then the foreign exchange (FOREX) market interpreted this as a
change in the exchange rate regime such that a particular level of the
exchange rate was seen as a target, in order to aid the fight against
inflation stemming from exchange rate changes.

The fact that there is no serial correlation in the errors is clearly
one requirement for the forecast from the learning model to be
weakly rational, but we clearly need to check that the expectations
series generated by the model is not consistently biased. We may do
this by first generating the one-step-ahead forecast of the model and
then testing this for biasedness relative to the outturn. The one-step-
ahead forecast of the model is generated as:

Q N
1= Eq + M By X + By (7.100)
=

where the X; are all the variables given in (7.98). This series for E¢,;
was then subject to the following tests:

m.n...u. = H.§m©m mw.fu A.N.H.A'Hv
(0.0017)

E.;y — Ef¢1 = 0.00451 (7.102)
(0.0080)

E. = 1.49 +0.678 E¢,, (7.103)

(0.45) (0.098)

where () = standard error of the coefficient. Equations (7.101) and
(7.102) are simple tests of unbiasedness. In (7.101) the coefficient is
not significantly different from one and hence we do not reject
unbiasedness. The latter conclusion is reinforced by (7.102) where the
constant is not significantly different from zero. Equation (7.103) is a
little more complex under the null hypothesis that E¢.; is an un-
biased and efficient forecast of E,,;; the constant in (7.103) should
equal zero and the coefficient on E¢,; should equal unity (Wallis
1989, Mincer and Zarnowitz 1969). Both of these conditions are
statistically rejected so we may conclude that while the learning
model is unbiased it is not fully efficient. This is a satisfactory result
since weak REH requires unbiasedness but only the strong form of
REH implies efficiency. It is therefore not surprising that a ‘partial

-
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information’ learning model as used here would fail to meet the
efficiency requirement.

Having derived the expectations series from our ‘learning model’,
the structural exchange rate equation (7.94) is estimated. This is done
by estimating a three-equation system using three-stage least squares
where the three equations are the exchange rate equation itself, the
interest rate (r) and trade balance equation (T). In addition, E¢,, is
specified as endogenous in the estimation. The trade balance and
interest rate equations are not a central concern of this paper so they
will not be discussed here, they should rather be thought of as
instrumenting equations which help to give consistent and efficient
estimates of the exchange rate parameters. Applying this system
estimation technique then gives the parameter estimates shown in
Table 7.1 for the exchange rate equation: a restricted and an unre-
stricted model are presented.

The two restrictions on the model, A, =1— A4, and A; =0 are
accepted easily with a quasi likelihood rate test statistic of 1.32
(distributed as x?(2)). Both the interest rate effect (A,) and the trade
effect (As + Ag) are correctly signed and significant. The summary
statistics indicate an absence of serial correlation and heteroscedasti-
city in the error process. Structural stability is clearly an important

Table7.1 Estimation of a structural model of the exchange rate

Unrestricted model Restricted model

A, 0.55 (4.8) 0.53 (4.8)

A, 0.45 (3.9) 1-A)

A, -0.14 (0.4) - —

A, 0.73 (2.8) 0.66 (3.8)

A 0.35 (3.3) (T, —TL)
0.35 (3.6)

Ag . -0.20 (1.9) 0.16 (2.9)

o 0.022 0.017

DW 1.92 2.06

BP(1)! 0.03 0.07

BP(2)! 2.8 2.0

BP(4)! 4.5 4.0

BP(8)! 12.9 11.5

BP(1)? 0.8 0.8

wwMNWN 1.6 1.2 [ J

BP(4)? 2.9 2.7

BP(8)? 4.2 5.

Data period: 1978 Q2-1988 Q1

Note: BP(.)! is the Box-Pierce test carried out on the residuals of the equation. BP(.)? is
the Box-Pierce test carried out on the squared residuals of the equation.
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requirement of any equation although it is not often found in ex-
change rate models. Assessing structural stability is not straight-
forward when the estimation process is 3SLS and the number of
observations is fairly limited. In order to gain some insight into the
stability of the model recursive 3SLS estimation is performed over the
period 1985 Q1-1988 Q1. The overall impression is that the model is
reasonably stable, with the parameter estimates never moving outside
their standard error bounds.

Thus the use of a learning model based on a time-varying para-
meter model for the exchange rate yields reasonable results when
incorporated in a structural exchange-rate equation.

