..I:S.s..:c:...i..::..S:.co:..i:
If B were fixed we could maximise over o and Q by a regression of
R,; on —f' Ry, which gives

&(B) = — Sk BB S ~! (A6)

and

~

Q(B) = Soo = SokB(B'SckB) ™" B'Sko (A7)

where
T
S; =T M? o6, j=0,k
t=

and so maximising the likelihood function may be reduced to mini-
mising

_hoe - Me»mﬁmﬁm.;\wvluh\h\e_ (A8)
It may be shown that (A8) will be minimised when
1B’ SiicB — B'SkoSSo0~ " SoBI/|B' St Bl (A9)

attains a minimum with respect to f.

We now define a diagonal matrix D which consists of the ordered
eigenvalues A;> ... > Ay of (Si,So0Sok) With respect to Sy That is
A; satisfies

|ASkk = SkoSoo ™ Sok| = 0 (A10)
Define E to be the corresponding matrix of eigenvectors so that
SikED = SioSo0 'Sk E (A11)

where we normalise E such that E'SiE = I.

The maximum likelihood estimator of B is now given by the first r
rows of E, that is, the first r eigenvectors of (Si,So,o 'Sox) With
respect to Sy. These are the canonical variates and the corresponding
eigenvalues are the squared canonical correlations of Ry, with respect
to R,. These eigenvalues may then be used in the test proposed in
(A3) to test either for the existence of a cointegrating vector r =1 or
the number of cointegrating vectors N > r > 1.

Johansen (1988) calculates the critical values for the likelihood
ratio test for the cases where m <5, where m = P —r, and P is the
number of variables in the set under consideration and r is the
maximum number of cointegrating vectors being tested for.

6

Rational expectations

Over the last ten years the role of expectations formation in both
theoretical and applied macroeconomics has been of central import-
ance. New Classical models embody the assumption of rational
expectations and clearing markets and may give rise to policy ineffect-
iveness, an issue which has influenced policy debates particularly in
the US. In the UK, the treatment of expectations has been more
pragmatic than in the US, but explicit modelling of expectations is
now used in a wide range of large-scale macroeconometric models
(see Wallis 1986 for a survey). Policy simulations of these models
generally do not yield ‘short-run’ policy ineffectiveness but they do
produce projections which differ substantially from conventional
‘backward-looking’ models.

At the applied level, relatively few practitioners have adopted the
‘full’ Muth-rational approach which requires specification of the com-
plete macromodel. Such ‘full information methods’ have generally
been confined to estimating ‘small models’ (e.g. Blake 1984, Taylor
1979). Much applied work has concentrated on estimating ‘single
equations’ that contain expectations variables. For example, in the
price expectations augmented Phillips curve (pearc), wage inflation
depends on expected price inflation (and the excess demand for
labour). The Life-Cycle hypothesis implies that consumption depends
on some measure of expected future income. The risk aversion model
has money and bond demand depending on expected capital gains.

The efficient markets literature is concerned with the proposition
that agents use all available information to remove any known profit-
able opportunities in the market. For example, if ®hcovered interest
parity holds then the interest differential in favour of the domestic
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currency should equal the expected depreciation of the domestic cur-
rency. To test such a proposition we need a framework for modelling
the unobservable one-period-ahead expected spot rate of the
domestic currency.

Estimation of single equations containing expectations terms has
proved popular because they are more robust to potential misspecifi-
cations and simpler to estimate than full-information methods bascd
on a ‘complete’ model. In this chapter we shall not be concerned with
the latter case.

The literature on estimating expectations models is vast and can
quickly become very complex. We have attempted to explain only the
main (limited information) methods currently in use. We shall con-
centrate only on those problems introduced by expectations variables
and shall leave ‘other’ problems that might also arise such as simul-
taneous equations problems and equations containing lagged depend-
ent variables to be dealt with in other chapters.

The rational expectations, RE, hypothesis has featured widely in
the literature and we begin in section 6.1 by discussing the basic
axioms of RE which we later see are crucial in choosing an appropri-
ate estimation procedure. We also examine equations that contain
multi-period expectations. In section 6.2 we discuss the widely used
errors in variables method (EvM) of estimating structural equations
under the assumption that agents have rational expectations. The usc
of auxiliary equations (such as extrapolative predictions) to generate a
suitable proxy variable for the unobservable expectations series, gives
rise to two-step procedures and the pitfalls involved in such an ap-
proach are also examined in section 6.2.

In section 6.3 we highlight the problems which arise when the
structural expectations equation has serially correlated errors. The
generalised method of moments (GMm) estimator of Hansen (1982)
and Hansen and Hodrick (1980) and the two-step two-stage least
squares estimator (Cumby et al. 1983) provide solutions to this prob-
lem.

In sections 6.4 and 6.5 we provide illustrative empirical examples
of the techniques discussed in earlier sections. We begin in section 6.4
with tests of the axioms of Re. We then discuss fixed-parameter
forecasting schemes and then relax the assumption that agents have
unchanged structural parameters in their model of the economy.
Instead we assume that agents slowly learn about their economic
environment and for example may utilise useful ‘rules of thumb’ in
forming their expectations. We demonstrate how the Kalman filter
and other ‘variable parameter’ approaches can be used to mimic
simple learning processes. In section 6.5 we demonstrate how Rr
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models give rise to testable cross-equation restrictions. The Barro
(1978) policy ineffectiveness New Classical model, the Carr-Darby
(1981) unanticipated money model and tests of the efficient markets
hypothesis fall into this class. We discuss such tests in the context of
one-period-ahead expectations and multi-period expectations. A final
section concludes.

6.1 The economics of expectations models and the RE
hypothesis

In this section we analyse the various ways in which expectations
variables are utilised in the applied literature and the implications of
the economic assumptions for the estimation issues discussed in a
later section.

Usually the applied economist is interested in estimating the struc-
tural parameters of a single behavioural equation or set of equations
containing expectations terms which forms a subset of a larger model.
(In a ‘full’ Muth-re model (Muth 1961) we would have to specify the
whole model.) The simplest structural expectations equation can be
represented:

Y = bxiy; + uy, 6.1)
where
Hw.I. = m@l\._b_T\v j=0 (6.2)

and x7,; is an exogenous expectations variable, E is the expectations
operator conditional on the complete (relevant) information set avail-
able to the agent at time ,_ j (i.e. Q,_;). For example, in a purchasing
power parity export price equation, Ex,, j represents expected world
prices and y;, the domestic export price, both in a common currency.
Also equation (6.1) could, for example, represent the wage-expected
price element of the Phillips curve. In the absence of data on Ex t+j
(e.g. quantitative survey data) we must posit an auxiliary hypothesis
for Ex,,;. Whatever expectations scheme we choose, of key import-
ance for the economics and econometrics of the model are (a) the
forecast horizon, (b) the dating and content of the information set
used in making the forecast, and (c) the relationshig between the
forecast error and the information set.

To develop these issues further it is useful to discuss the basic
axioms of RE.
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Basic axioms of RE

If agents have RE they act as if they know the structure of the
complete model to within a set of white noise errors (i.e. the axiom
of correct specification). Forecasts are unbiased on average, with
constant variance and successive (one-step-ahead) forecast errors are
uncorrelated with each other and with the information set used in
making the forecast. Thus, the relationship between outturn x,,; and
the one-step-ahead, rRE forecast ,x7.; using the complete information
set Q, (or a subset A,) is:

X4l = Xir1 + O 6.3
where

E(w0:41|Q/) = E(wi44|A;) =0 (6.3a)

E(w?41|Q)) = o}, (6.3b)

E(0410:41-1Q,) = 0 j=1,2...» (6.3¢)

The one-step-ahead rational expectations forecast error w,,; is ‘white
noise’ and an ‘innovation’, conditional on the complete information
set Q, and is orthogonal to a subset of the complete information set
(A, CQ)).

The k-step-ahead rRE forecast errors (k > 1) are serially correlated
and are MA (k — 1). To demonstrate this in a simple case assume x,
is AR(1).

X411 = ¢x, + w4y and E(w,41|Q,) =0 6.4)
Hence

Xerj = QX + Wpyj + QWyj1 + PPWOprj2 + .. (6.5)
From (6.5) it is easy to see that

(xe+1 — XF41) = @1 (6.6)
while the two-period-ahead forecast error is

(x14+2 = X742) = (P41 + ©142) (6.7)

The one-step-ahead forecast error is an independent white-noise pro-
cess, w,,; but the two-period-ahead forecast error is MA(1); similarly
the k-step-ahead forecast error is Ma(k — 1). Note that all the multi-
period forecast errors

C:i. - “kwi.v j=1

are independent of (orthogonal to) the information set Q, (or A,).
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There is one further property of RE that is useful in analysing rRe
estimators, namely the form of revisions to expectations. The one-
period revision to expectations

?i.«mi - v«wi.v

depends only on new information arriving between ¢ and ¢ + 1 and
hence from (6.5) is easily seen to be

?ikwi - t«wi.v = QLLSIH (6.8)
The two-period revision to expectations

AI.N.xwi - T«Mi‘v

will of course depend on w,;; and w,,; and be MA(1); one can
generalise the result for k-period revisions to expectations.

Direct tests of RE

Direct tests of the basic axioms of RE may involve multi-period
expectations and this immediately raises estimation problems. For
example, if monthly quantitative survey data is available on the
one-year-ahead expectation, ,x{.q;, a test of the axioms often involves
a regression of the form:

Xer12 = PBo + Bi(exiii2) + B + 1, 6.9)
where

Hy: Bo=p=0,6=1

Under the null, 7,,1; is MA(11) and an immediate problem due to RE
is the need to use some kind of generalised least squares (GLs)
estimator if efficiency is to be achieved. Of course, for one-period-
ahead expectations where data of the same frequency is available, the
error term is white noise and independent of the regressors in (6.9);
oLs therefore provides a BLUE.

An additional problem arises if the survey data on expectations is
assumed to be measured with error. If the true RE expectation is
Xii12 and the survey data provides a measure ,Xf.;, where we
assume a simple linear measurement model (Pesaran 1985):

Xirn = @ + a(xfi12) + & . (6.10)

Then substituting for x5, from (6.10) in (6.9):
X2 = Ao+ M(Xh12) + BoA + G, a.hnv.
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where
A = (10 — frvo)/
A = Bi/e
& =1 — (Bi/en)e,

The additional problem in (6.11) is that now ,X{,, is correlated with
{,; some form of generalised 1v estimator is required for consistency
and asymptotic efficiency. As we shall see the orthogonality property
between the Re forecast error and the information set (A, or Q) is
frequently used in finding a suitable instrument set. However, it is
not always simply the case that A, provides a valid instrument set for
the problem at hand.

Multi-period expectations

Sargent’s (1979) model where agents minimise a multi-period quad-
ratic cost function provides a tractable expectations framework, much
used in the applied literature. Agents are assumed to know the
time-path of the ‘long-run’ choice variable y¥ (as given by some static
equilibrium theory) and then choose actual y, to minimise costs of
being out of equilibrium (y,.; — y¥%:)? and costs of adjustment
(¥1+i = Y1+i-1)*. The cost function C is

C= NRMV UA&oQ.i - %wi.vn + ai(yesi — .<~+..Lv~v

6.12)

where E, is the expectation operator, D is a discount factor
0 < D <1 and g and a; are weighting factors (ag, a; > 0).
The solution to this problem is

Ye=hy,.1+ (1 —-A)A - AD) MV (MD)i(kxty))  (6.13)

where we have assumed the static equilibrium relationship is
yi= kx (6.13a)

and A, is the stable root of the Euler equation obtained from the
first-order conditions 3C/3y, = 0.

Equation (6.13) has proved popular in the applied literature be-
cause it has the ‘plausible’ property that the weights on the future
expected values of the ‘forcing variables’ ,x7,, decline, the further the
expectations are into the future. In addition, it provides a rationale
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for the inclusion of a lagged dependent variable and many economic
time series have a strong autoregressive component.

The model has been applied to the determination of employment
(Hall et al. 1986, Hansen and Sargent 1981, 1982), export prices
(Cuthbertson 1986, 1990) and the demand for money (Cuthbertson
1988a, Cuthbertson and Taylor 1987, Muscatelli 1988). A slight modi-
fication to the cost function leads to an additional lagged dependent
variable (y,-,) and more complex weights on the forward terms ,x7.;
which has been used to model stockbuilding (Hall, Henry, Wren-
Lewis 1986). In most of the above studies the information set is
assumed to be dated at either ¢ or £ — 1. A number of different
estimation techniques have been used in applied studies utilising
equation (6.13) and it is not always clear what assumptions are
required to yield optimal estimators, or the relationship between the
various estimation methods used. It is our aim to clarify these issues
in the subsequent sections.

6.2 The EVM and extrapolative predictors

In order to motivate our discussion of the estimation problems in the
next two sections it is useful at this stage to summarise some of the
problems encountered when estimating a structural expectations
model; problems that arise include serial correlation and correlation
between regressors and the error term. For illustrative purposes
assume the structural model of interest is

ye = 61(:xf41) + Sa(ixis2) + u, 6.14)

u, is taken to be white noise and x, is an exogenous expectations
variable.
Under the assumption of RE we have

Xevj = L«w.{ t 04 (6.15)

A method of estimation widely used (and one of the main ones
discussed in this chapter) is the errors in variables method EvMm,
where we replace the unobservable x?.; by its realised value x,.;.
This method is consistent with agents being Muth-rational, but could
also be taken as a condition of the relationship between outturn and
forecast without invoking Muth-RrE.

Substituting from (6.15) in (6.14):

Ve = O1x41 + Spxpip + & : (6.16)

£ = U — 81041 — 6042 (6.16a)
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Clearly from (6.15), x,; and w,,; are correlated and hence:

plim (x4;e)/T #0  (j=1,2)
and

E(ee)+# 021
because of the moving average error introduced by the re forecast
errors, @, ;. Hence our RE model requires some form of instrumental
variables estimation procedure with a correction for serial correlation.
These two general problems form a main focus for this chapter.

Fixed coefficient extrapolative predictors are also used widely to

proxy expectations terms. Here it is explicitly recognised that the
¢conometrician may have a subset A, = {x,_;}, say, of the complete

information set used by agents Q, = (X,—j, yit-1), say. Hence the
econometrician posits an expectations scheme

Xee1 = ¢(L)x, + v, = Pyx, + D1+ Pax, 3+ ...+ 0,
6.17)

Given an estimate of ¢(L) we generate predictions with information
at time ¢, using the chain rule of forecasting:

T = P(L)x, (6.18a)
Zre2 = GiP(L)x] + MN b X142 (6.18b)
B

and if these replace x{,; in (6.14) we have a structural estimation
cquation

Yyi=0 %1+ 8% +q, (6.19)

2
M 6i((xpsi — Xpyy) — (xe+i —x549) + & (6.20)

q:

The error term g, contains the MA(1), true forecast error of agents
Wy = (x,4; — x54;) as before but there is an extra term Xe4i — X p4i)
which may cause additional estimation problems and these issues are
discussed in the next section.

There is a logical problem in using a fixed coefficient expectations
equation (6.17). All of the data is used in estimating ¢(L), yet this
fixed estimate is used to predict x,.; at the beginning of the sample;
part of the X, series therefore embodies sample information that
the agent could not have had at the time his forecast was made. This
may not matter asymptotically if ¢(L) really is constant but clearly in
small samples the assumption may yield incorrect predictions (see
Friedman 1979).

«
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We may wish to relax the assumption that agents act as if they use
the ‘true’ fixed coefficient model in forming expectations. It may be
the case either that the frue model for x, has some time varying
parameters or that agents use a limited information set (of the true
fixed parameter model) and update the changing estimates of the
parameters of interest in some optimal fashion. In terms of a simpli-
fied AR(1) model with time-varying parameters we have:

Xt+1 = Qrp1x, + v, (6.21)

The Kalman filter can be used in a wide variety of models with
time-varying parameters (or unobservable components ~ see Chapter
7) to provide optimal estimators ®:+1/: based on information at time
t. We can then generate predictors £, j to use in (6.14). Hence
similar issues arise when using such ‘learning models’ to provide a
proxy variable for ,xf,; in the structural equation (6.14), as in the
fixed parameter model.

The precise method used in estimating single equations with
expectations terms depends on whether the expectations terms are
formed for the current period ,_;x¢ or for many future periods
x7+;(j = 1) and whether the residuals are serially correlated or white
noise. Serial correlation may arise because of ‘omitted variables’, or
wrong functional form in the structural equation or the assumption of
RE per se may induce serially correlated errors in the estimation
equation. To delineate these cases and to avoid confusion we take
them in turn. We can then ascertain precisely the source of the
estimation problem for each case. We begin with a simple model with
one-period expectations to illustrate the basic principles of the Evwm,
we then discuss extrapolative predictors.

The errors in variables method EVM

The Evm is a form of 1v or 2SLS approach. Under rE, the unobserv-
able expectations variable ,x{,; is determined by the full relevant
information set Q,. In the EvM a subset of the true information set A,
(CQ) is sufficient to generate consistent estimates. However, we
begin by demonstrating that oLs yields an inconsistent estimator (see
section 1.6 (Chapter 1) for a more general exposition).