7.5  Summary

The Kalman filter involves some specialist terminology and concepts
which have been discussed widely in this section and are sumarised
below. The Kalman filter recursive algorithms may be interpreted in a
number of ways because they constitute an optimal updating pro-
cedure for a wide class of models. The Kalman filter itself consists of
a set of convenient recursive formulae which allow one to calculate
the one-step-ahead prediction errors ¥, and their variance-covariance
matrix F, (or scalar, o?f,). However, to apply these recursive algo-
rithms (i.e. updating and prediction equations) one must be able to
express the model in state-space form (the measurement and transi-
tion equations). The Kalman filter itself does not estimate the un-
known parameters of the model; it merely provides ¥, and F, condi-
tional on these unknown parameters. However, the prediction error
decomposition of the likelihood function utilises ¥, and F, and hence
conventional maximisation routines can then be used to determine the
unknown parameters. For certain models (for example generalised
stochastic trend model) the Kalman filter recursive algorithms also
provide an intuitive insight into the working of the statistical model.

The procedure used when estimating a model with the aid of the
Kalman filter is (a) express the model in state-space form, (b) gener-
ate ¥, and F, using the Kalman filter recursions, (c) use ¥, and F, to
set up the prediction error decomposition of the likelihood functions,
and (d) maximise the latter with respect to the unknown parameters.
We have seen that the Kalman filter is useful in estimating variable
parameter models, unobservable components, standard ARMA and
least squares problems.

«
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Notes

1. Our aim is to bring together different strands of a diverse literature, so

- that applied economists can understand and utilise the Kalman filter. The
main results are all available in the technical literature, indeed the Kal-
man filter first appeared as early as 1960 (Kalman 1960). The basic
‘source material’ for this chapter is to be found in Lawson (1980, 1984),
Athans (1974), Duncan and Horn (1972), Diderrich (1985), Harrison and
Stevens (1976), Harvey and Todd (1983), Harvey (1984a, 1984b), and,
most notably, Harvey (1984c).

2. The proof is as follows:

Ay, =& — (1 - 0)¢e,y )
Taking expectations of (i):
‘%“\TH =yr-1— (1 - 0)e (ii)
Rearranging (i) using the lag operator L:
e =Ay/1 - (1 - 6)L] (iif)

Substituting for &, from (iii) in (ii) and rearranging:
Yi-1= Y1 — (1= 0)Ay, /1 = (1 - 0)L]
or
%“\TH = Vi = 0(y;1 — Yi-1/-2)

3. This example is taken directly from Lawson (1984).

4. An alternative method of illustrating the stochastic trend nature of the
model is to take first differences of (7.8a) and substitute for Aw, from
(7.8b), yielding:

Ay, = Y1+ (& + &)

where y,_; is the stochastic trend growth in y.

5. In the most general form of the Kalman filter the matrices X, T, R, V
and Q may be time-varying. This makes little difference to the analytics
of the derivation of the Kalman filter as will be seen in section (7.2).

Appendix

Lemmal
To show:
Pil=(PH)~' + (X'V7'X) (A1)

b, = b§ + K(Y — Xb}) (A2)
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Given:
K=pP x'v1 (A3)
Pi=(X,V, 1x,)1 A9)
Y X £
= +
Avwv AN vm Aecv (A6)
or
where
(o “P

Given (A4) and the definitions (A6)-(A8), the (A1) is easily derived:

P, = AE:, I') AML mw-_v QVL

=(X'VX + py 1! (A9

To derive (A2), note that using (AS) and the definitions (A3), (AY)
and (A6)-(A8) we have:

wereen(s )0

o P§') \b§
= (P X'VYYY + P, P§ b
= KY — P,P§ b} (A10)
Concentrating on the term P, P§~!, using (A1) and (A3):
P\P§! = PY(PT' - X'V™IX) = (I - KX) (A1)
Substituting (A11) in (A10) completes the proof:
by = KY — (I — KX)b} = b} + K(Y — Xb¥) (A12)
Lemma 2
To show:
K =P X'V = PEX'(V + XP}X') (A1)
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From (A11):
P,=( - KX)P§ (A14)

-Substitute (A14) in (A3):

K=(U-KX)Psx'v~!

K+ XP{X'vY)y=pPix'v! (A15)
Rearranging (A15) completes the proof:

K = P§X'(V + XP{X')! = P{X'F!
where

F=(V + XP§X')