One-period-ahead expectations: white noise struct®al error

It is important to note that here we are dealing with a very specific
expectations model. The simplest structural model embodying one-
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period-ahead expectations is
Ye=Bxin +u (6.22)

where u, is white noise and x¢{,; is assumed to be uncorrelated in the
limit with u,:

plim (x¢,1u})/T =0 (6.23)
If we assume rational expectations, then
Xee1 = X1+ O (6.24)

and the RrE forecast error w,+; is independent of the information set
Q, (or A))

E (Qw,41) =0 (6.25)
Substituting (6.24) in (6.22) we obtain

Yo = Bxee1 + g, (6.26)

4 = (U = Bayyy) (6.26a)
Consider applying oLs to (6.26), we have:

B =B+ (xiix) " (x14190) (6.27)
From (6.24):
plim (x{4y X,41)/T = plim (x{4,'x{41)/T + plim (w}4y ©41)/T

(6.28)

or rewriting this more succinctly:

0= 0% + 0’ (6.28b)

From (6.24) and (6.29) and noting that x{.; is uncorrelated in the
limit with @,,:

plim (x}419,)/T = —Bplim (w}410,41)/T = —B0?, (6.29)
Substituting these expressions in (6.27):

ng

—_— 6.30
e + oL (6.30)

plim B= mT -
Thus the oLs estimator for f§ is inconsistent and is biased downwards.
The bias is smaller the smaller the variance of the ‘noise’ element ¢?,
in forming expectations. The above analysis is the basis of Friedman’s
(1957) view that if the permanent income hypothesis of consumption
is correct but the latter is proxied by measured income, then ovrs

yields an underestimate of the true long-run marginal propensity to

«
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consume (out of permanent income). Similarly, many early studies of
the price-expectations augmented Phillips curve used actual inflation
as a proxy for expected inflation; oLs estimates are inconsistent and it
was argued that the finding of the presence of money illusion and a
non-vertical long-run Phillips curve is due to an inappropriate estima-
tion technique in the presence of expectations variables.

Instrumental variables: 25Ls

oLs is inconsistent because of the correlation between the variable
x,4+1 and the error term g, which ‘contains’ the R forecast error,
w,+1. The solution to this problem is to use instrumental variables,
1v, on (6.26), (see Chapter 1). However, to illustrate some additional
nuances when applying 1v, consider the model:

Y= axf1 + Bxy + u, = Q6 + u, 6.31)
Q= {x{41, x2} 6= (a, ) (6.31a)

where x{,.1, X, are asymptotically uncorrelated with ,.

Direct application of 1v to (6.31) would require an instrument for
xi;+1 and an obvious candidate are the oLs predictions from the
regression of x1,4, on a subset of the information set, A, but includ-
ing xa,:

.w”/:+u = >~= (6.32a)
= (AA) T (Alx1ee1) (6.32b)

The researcher is now faced with two options. Direct application of 1v
would utilise the instrument matrix

Wi = {£141, X2} (6.33a)
where x,, acts as its own instrument, giving

6 = (W1Q)(W1y) (6.33b)

Var (&) = a*(WiQ)™! (6.33¢)

This is also the 2SLS estimator since in the first stage x4y is re-
gressed on all the predetermined (or exogenous variables) in (6.31)
and the additional instruments in A,.

An alternative is to replace x{,,, in (6.31) by £,+; and apply oLs
to: [

Ve = afyq + Bxy + g7 (6.34)

qr=u, — a(x ) — xf41) — A(X41 — Xp41) (6.34a)
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This yields a ‘two-step estimator’ but as long as x,,4, is regressed on
all the predetermined variables, the oLs on (6.34) is numerically
equivalent to the 2SLS estimator &; and is therefore consistent.

However, there is a problem with the approach. The oLs residuals
from (6.34) are

e =y — &%y — w.«& (6.35)
but the correct (I1v/2SLs) residuals use x,.; and not X1:+1 and are:
ey =y — &1 — Pry (6.36)

Hence the variance-covariance matrix of parameters from oLs on
(6.34) is incorrect since s’ =e'e/T is an incorrect (inconsistent)
measure of o (Pagan 1984). The remedy is straightforward however;
one merely amends the oLs program to produce the correct residuals
¢, in the second stage.

Extrapolative predictors

Extrapolative predictors are those where the information set utilised
by the econometrician is restricted to be lagged values of the variable
itself, that is an Ar(p) model:

X141 = QX1 + PoXpe + Poxg 2 + . DpXi—p + & (6.37)
Xi+1 = QVANLV.R: + &; Aa.uﬂﬁv

The maximum value of p is usually chosen so that &, is white noise.
oLs applied to (6.37a) yields one-step-ahead predictions

£t = B(L)xy, (6.37b)

The use of extrapolative predictors has proved popular in models with
multi-period expectations and in testing RE cross-equation restrictions.
(In the latter procedure a var rather than an ar model is normally
used.)

For the moment, consider using the extrapolative predictor either
as an instrument for x{,,, or to replace x{,, in (6.34). Using £},,, as
an instrument for x$,,, and x,, as its own instrument yields a consist-
ent estimate of & since xq,-; (j=0) are uncorrelated with q7 and
therefore so is £,4;. This is all we need for IV/2SLS to be consistent,
but note that in this case x,, also appears in the instrument matrix
W,. The latter becomes important when we consider the two-step
approach. Having obtained £%,,, in the ‘first stage’, the second stage
regression consists of oLs on: ,
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Ve = B2ty + vx3 + qF (6.38a)
9 = [u; + B(x54y — Xe+1) — B(RE — X:41)] (6.38b)

Compared with the EVM/IV approach (see equations (6.26), (6.26a)),
we have an additional term (£%*,; — X;+1) in the error term of our
second-stage regression (6.38a). The term (x,,; — %%41) is the residual
from the first stage regression (6.37b).

The variable x,, is part of the agent’s information set, at time ¢,
and may therefore be used by the agent in predicting x,.;. If so,
then (x,41 —£¥;;) and the ‘omitted variable’ from the first stage
regression, namely x,, are correlated. Thus in (6.38a) the correlation
between the variable x,, and a component of the error term q7 imply
that oLs on (6.38a) yields inconsistent estimates of & (Nelson 1975).
This is usually expressed in the literature as follows: If x;, Granger-
causes x,41 then the two-step estimator is inconsistent.

This illustrates the danger in using extrapolative predictors and
replacing x7., in the second stage oLs regression, rather than using
£7+1 as an instrument and applying the 1v formula. Viewed from the
perspective of 2SLS, the inconsistency at the second stage (6.38a)
arises because in the first stage regression the researcher does not use
all the predetermined variables in the model; he erroneously excludes
X2, Somewhat paradoxically then, even if x,, is not used by agents in
forecasting x;,.; it must be included in the first stage regression if the
two-step procedure is used, otherwise (xy,47 — £1,4;) may be corre-
lated with x,,. Of course, if the two-step procedure is used and
consistent estimates (&, B) are obtained, the correct residuals calcu-
lated using x,,; and not £,,; (as in equation (6.36)) must be used
in the calculation of standard errors.

6.3  Serially correlated errors and expectations variables

Up to this point in our discussion of appropriate estimators we have
assumed white noise errors in the regression equation. We now relax
this assumption. Serially correlated errors may arise because of multi-
period expectations or because of serially correlated structural errors.
In either case, we see below that two broad solutions to the problem
are possible. The first method uses the generalised method of mo-
ments (GMm) approach of Hanson (1982) and ‘corrects’ the covariance
matrix to take account of serially correlated errory, The second
method is a form of generalised least squares estimator under 1vs and
is known as the two-step, two-stage, least squares estimator (2s-28Ls),
(Cumby er al. 1983). These two solutions to the problem are by no
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means exhaustive but have been widely used in the literature. The
estimator due to Hayashi-Sims (1983) is also briefly discussed.

The GMM approach

We demonstrate this approach by first considering serial correlation
that arises in equations with multi-period expectations and then move
on to consider serial correlation in the structural error.

Multi-period expectations

Suppose that the structural error u, is white noise but we have
multi-period expectations (we restrict ourselves to two-period-ahead
expectations for ease of exposition):

Ye=Brxin + Baxiin + u, (6.39)
xirj= E(xyIQ) j=1,2 (6.39a)
RE implies:
Xeyj = Xt4j+ My (7=1,2) (6.40)
and substituting (6.40) in (6.39) we have our estimating equation:
Ye = Bixeer + Boxya + g, (6.41a)
qe = U = P11 — BoMrsa (6.41b)

25LS on (6.41a) with instrument set A, will yield consistent estimates
of By, B,. However, the usual formula for the variance of the 1v
estimator is incorrect in the presence of serial correlation (see equa-
tion (1.73)) and g, is MA(1). Hansen and Hodrick (1980) suggest a
‘correction’ to the formula for the variance of the usual 2SLS estima-
tor. Putting (6.41a) in matrix notation:

y=XB+gq (6.42)
The 2SLs estimator for B is equivalent to oLs on

y=Xb*+g4 (6.43)

X = (Ria1, 2102 (6.44)

and £,,; are the predictions from the regression of x,,; (j=1,2) on
A,. The 2SLS estimator is:

b* = (X'X) 1 (X'y) | (6.45)

%
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with residuals:
e* =y — Xb* (6.46)
Note that in the calculation of e* we use X and not X. To calculate

the correct variance of f in the presence of an MA(1) error, note that
the variance covariance matrix is

1 P1 0 . 0
P1 1 P 0 :
E(g ¢)=03§| 0 p 1. p 0] =of=
: " 1 P
0 PN 0 P1 1

6.47)

where p, is the correlation coefficient between the error terms.

Since e} are based on the consistent estimator b*, then consistent
estimators of of, of and p are given by the following ‘sample mo-
ments’:

8=(n"1) > ¥ (6.48a)
1

of=(n"1) Y erer, (6.48b)
2

P1 = (81/060)* (6.48¢)

Knowing = we can calculate the correct formula for Var (b*) as
follows. Substitute from (6.42) in (6.45):

b*=p+X'®)'%q (6.49)

Since plim (T7!)(X’q) =0, then b* is consistent and the asymptotic
variance of b* is given by:

Var(b*) = T~ plim[(X' )1 X'(q ¢)R(X'®)7]
Var (b*) = oj(X'X) " L(X'EX) (X' %) (6.50)

Above we assume that the population moments are consistently esti-
mated by their sample equivalents, e.g. (X’'X). Note that Var (b%),
the Hansen—Hodrick correction to the covariance matrix for b*,
reduces to the usual 2SLS formula for the variance when there is no
serial correlation (i.e.Z = 0?I). The Hansen-Hodrick correction is
easily generalised to the case where we have an 7»»5 error; we
merely have to calculate P(s=1, 2, ... k) and substitute these

estimates in .
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Serial correlation AR(1) in the structural error

Our model, in this case is

ye = Bxi+u, (6.51)
or

v = Bx + (u, — pny) (6.51a)

U = puyqy + & (6.51b)

v applied to (6.51) using A,_; as instruments yields a consistent
estimate of f but the estimator is not asymptotically efficient because
it ignores the serial correlation. In conventional models (i.e. those
excluding expectations terms) the solution to this problem is to apply
1v to the p-transformed equation (see Chapter 1):

(e = pyi-1) = B(xe — px,—1) + g, 6.52)
or

yi=Bxt+q (6.52a)

q:= & + B(n. — pn,—1) (6.52b)

Although A,_, is independent of & (by assumption) and of 7%, it is
not independent of the lagged rRE forecast error 7, _,; information
arising during ¢ — 1 ‘causes’ the forecast error between ¢t —2 and
t — 1, that is, n,_;. The GLs transformation has destroyed the ortho-
gonality conditions between the error term in (6.51) and the informa-
tion set A, ;. This is because the GLs transformation introduces a
moving average error, MA(l), in the rRE forecast errors (the term,
n, — pn,—1). We have ‘removed’ the serially correlated structural error
u, but have introduced another serially correlation error which is
MA(1) and hence ¢q, is MA(Q1).

We wish to outline two methods that can be used to circumvent
the above problems. Both methods utilise the Hansen—Hodrick pro-
cedure.

In the first method we apply 1v to (6.51) using A,_; as instruments
to obtain a consistent estimator of b*. The ‘consistent’ residuals u*
(as in the previous section) are used to obtain an estimate for p:

p = Culut,)/Zuly) (6.53)

which is used to form the transformed variables y¥, x¥ A,_; and ¢, in
(6.52) are correlated, as noted above, but if we move the instrument
set back one period, that is use A,_, this is independent of 7, and
1,_1, asymptotically. ,

Using A,_, as instruments for x} yields a consistent estimator b*
for B and the residuals

“
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er=y — xb* (6.54)

can be used to form the X matrix. The Hansen-Hodrick variance for
b is then given by (6.50) with X* = (x, — px,_;) in place of X.

The second method uses the insight of Hayashi—Sims. For exam-
ple, suppose we have an MA(1) error u, = (1 + ¢L) ¢, in our original
structural model. The backward filter (1 — ¢L)~! removes the serial
correlation in u,, but destroys the orthogonality condition between
the information set and the error term. Hayashi-Sims suggest the
‘forward filter’ on the variable x, giving:

Fo=—- (1 - oL Hlx, (6.55)

In this case any error terms 1), introduced by the EvMm are transformed
into terms in 7,,; (j>0) which are independent of the ‘original’
information set at time ¢, A,.

A two-step, two-stage least squares (25-2sLs) estimator

So far we have been able to obtain a consistent estimator of the
structural parameter f; in (6.39) under Rre by utilising IV/2SLS or EvM
method. We have then ‘corrected’ the usual formula for the variance
of the estimator using the Hansen-Hodrick formula. Although the
Hansen—Hodrick correction yields a consistent estimator of the
variance it is possible to obtain an asymptotically more efficient
estimator which is also consistent. Cumby et al. (1983) provide such
an estimator which is a specific form of the class of generalised
instrumental variables estimators. The formulae for this estimator
look rather formidable. If our structural expectations equation after
replacing any expectations variables by their outturn values is:

y=XB+q (6.56)
with E(qq’) = 0* = and plim[T1(X'q)] #0 (6.56a)
then the 25-2SLS estimator is:

Be2 = [X'ANZA) A X] X AAZA)TIA Y] (6.57)

var (Bg2) = o[ X'A(A'ZA) A Q]! (6.58)

where A is the information set available. Clearly to make this estima-
tor operational we need a suitable instrument set A agd an estimate
of the variance-covariance matrix of error terms =. We have already
discussed above how to choose an appropriate instrument set and
how a ‘consistent’ set of residuals can be used to form Z. The ‘first
stage’ estimate of X can then be substituted in the above formulae, to
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complete the ‘second stage’ of the estimation procedure (see Cuth-
bertson 1990).

In small or moderate size samples we cannot say whether the
Hansen—Hodrick correction is ‘better than’ the 28-2SLS procedure
since both rely on asymptotic results. Hence at present, in practical
terms either method may be used. The one clear fact which emerges
however, is that the normal 2SLS estimator for Var(p) is incorrect
and care must be taken in utilising Cochrane—Orcutt type transforma-
tions to eliminate AR errors since this may result in an inconsistent
estimator for f.

Summary

There are two basic problems involved in estimating structural (sin-
gle) equations involving expectations terms, such as equation (6.39),
by the evm. First correlation between the ex-post variables x,,; and
the error term which involves the use of v (or 2SLS) estimation to
obtain consistent estimates of the parameters. In addition, the error
term is likely to be serially correlated, for example MA(1) in equation
(6.41a), which means that the usual 1v/2SLs formulae for the variances
of the parameters are incorrect. Two avenues are then open. Either
one can use the 1v residuals to form the (non-scalar) covariance
matrix (0°Z) and apply the ‘correct’ v formula for var (b*), see
equation (6.50). Alternatively, one can take the estimate of 0°Z and
apply a variant of generalised least squares under 1v, for example, the
28-2SLS estimator var (B g2) of equation (6.58).

6.4 Empirical work on expectations models

In this section we provide examples of empirical work which illustrate
some of the estimation issues outlined above. We begin with tests of
the axioms of RE. Alternative expectations schemes are then dis-
cussed and their use in a forward-looking money demand function is
examined.

Testing the axioms of rational expectations
There has been a large number of tests of the basic axioms of RE,

using survey data. Here we illustrate the methodology using the
results from Taylor (1988). :

Y
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Survey data of people’s expectations of key economic variables are
often not in the form of numerical estimates but are collected as
categorical responses (such as percentage of respondents expecting
inflation to go ‘up’, ‘down’ or stay the ‘same’). However these cate-
gorical responses can be converted using a variety of methods, into
numerical data on expectations. Taylor (1988) converts monthly cate-
gorical data from UK investment managers into quantitative expecta-
tions series for expected annual price inflation pf.y;, annual wage
inflation ,w¢.y;, the annual percentage change in the rra all share
index f;,12, and the US, Standard and Poors composite share index
Sr+12-

The axioms of RE imply that the forecast errors are independent of
the information set used in making the forecast. Consider the regres-
sion

(*e+12 — Xir12) = BA + q, 6.59)

for x = p, w, f, s and where A, is a subset of the complete informa-
tion set. If the orthogonality property of rRe holds, we expect 8= 0.

If we assume no measurement error in x7.; then g, is a moving
average error of order 11 at most. oLs yields consistent estimates of 8
because A, and g, are uncorrelated asymtotically but the usual form-
ula for the covariance matrix of B is incorrect. However the oLs
residuals from (6.59) can be used to construct a consistent estimate of
the variance—covariance matrix (White 1980) along the lines outlined
in the previous section where we discussed the more general Hansen-
Hodrick adjustment. In this case the oLs residuals e, from (6.59) yield
consistent estimates of the variance—covariance matrix (6.47) using
(6.48a) to (6.48c), (with the oLs residuals not the 2SLS residuals). The
correct OLs variance is then

Var (b) = o¥(A'A) " L(A’EA)A'A) ! (6.60)

n
where o3=T71 €2 (6.60a)
1

Equation (6.60) has the same form as the Hansen-Hodrick correc-
tion, equation (6.50) except that the oLs rather than 1v residuals are
used and we do not need to instrument the information set A,.

The results of this procedure are given in Table 6.1 for the infor-
mation set A, = (x,_;, X;_3). For the price inflation, wage inflation
and the rr share index, the standard errors on the own lagged
variables indicate that all of these variables taken E&ﬁ_acm:w are not
significantly different from zero. This is confirmed by the Wald test

W(2), which indicates that the two RHs variables in each of the first
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Table 6.1 Orthogonality regressions with small information sets 1981 (7)-
1985 (7), ordinary least squares with adjusted covariance matrix. (See note)

Estimated equation R? SEE w(2)
P — Py = —0.155  —0310p,_, + 0214p,, 0.06 1131 296
(0.695)  (0.255) (0.245) (0.23)
W — Wi = 2596 — 0.492w,_, + 0.109w,, 0.20 1.891  4.25
(1.918) (0.282) (0.204) 0.12)
for— fon = 9842 — 0262f,, — 0227f_, 007 11519  6.33
(3.075) (0.179) (0.226) (0.04)
Sz — St = 15747 — 09335, + 0.463s,_, 021 24.17  19.99
(9.597)  (0.233) (0.336) (0.00)

Note: R? is the coefficient of determination, see the standard error of the equation;
W(2) is a Wald test statistic for the coefficients of the two lagged regressors to be zero
and is asymptotically central chi-square under the null of orthogonality, with two
degrees of freedom; figures in parentheses denote estimated standard errors or mar-
ginal significance levels for w(2).

Source: Taylor (1988)

three equations are jointly not significantly different from zero. For
the S&P index the lagged values are significantly different from zero,
thus rejecting the rRE orthogonality axiom.

If there are measurement errors in the expectations series, see
equations (6.10), (6.11), we do not expect the coefficient on ,%{,, to
be unity and there is a non-zero correlation between the variable
X§+12 and the error term. The latter requires the use of 1v. Taylor
uses p;, f;» w;, S, as instruments for the expectations variables, ,X{,,
to yield consistent estimates of the parameters, residuals and covar-
iance matrix, see equations (6.47) and (6.48). The variance of these
parameters is then given by Hansen’s cMM estimator, see equation
(6.50).

Var (b) = 03(A’A) 1A’ = A)(A'A) ! (6.61)

Taylor’s results using this estimator are given in Table 6.2. The
results are similar to those in Table 6.1, except for the Fr share price
index f,,,. Here the MM estimator indicates that the forecast error
for the rr share price index is not independent of the information set
(W(2) = 46.9). This demonstrates that when testing the axioms of re,
correct inference may require careful choice of appropriate estimation
technique.
Taylor repeats the above exercise using a larger information set:

A* = A§~l\.u vtslﬁ.. .\,uI\.u hnlwi \ = Hu 2.
With this extended information set the MM estimator indicates that
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Table 6.2 Orthogonality regressions with small information sets 1981 (7)-
1985 (7), generalised method of moments. (See note)

Estimated equation R? SEE  H@3) W(Q)
Paz= 0.550ps, + 1315 — 0399p,_, + 0.488p,, 0.97 1.000 0.04 6.17
(0.202) (1.122)  (0.286) (0.270) (0.99) (0.05)
W= 0.02Lws, + 6.151 + 0.006w,, + 0.185w,, 0.97 1.436 0.05 3.85
(0.144) (1.712)  (0.075) (0.122) (0.99) (0.15)
fon = 0473fc,, + 20066 — 0.199f_, — 0.124f,_, 0.89 8.004 0.06 46.49
(0.340) (6.925) (0.125) (0.175) (0.99) (0.00)
Spe2 = —0.725,5¢,,, + 62.658 — 0.614s,., — 0.154s,_, 0.66 19.761 0.04 18.86
(0.468) (16.716)  (0.179) (0.260) (0.99) (0.00)

Note: Instruments used for the expectations variable were p, w, f, and s; H(3) is
Hansen’s (1982) test statistic for the instruments, and is asymptotically central chi-
square with three degrees of freedom for three valid over-identifying instruments. See
note to Table 6.1 for other definitions.

the orthogonality condition is decisively rejected for all four vari-
ables.

Fixed parameter AR and VAR schemes

Cuthbertson (1988) estimates a forward-looking model in the UK
demand for narrow money (M1) using a two-step procedure. The
structural demand for money function (simplified somewhat) is

m, = Am,_y + (1 = AD)(1 = A)(c, SP* + c, SY* + cxSR®)
(6.62)

where
8

M (AD)'(8X¢,;) and X¢ = (P°, Y°, R°),  (6.62a)
i=

The agent is assumed to have information dated ¢ — 1 and earlier. In
order to estimate the model a data series for the expectations terms is
required. Cuthbertson uses two alternative schemes; namely, fixed-
parameter AR and VAR models. The AR and var models are given in
Tables 6.3 and 6.4. The chain rule of forecasting is then applied to
generate multi-period forecasts X¢,; (j=0, 1, 2, .. ®8) for each
variable. These then replace the expectations terms, X¢, j and oLs is
applied to (6.62) to yield two-step estimates of the structural money
demand function. Using the AR system for X¢, j yields:

SX
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M,=- 08 + 08 M,_, + 0052 SY°+ 0.024 SP°

(1.8)  (20.6) (2.4) (2.0)
- 0.176 SR (6.63)
(3.3)

oLs, 64(3) — 79(4), seE = 1.47(%), pw = 2.6, HF(12) = 13.6,
SALK(12) = 9.1, wk = 1.7.

Table 6.3 Autoregressive forecasting equations for P, Y, R

1 AP, = 0.0075 + 083AP,_;, - 0.22A%p,_; + 0.037(D793)
(4.0) (12.3) 2.3) (6.0)
oLs, 64(3)-79(4), se = 0.82(%), pw = 1.9, LM4F = 0.67, LM4 = 2.9, F(5, 52) = 0.75
2 AY, = 0.0137 -  0.12(A%Y,.; + A?Y,.,) ~ 0.024(D793)
4.4) (3.3) (1.6)
oLs, 64(3)-79(4), s = 21.1(%), pw = 2.0, LM4F = 0.23, LM4 = 1.1, F(6, 52) = 0.17
3 R, = 1.00R,.; +u, u = 02lu,_; + €4
42.8) 1.65)

AR, 64(3)-74(4), se = 0.013, pw = 2,0, LM4F = 0.59, LM4 = 2.5, F(5, 55) = 1.4

Notes:

(i) se =standard error of the regression, pw = Durbin-Watson statistic, AR =
estimation subject to autoregressive errors.

(ii) LM4 is the Langrange multiplier statistic for autocorrelation up to order 4,
asymptotically distributed under the null of no serial correlation, as central
chi-squared with four degrees of freedom. Critical value at 5% significance level
is 9.5.

(iii) LM4F is the Langrange multiplier test, expressed as an F-distribution.

(iv) F(n,, n;) is the F-test of the restrictions in moving from the general AR(6)
equations, with n;, n, degrees of freedom. The critical value at 5% significance
level for the above equations is (approximately) 2.4.

Table6.4 VAR forecasting equations for Y, P, R (See notes for Table 6.3)

1 Ay, = —0.6 - 032AY,, + 0.06Y,., -~ 0.64AP,, — 0.82AR,.,
(2.0) (3.1 (2.0) 2.7 “.1)
oLs, 64(3)-79(4), st = 2.0(%), LM4F = 0.7, LM4 = 3.3
2 AP, = 0008 + 0.58AP,_;, - 0.29AP,; + 0.08AY,., + 0.25AR,_,
2.7 (7.4) 3.7 2.4 (5.4)
+ 0.032(D793)
6.5)
oLs, 64(3)-79(4), se = 0.6(%), LM4F = 0.32, LM4 = 1.6
3R = -08 + 093R._; - 0.23R._, - 0.25AP,_, + 0.08Y,,
4.4) (7.6) (1.9) (2.0) 4.4

oLs, 64(3)-79(4), se = 0.011, LM4F = 1.2, LM4 = 5.2
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A unit (expected) nominal income elasticity is accepted by the data
(on a Wald test W(2) = 1.2, *(2) = 6.0), and the long-run semi-elasti-
city with respect to the interest rate is — 4.2. As we noted in section
6.2, the use of extrapolative AR or VAR forecasting equations and a
two-step estimation procedure may result in inconsistent parameter
estimates. This will occur if M,_; in (6.63) Granger, causes either P,,
Y, or R,. Although widely used, the two-step procedure may be
somewhat hazardous. Thus although the equation passes the Hendry
parameter constancy test HF(12), it must be interpreted with caution.

If we apply the EvM technique to the above model, the terms SX*
must be instrumented and M,_; acts as its ‘own’ instrument. Cuth-
bertson and Taylor (1991) employ the Evm in this forward-looking
model which yields consistent parameter estimates. The instruments
used for SX° are four lagged values of P, Y, R and M. However they
find serial correlation in the (1v) residuals of (6.63), of order 2 and 3.
They therefore apply the Hayashi—Sims (1983) forward filter to all
the variables of (6.62).

The residuals ey from the 1v regression (6.62), without the Haya-
shi-Sims correction are used to calculate consistent estimates of the
‘unknown’ autocorrelation coefficients p;:

pj = me er; \Mmﬂi. (=23 (6.64)
t

Because they employ the forward filter, the instrument set dated
t—1 and earlier is asymptotically uncorrelated with the error-term
(see section 6.3). Hence we obtain consistent and asymptotically
efficient estimators. When Cuthbertson and Taylor (1989) impose a
unit long-run price level elasticity (cp =1) then representative esti-
mates of the long-run (expected) income and interest rate elasticities
(E,, Eg, respectively) are:

E,= 1.8  Egp=-— 49

2.8) (3.0) (6.65)

over the period 1968(4)-1982(4)-asymptotic t-statistics in parenthe-
sis. Although the point estimates of the expected income elasticity
exceeds unity we can easily accept a unit coefficient on a t-test
(t = 1.2). Thus, for this particular model the results from the two-step
procedure and the Evm do not differ greatly, and hence any inconsis-
tency in the former may not be too severe.
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The Lucas critique: changing expectations schemes

One of the drawbacks in using fixed coefficient AR or vArR models is
that forecasts made for the early part of the data set (using the chain
rule) utilise information that was not available at the time the fore-
casts were made. This is because in obtaining the estimated para-
meters we use all of the data set. Clearly it may be more realistic to
assume that agents update their view about the parameters of the
expectations generating equations. This applies with stronger reason
after major (‘regime’) changes in the economy; (for example, in the
1970s, the move from low to high inflation rates in the UK and the
switch towards monetary targets in the USA).

Utilising a structural forward-looking demand for money function
of the form (6.62), Cuthbertson and Taylor (1990) examine the ‘case
of the missing money’ in the USA in the context of the Lucas (1976)
critique. Around 1974, conventional (e.g. partial adjustment) money
demand functions in the USA overpredicted the demand for money
and this was interpreted as an inexplicable shift in the money demand
function. Cuthbertson and Taylor (1990) put forward the hypothesis
that the underlying forward-looking demand for money function
(6.62) is stable over the whole of the 1970s, but a shift in the (VAR or
AR) expectations formation scheme for Y, P or R caused estimated
partial adjustment models to exhibit parameter instability (and serial
correlation in the residuals). This is an example of the Lucas (1976)
critique. To illustrate the Lucas critique in the context of our for-
ward-looking demand for money function (6.62), simplify somewhat
and assume:

M, =AM, + (1 = H)(1 — AD)c, Mc va@wit_
i

is a stable money demand function. Now assume agents forecast
‘income’ according to the AR(1) model:

Yii1= ¢, + v, (6.67)

where v, is white noise. Predictions from (6.67), with information
dated ¢ and earlier, are:

Yi = ¢y, (6.68)
Substituting (6.68) in (6.66),
M, = MM, + [(1 — ¢, (1 — AD)¢/(1 — AD@)]Y, (6.69)

Equation (6.69) may also be viewed as a conventional partial adjust-
ment form of money demand function:
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ka = q°§s|~ + a_ M\n Aaoﬂav

However if we estimate (6.70) but the way agents form their expecta-
tions alters (for example, undergoes a structural shift), then the
‘conventional’ partial adjustment demand function (6.70) will exhibit
parameter ‘shifts’ even though the underlying (or ‘deep’) parameters
A, D and ¢, of the ‘true’ forward-looking equation remain constant.
This is the Lucas critique.

The above argument applies if the variables Y,, P, and R, are
assumed to be generated by a first-order vector autoregressive
scheme, as assumed by Cuthbertson and Taylor (1990), when investi-
gating the US demand function for narrow money (i.e. M1B). They
find that the var scheme for (Y, P, R) does undergo a structural
break around the ‘missing money’ period. They therefore estimate the
¢ parameter(s) for the pre- and post-1974 period. When these rwo
separate VAR schemes are used to determine the variables SY¢, SP¢,
SR* in the forward demand for money function pre- and post-1974,
they find that the demand function has relatively stable parameters
and does not have serial correlation in the errors. However, if one
ignores the shift in the var scheme then the ‘solved out’ form of the
demand for money function, i.e. the analogue to (6.70), has ‘poor’
statistical and economic properties. Thus, Cuthbertson and Taylor
1990 provide some evidence that fixed parameter AR OF VAR expecta-
tions schemes may be inadequate and that the Lucas critique may be
of some practical relevance. (For an alternative account of the mis-
sing money episode see Baba et ql. 1988.)

Hendry (1988) provides an interesting test to discriminate between
the forward model (6.66) and the backward-looking model (6.70).
Using our simple model, Hendry’s argument is that if ¢ in (6.67) is
found to be unstable (time varying) and the forward model (6.62) is
correct, then 7, in the ‘backward-looking’ model (6.70) should also
be unstable. Hence a finding of a constant 7y in (6.70) and time-vary-
ing ¢ in (6.67), leads to a refutation of the forward model (6.66) and
(6.67), (and incidentally of the empirical relevance of the Lucas
critique). -

Another way of gaining an insight into Hendry’s argument is to use
the formula for the oLs estimator of the expectations model under
EvMm. Equation (6.30) indicates that plim j depends on o2, The va-
riance of x¢ is given by the variances of @Y, in (6.67) in our money
demand model. If ¢ is non-constant, then 02, is also time-varyigg and
hence we expect the oLs estimator, B to be non-constant. Hence
Hendry’s counterfactual argument is that a constant B and non-con-
stant @,, are incompatible with the structural expectations model
(6.66) and (6.67).




Cuthbertson (1991) argues that in finite samples Hendry’s test does
not rule out the structural forward model (6.66) and some other
expectations generation equation like (6.67) that has constant para-
meters but which is, as yet, undiscovered by the econometrician. Also
it is not clear how the Hendry’s analysis deals with the issue of
explicit time-varying parameters in (6.67) as discussed below.
However, for any fixed parameter form for (6.67), for which it is
hypothesised agents actually use in forecasting, Hendry’s test is valid
(even in small samples). In practice, proponents of the structural
expectations model (6.66) will have to ‘Hendrify’ the expectations
generating equation (6.67) in an attempt to obtain constant para-
meters in (6.67).

Variable parameter forecasting schemes

Instead of a series of discrete breaks in expectations equations, as in
the above case, we may wish to assume agents continually update the
parameters of their expectations generating equations as ‘new’ infor-
mation becomes available. A simple yet tractable form of ‘updating’
is to assume agents update their AR or var forecasting schemes as if
they applied recursive oLs to the model. Cuthbertson and Taylor
(1991) apply a recursive var scheme to (Y, P, R) in the context of
the forward demand for money function (6.62). At each point in time
the vaR parameters are estimated (say using data from ¢t =1 to n).
The chain-rule of forecasting is then applied to obtain k-period ahead
forecasts for n+1, n + 2, n+ k (with information and parameter
estimates available only to period n). The VAR scheme is then re-esti-
mated for period 1 to n; (n;=n + 1) and the next k period ahead
forecasts obtained. These forecasts provide instruments for SX* using
information actually available to the agent at the time of the forecast.
The forward demand function may then be estimated using the gvm
(with appropriate adjustments for any serial correlation). Cuthbertson
and Taylor (1991) using a recursive var obtain the following long-run
elasticities for UK, M1 in the forward model (6.70); for the period
1968(4)-1979(4):

E,= 080 E,= 111 Eg=-19

(2.3) (11.3) (2.2) ©.71)

(asymptotic ¢-statistics in parentheses). Thus under an expectations
scheme that embodies a simple form of updating, the forward
demand for money function continues to yield sensible long-run elas-
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ticities (note that we can accept E, = 1) which are also stable over
the 1980(1)-1982(4) period.

Optimal updating schemes

A Muth-rational agent is assumed to act as if his forecasts are
calculated using the true model of economy. In reality, for any real

- world economy there are a number of competing models and the

agent may be uncertain as to what constitutes the ‘true’ model. In
addition it is possible that the parameters of the true model may alter
through time as the economy undergoes ‘regime changes’ (such as
from low to high inflation periods). Also, agents acting on their
predictions from a false model, generate data which later may have to
be explained by the econometrician. Theoretical models that embody
learning by agents are relatively new and do not provide a tractable
alternative for the applied econometrician (see for example, Bray and
Savin 1986). Hence the applied worker either has to utilise survey
data (with its own limitations, see Pesaran 1985) or has to utilise
‘plausible’ expectations schemes. A reasonable compromise is to as-
sume that although costs of information (and inherent uncertainty
about the true model) force agents to use sensible ‘rules of thumb’,
nevertheless they utilise whatever information they have, in an op-
timal fashion as they learn about thejr economic environment. This
leaves considerable scope for the applied worker.

In Chapter 7 we demonstrate two models which embody learning
by agents and we utilise the Kalman filter to estimate these models,
which are known as ‘systematically varying parameters’ and the ‘sto-
chastic trend’ model. Both types of model can be useful in generating
expectations series.

For the varying parameter model we assume agents forecast the
variable x,.; using:

Xev1 = Aﬁai\«vu& (6.72)

where ¢,y is their best guess of ¢ given information up to time, ¢.
An explicit form of time variation in ¢, is assumed, the simplest
being a random walk:

Gr+1 = ¢, + Erv1 * (6.73)

We defer further discussion of the estimation of this model until
Chapter 7 but merely wish to note here that such models can be used
in generating expectations series where the agent continually learns
about his environment and as he does so, he updates his estimate of
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¢. Clearly such a model is not a panacea for modelling expectations,
since it can only mimic the way agents form expectations. However, it
is a useful alternative to assuming agents continuously know the
(constant parameter) true model.

In the ‘unobservable components model’ the econometrician has
observations on y, (e.g. measured income) but we wish to obtain an
estimate of the unobservable permanent income 7,. Measured income
is assumed to consist of permanent income and (zero mean) transitory
income ¢,, hence:

ye=1m + & (6.74)

The agent faces a ‘signal extraction problem’. He has to determine
how much of a change in actual income y: can be attributed to
permanent income (the ‘signal’) and how much is merely ‘transitory’
(the noise). Lucas’ (1972) New Classical supply curve is derived under
similar assumptions, where the firm has to decide the increase in the
aggregate price index based on information about prices in the indus-
try (‘local prices’).

To ‘solve’ the above signal extraction problem we have to make
some assumption about the behaviour of 7,. In the stochastic trend
model (Harvey and Todd 1983) the growth in =, is itself stochastic
and the model reduces to one which may be interpreted in terms of a
stochastic trend for y, and 7,:

Yi=ap + af + uy, 6.75)
I, = af + at + uy, (6.76)

where ¢ =time trend but the coefficient on this variable is time
varying (i.e. a;, a).

The reader need note at this point only that the Kalman filter can
be used to estimate this model and it yields optimal predictions for
Y:+; as more information on y, becomes available. It therefore mim-
ics ‘learning’ by agents.

Cuthbertson and Taylor (1990) use the stochastic trend model to
generate multi-period forecasts for (Y,, P, R,) for the UK, assuming
agents ‘learn’ from their past forecast errors. Using these predictions
X{=(y°, P°, R), and the ‘surprise’ terms (X, — X¢) yield the fol-
lowing forward-looking demand function for UK, M1:

M,=- 087+ 094 M,_,+ 0.0066(SP)
(5.6) (34.1) 1.9)

+ 0.0148Y) - 0.048(SR) + 0.11(P — P?)
(2.8) (3.4) 0.7)

Cross-equation restrictions 183

+ 020(Y - v°) - ,087(R - R, 6.77)
3.5) (5.6)
1964(1)-1979(4), see = 1.41(%), Q(8) = 9.7, w(2) = 3.0, HF(12) = 17.1.

The Wald test w(2) = 3.0 is distributed as central chi-squared and
indicates that a unit long-run price and real income elasticity is
accepted by the data: the long-run interest rate semi-elasticity is
—7.1. The Hendry forecast test indicates parameter constancy over
the period 1980 (1)-1982 (4). ‘Surprises’ in real income (Y — Y*), are
added to money balances and unexpectedly high interest rates on
alternative assets leads to a switch out of M1. The results on the
demand for M1, utilising this particular optimal forecasting scheme
are therefore encouraging. (Q(@8) is the Ljung-Box statistic, and indi-
cates the absence of serial correlation of up to order 8.)

6.5  Rational expectations: cross-equation restrictions

We have already noted that in order to estimate ‘a structural model’
containing expectations variables (such as a forward-looking demand
for money function) we often require an ancillary ‘weakly rational’
expectations generation equation. However to obtain consistent esti-
mates of the structural model we do not require knowledge of the full
information set used by agents. Thus our expectations model often
consists of two equations (even when we do not assume full Muth—
rational expectations). So far we have used our expectations genera-
tion equation (often an AR or var model) to generate instruments for
the unobservable expectations (for example, expected income in the
demand for money). Broadly speaking, predictions from the expecta-
tions generation equation are used as ‘proxy’ variables for the unob-
servable expectations variables. In this section we show that our
two-equation system, plus the assumption of rational expectations
often implies testable cross-equation parameter restrictions. Cross-
equation restrictions provide a test of the joint hypothesis of the
structural model assumed and the assumption of Re. We inserted
‘often’ in the above sentence because in some cases cross-equation
restrictions may not ensue - as in the case of ‘observatiogal equiva-
lance’. Here, an R model may be indistinguishable from a non-re
model. We do not discuss this aspect here (see Pesaran 1987 and
Cuthbertson and Taylor 1988). In general, more efficient estimates of
the parameters are obtained if the two equations that comprise our
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model are estimately jointly. (This applies a fortiori if the cross-
equation restrictions do hold and are then imposed in estimation. )

Tests of cross-equation retrictions abound in the RE literature. For
example, they have been used widely in testing (a) policy ineffective-
ness and neutrality propositions (see below), (b) the efficient markets
hypothesis in, for example, the foreign exchange, stock and bond
markets, (c) in the Life Cycle/rRe model of consumption, and (d) in
forward-looking investment and employment equations (see, inter-
alia, Cuthbertson 1985, Cuthbertson and Taylor 1988, MacDonald
1988, Pesaran 1984, 1987, and Mishkin 1983, Lucas and Sargent 1981
for surveys/readings in this area). Here we only seek to illustrate the
basic issues involved. Tests of the ‘policy ineffectiveness model’ have
been widely reported (Barro 1978, Leiderman 1980) and summaries
are readily available (including Mishkin 1983, Pesaran 1987). The
underlying principles behind tests of cross-equation (rationality) re-
strictions are very similar even though the models considered may be
rather disparate. Hence we demonstrate the basic principles using
empirical results on the Carr-Darby (1981) shock-absorber hypothesis
of the demand for money. We contrast results obtained from two-step
estimation procedures and joint estimation subject to cross-equation
restrictions. The model only has one-period-ahead expectations vari-
ables. Our second main empirical example of testing Cross-equation
RE restrictions utilises multi-period expectations. It is based on the
work of Sargent (1979) and involves our forward-looking demand for
money function.

The shock-absorber model of the demand for money

An important debate in monetary economics concerns the role of
money as a buffer stock (for general discussions and surveys see
Laidler 1984, Goodhart 1984, Cuthbertson and Taylor 1986a). An
important theme in this literature is the notion that money balances
act as a short-run ‘shock absorber’ or buffer to unanticipated shocks
to the money supply. This ideas was advance by Carr and Darby
(1981) and has been examined empirically by them and by MacKin-
non and Milbourne (1984). Carr and Carby (cp) argue that a pro-
portion of unanticipated changes in the nominal money supply are
willingly held in the short run, whereas anticipated changes will be
fully reflected in changes in the price level and so will be neutral with
respect to the level of real money holdings. The cp shock-absorber
hypothesis may be represented by the two equations:
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(m = p), =Bx, + a(m — m?), + ém¢ + u, 6.78)

mi=yz,_ 1 +v, (6.79)

where m, is the logarithm of the nominal money stock at the time ¢,
P. is the logarithm of the price level, x, is the vector of determining
variables observed at time ¢ (such as income, interest rates), which
also includes lagged real money balances; § is a suitably dimensioned

. coefficient vector and u, is a random disturbance. m¢ is the antici-

pated component of money supply and is determined as the predic-
tions from equation (6.79). z,_, is a vector the components of which
are considered by agents to have a systematic influence on money
supply, v is a stable coefficient vector and v, is the non-systematic
component of the money supply process. In the cp paper, equation
(6.78) is a conventional demand for money function augmented by
the monetary surprise term (m — m?),, and anticipated money. cp
argue that anticipated money is fully reflected in the current price
level, that is =0, and a proportion (0< a < 1) of unanticipated
money accumulates as desired money holdings.

However, Cuthbertson and Taylor (1986b, 1988) argue that the
shock-absorber hypothesis makes sense only if the aggregate ‘money
demand’ equation is interpreted as an ‘inverted’ price equation. Re-
arranging (6.78):

=P+ (1l-a)y(m-m, +(1 - Om? + u, (6.80)

Expressing (6.78) in the form of a price equation (6.80) makes clear
the logic of the shock-absorber hypothesis. If 6 =0, anticipated mo-
ney has a proportional effect on the price level, so that unanticipated
shocks lead to a rise in short-run real money holdings.

Cuthbertson and Taylor (1986b, 1988) initially estimate (6.78) (or
equivalently 6.80) for UK and US narrow money using a two-step
procedure. Alternative expectations generation equations (6.79) (e.g.
AR(4), ARIMA, and the stochastic trend model for the money supply
are used to generate predictions 7, and surprises V, = m, — m,.
These are then used in (6.78) in place of m®, (m — m?®) and oLs is
applied to (6.78). (The variables z,_; are used as instruments for m,
to obtain the correct standard errors for é. Cuthbertson and Taylor
find that broadly speaking the cp hypothesis is accepted using this
two-step procedure; that is, & >0 and 6 =0. (See also C8thbertson
and Taylor 1987b.)

Joint estimation, imposing rationality (but not neutrality; 6+ 0),
implies running the equations:
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(m-p) = Bx, + a(m, — YZe-1) + Oyz,—1 + Sx (6.80a)
m, =yz,_1 + vk (6.80b)

Notice that the vector of parameters ‘y’ appears in both equations;
this is the cross-equation restriction implied by rRe. These two equa-
tions without the RE restriction imposed are:

(m — p); =Px, + a(m - Y*2-1) + 6v*z,1 + u,  (6.81a)
my =yz,.1+ v (6.81b)

where y # y*. Under the assumption that u,, v, are normally and

independently distributed with zero mean and variances 02, o2, re-

spectively, then the log-likelihood is:

- T u'u Vv
2 2
1 .82
L 2 Inoy, > Inoy 5 > (6.82)

A test of the RE cross-equation restrictions is provided by a likeli-
hood ratio test between equations (6.80a)/(6.80b) and (6.81a)/
(6.81b). (Note that here this test is conditional on neutrality not
holding, 6 #0.) Since we assume o,, = 0 then the determinant of the
covariance matrix in the unrestricted model (6.80a) + (6.80b) is

det () = 0207

Similarly, the determinant in the restricted model is obtained from
the residuals uf and v to give det (Z). The likelihood ratio statistic
is then:

LR = Tln(detZg/detX) (6.83)

which is distributed asymptotically as central chi-squared under the
null that the cross-equation restrictions y = y* hold. (The number of
degrees of freedom equals the number of independent restrictions in
y=7*)

The above procedure is applicable to most tests of rRe cross-equa-
tion restrictions and with appropriate variants (such as using instru-
mental variables) has been widely applied. One can also use a Wald
test for y = y* which requires only an estimate of the unrestricted
model, but we do not pursue that here (see for example Baillie et al.
1983).

By setting 6 =0 in the above equations and repeating the LR test
one can test rationality subject to neutrality. Similarly one can under-
take a joint test of rationality plus neutrality (i.e. y = y* and 6 = 0)
by comparing the likelihood from the completely unrestricted equa-
tions (6.81a) + (6.81b) with that from equations which impose both
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these restrictions. Cuthbertson and Taylor find both for UK and US
(not reported) narrow money that the hypothesis of ‘rationality with-
out neutrality’ and ‘rationality plus neutrality’ are decisively rejected
by the data (see Table 6.5).

In the two-step procedure one tests the shock-absorber hypothesis
while implicitly imposing the RE cross-equation restrictions (since
m=yZ, y, replaces m® in (6.78)); here Cuthbertson and Taylor find
in favour of the shock-absorber hypothesis. However, joint estimation

- rejects the cross-equation restrictions. Hence, either the shock-

absorber hypothesis or the assumption of Re does not hold — although
we cannot determine from these tests which element of the joint
hypothesis is incorrect.

Table 6.5 Results for UK, Narrow Money (See note)

Fully unconstrained model (y # y*, 6 # 0)

1. LR(8) = 24.34 2a. LR(9) = 29.87
(0.0020) (0.0005)
Rationality imposed (y = y*) Rationality imposed
Neutrality not imposed (6 = 0) Neutrality imposed
1b. LRQ1) = 5.53
(0.0187)

Neutrality test
3. Fully restricted model
Rationalityimposed (y = y*)
Neutrality imposed (6 = 0)

Note: Likelihood ratio test statistics for the jointly estimated model: LR(n) is the
likelihood ratio statistic, asymptotically distributed as central chi-square with n degrees
of freedom. Degrees of freedom are calculated as the number of identified parameters
estimated in the unrestricted system, less those estimated in the restricted system, see
Mishkin (1983). Figures in parenthesis below statistics values are marginal significance
levels.

Forward-looking money demand function

We now address the question of how we can test cross-equation
rationality restrictions when we have multi-period forward looking
variables. The illustrative model is based on Hansen and Sargent
(1982) and has been used widely elsewhere (e.g. Hall er al. 1986b,
Kennan 1979, Cuthbertson 1988). Our forward-lookigg money
demand function may be represented as:

M, = AM,_, + (1 - (1 = AD) 3 (AD)'y’ Z¢,, (6.84)
0
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where Z{ = (P{, Y{, RY) (6.84a)
Y = (cp, €y, CR) (6.84b)

Assuming agents have information up to and including ¢ — 1, we can
rearrange (6.84), (see Cuthbertson and Taylor 1987a), to yield

M, =yM_1+(Q -y Z_ + M (yD)'(YAZL)| + u,

(6.85)

Suppose AZ,,; can be represented by an rth order vector Markov
process

AZ 1 O(L) = vina (6.86)

where ®(L) is a (3 x3) rth order matrix polynominal in the lag
operator L.

oL)=1-Y &L (6.87)
1

and each ® is a deterministic 3 X3 matrix and the roots of
det[®(x)] = 0 lie outside the unit circle. Clearly, (6.86) could be used
by agents to forecast future values of Z,,; which then determine the
demand for money, via (6.85). Using the chain rule of forecasting on
(6.86) yields a very complex expression for say Z{,, even when we
have only a VAR(1) process for Z = (Y, P, R) - try it by hand!
However, such an expression is required if we are to substitute for
AZ,,;in (6.85) and hence test the implicit cross-equation restrictions
between (6.85) and (6.86). Sargent 1979, using the Weiner—Kolmo-
gorov prediction formula, is able to provide a solution to this problem
which results in the following ‘restricted’ two-equation model

M =AM+ (= WY'Zi- + YIL)AZ)) + &,

(6.88a)

AZy =D'(L)AZ, + v,y (6.88b)
where

II(L) = ®(AD) |1 + W_ M (AD)-io, L (6.88¢c)

j=1 k=j+1
Thus the ®; elements from the VAR process (6.88b) also appear in
the (reformulated) money demand function (6.88a) via the term IT(L)
given in (6.88c). These non-linear restrictions must be coded into the
appropriate software and then (6.88a) and (6.88b) can be estimated
jointly. Releasing the cross-equation restrictions on (6.88), gives an
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autoregressive distributed lag (apL) formulation of the money
demand equation which can then be estimated with (6.88b) to yield
the ‘unrestricted’ system. An appropriate test statistic (for example,
likelihood ratio, or quasi-likelihood ratio if instruments are used), can
then be used to test the cross-equation rationality restrictions.

The appropriate estimation technique in this case is also not
straightforward. The error term ¢, in (6.88a) may be shown to be

Ee=(1-4) M (ADY{E(Y'AZ 1+1/Q)

- E(YAZ,1/A)} (6.88d)

where Q, = complete information set used by the agent and A, =
information set available to the econometrician. Because ¢, is a
future convolution it is independent of a subset of the information
available at time ¢, namely A,. Also by RE, v,,; is independent of A,.
If , is not serially correlated then A, provide valid instruments with
which to estimate the joint system (6.88a) + (6.88b). However if, for
whatever reason, {, is serially correlated we cannot use ‘conventional
adjustments’ (GLs) for serial correlation (section 6.2). One of the
methods outlined in section 6.3 must be used. 1v on the unrestricted
ApL money demand equation using A, as instruments yields consist-
ent (but not efficient) estimates of the parameters and hence the
residuals. The latter can be used to estimate the (low order) AR
coefficients p;, p,, etc. on the residuals. If we use the p; to ‘forward
filter’ the variables in the restricted equation (6.88a), then we can
continue to use the 1v set A, dated at time ¢ (Hayashi—Sims 1983).

Cuthbertson and Taylor (1987a) test the RE cross-equation restric-
tion in the forward demand for money equation using data on UK,
M1. The (quasi)-likelihood ratio statistic QLR(3) = 4.36 and does not
reject these restrictions. In the restricted system of equations the
elasticity of the demand for money with respect to income and price
level can be constrained to unity, W(2) = 2.0, and the semi-elasticity
with respect to R is —4.3. Therefore it appears as if the forward
demand for money function together with the assumption of (weakly)
rational expectations characterises the data reasonably well. Of
course, this does not imply that other models of the demand for
money might not perform better on purely statistical criteria (see the
debate in Hendry 1988, Cuthbertson 1991, Muscatelli 1989, Cuthbert-
son and Taylor 1990). However, we hope we have demongtrated how
cross-equation restrictions provide an additional test of the
assumption of rational expectations (conditional in the assumed struc-
tural model) and in general provide a much more stringent test of the
RE hypothesis than two-step procedures.
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6.6 Summary

The implications of introducing expectations variables into both ana-
lytic and large-scale (econometric) models is now well established
(see, for example, Lucas and Sargent 1981, Sargent 1979, Cuthbert-
son and Taylor 1988, Wallis et al. 1986, Fair 1979). However, there is
much debate about how to model expectations variables and how
important expectations actually are in influencing economic behavi-
our. We have presented a wide variety of econometric techniques for
dealing with equations containing expectations terms. Although the
rational expectations assumption has tended to dominate the applied
(as well as the theoretical) literature we have also presented elemen-
tary ‘learning’ models of expectations formation which we believe will
be of increasing importance. Also one must recognise that survey
data on expectations can often be used directly in structural equations
containing unobservable expectations (e.g. Pesaran 1985). Expecta-
tions variables are used widely in structural behavioural equations and
we have analysed the main estimation methods used in the applied
literature.

«

7

State-space models and the
Kalman filter

State-space models were developed originally by control engineers
(Wiener 1949, Kalman 1960) but are receiving increasing attention in
the economics literature. There is a number of advantages in repre-
senting models in state-space form. We noted in Chapter 2 that the
likelihood function can be written in terms of the one-step-ahead
prediction errors % and their variance f,. The Kalman filter when
applied to a model in state-space form provides an algorithm for
producing ¥, and its variance. Since many models (for example all
ARMA models) can be represented in state-space form, the Kalman
filter provides a convenient general method of representing the likeli-
hood function for what may be very complex models. Two types of
model that are especially amenable to representation via the Kalman
filter are unobservable components models and time-varying para-
meter models. In unobservable components models we observe Ve
(say actual income) which we assume consists of an unobserved per-
manent component 7, plus a white noise error &,:

Ye=m + &

The Kalman filter provides an optimal updating scheme for the un-
observable m, based on information about measured income, as it
sequentially becomes available. With this interpretation the unobserv-
able components model provides a method of generating an expecta-
tions series for permanent income ,. 4

In time-varying parameter models we have

Ve =X + g
where (y,, x,) are observables. The problem is then to estimate B, as
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