5

Non-stationarity and cointegration

Cointegration analysis, carefully applied, allows the analysis of long-
run economic relationships. In some ways, this work parallels the
work on error correction mechanisms which we discussed in Chapter
4 on dynamic modelling. As we shall see, there is a close relationship
between cointegration and error correction models.

The basic insight of cointegration analysis is that, although many
economic time series may tend to trend up or down over time in a
non-stationary fashion, groups of variables may drift together. If
there is a tendency for some linear relationships to hold between a set
of variables over long periods of time, then cointegration analysis
helps us to discover it. If an economic theory is correct we would
expect the specific set of variables suggested by the theory to be
related to each other (usually with constant parameters). So there
should be no tendency for the variables to drift increasingly further
away from each other as time goes on. If, however, there is no
(linear) relationship between the variables they are said not to cointe-
~ grate and severe doubt must be cast on the usefulness of the underly-
ing theory. This cointegration can be used to test the validity of an
economic theory if the latter involves variables which in the data set
exhibit strong (stochastic) trends.

5.1 Stationarity
A key concept in the discussion of this chapter is that of stationarity.

In general, we shall be concerned with the idea of weak stationarity
(see Spanos, 1986). A weakly stationary series has a constant mean
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130 Non-stationarity and cointegration

and constant, finite variance. Thus, a time series (x,) is stationary if
its mean, E(x,), is independent of ¢, and its variance, E[x, — E(x,)]?
is bounded by some finite number and does not vary systematically
with time. Thus it will tend to return to its mean and fluctuations
around this mean will have a broadly constant amplitude. A non-sta-
tionary series, on the other hand, will have a time-varying mean (or
variance) and so we cannot in general refer to it without reference to
some particular time period.

The simplest example of a non-stationary process is a random walk
(without drift):

‘Nn = .Nn|H + Wn

where e, is independent and normal, denoted ~ IN(0, &%) so that, if
Xo = 0

t
Xt = M €;
fay

The variance of x, is t6? and this becomes infinitely large as ¢ — . It
is also clear that the concept of a mean value for x, has no meaning.
In fact, if at some point x; = c then the expected time until x, again
returns to c is infinite.

A stationary series tends to return to its mean and fluctuate
around it within a more-or-less constant range. A non-stationary
series would have a different mean at different points in time. One of
the characteristics of a stationary series then is that it tends to return
to, or cross, its mean values repeatedly and this property is the one
which is exploited by most stationarity tests. As we discussed in
Chapter 3, a stationary series will in general have an ARMA represent-
ation. .

5.2  Unit roots and orders of integration

If a series must be differenced d times before it becomes stationary,
then it is said to be integrated of order d, denoted I(d). Thus, a
series x, is I(d) if x, is non-stationary but A%, is stationary, where
Ax, = x,— x,_; and A? = A(Ax,), etc. An alternative way of stating
this is to say that a series is I(d) if it has a stable, invertable
non-deterministic ARMA representation after differencing d times —
that is, if it is ARIMA (p, d, q) for some p, g. This means that the
series can be written as

(1 - L)¢(L)x, = 6(L)e, X (5.1)
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where L is the lag operator (L"x, = x,_,), ¢(L) and 6(L) are poly-
nomials in the lag operator and e, is a stationary process. If x; is
ARIMMA (p, d, q), then we would have

¢(L) = W ¢:L' and O(L) = w 6;L'
i=0 i=0

Now consider the roots of the polynomial associated with the auto-
regressive part in (5.1), that is, the solutions to

(1-L)*¢(z) =0 (5.2)

where z is a real variable. Clearly, this has d roots (i.e. solutions) of
z =1, or in other words, d unit roots. It is for this reason that testing
for the order of integration of a series is often referred to as testing
for unit roots.

In general, if we take a linear combination of two series; each
integrated of a different order, then the resulting series will be inte-
grated at the highest of the two orders of integration. This can be
easily demonstrated. Suppose

x; ~ I(d), y: ~ I(e) 5.3)
where e > d. Now form the linear combination, z,:

Z2: = ax, + By, ‘ 54
If we difference z, d times, we have:

A%z, = aAx, + BA%y, (5.5)

Now the first term on the right-hand side of (5.5) is stationary, since
x, ~ I(d), but the second term is not, since y, ~ I(e) and e>d - it
requires further differencing. As the sum of a stationary series
(«A%x,) and a non-stationary series (BA%y,) is non-stationary then
A%z, is non-stationary. Suppose we now continue differencing up to a
total of e times:

Az, = aA®x, + BA®Yy, (5.6)

Now, aA‘x, is simply aA%x, differenced (e — d) times, and diffe-
rencing a stationary series will always produce another stationary
series. Thus, the first term on the right-hand side of (5.6) is station-
ary. The second term on the right-hand side is stationary since
y: ~ I(e). Thus, A¢z,, as the sum of two stationary series must be
stationary. This illustrates the general principle that, given (5.3) and
(5.4), any linear combination has an order of integration equal to the
highest order of the component series:

z, ~ I[max(d, e)]
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Although this discussion has been in terms of two time series, it could
easily be generalised to the case of three or more.

There are, however, exceptions to this general rule. Indeed, it is
the exceptions of this rule which are of interest in cointegration
analysis.

5.3 Cointegration

The important exception to this rule is where the low-frequency (or
stochastic trend) components to two or more variables exactly offset
each other to give a stationary linear combination. This is the case
with a set of cointegrating variables. The basic idea is that if, in the
long run, two or more series move closely together, even though the
series themselves are trended, the difference between them is con-
stant. We may regard these series as defining a long-run equilibrium
relationship and, as the difference between them is stationary, the
error term in a regression will have well-defined first and second
moments. So traditional oLs regression becomes feasible in this case.
The term equilibrium has many meanings in economics, and its use in
the cointegration literature is rather different from most definitions of
equilibrium. Within the cointegration literature all that is meant by
equilibrium is that it is an observed relationship which has, on aver-
age, been maintained by a set of variables for a long period. Cointe-
gration may be formally defined as: The components of the vector X,
are said to be cointegrated of order d, b [denoted x, ~ CI(d, b)] if:

(i) all components of X, are I(d)

and

(ii) there exists a vector a(#0) such that Z,=o'X,~ I(d - b),
b>0.

Thus if a set of I(d) variables yields a linear combination that has a
lower order of integration (d — b < d, for b > 0) then the vector « is
called the cointegrating vector.

An important implication of this definition is that if we have wo
variables which are integrated of different orders then these two
series cannot possibly be cointegrated. This is an intuitively clear
result; it would be very strange to propose a relationship between an
I(0) series x, and and I(1) series y,. The I(0) series would have a
constant mean while the mean of the I(1) series would tend to drift
over time. Thus, the ‘error’ (y, — ax,) between them would be ex-
pected to become infinitely large over time.

It is, however, possible to have a mixture of different order series

it
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when there are three or more series under consideration. In this case,
a subset of the higher-order series must cointegrate to the order of
the lower-order series. For example, suppose Y, ~ I(1), X, ~ I(2)
and W, ~ I(2). If X, and W, cointegrate then V, = aX, + cW, will
be I(1). V, is now a potential candidate to cointegrate with the
remaining /(1) series Y,. If so, then Z,=eV, + fY,, will be 1(0).
We could summarise this set of circumstances as (i) X,, W, ~ CI(2,
1); Gi) V,, Y, ~ CI(1, 1) and hence (iii) Z, ~ 1(0).

5.4 The Granger representation theorem

One of the most important results in cointegration analysis is the
Granger representation theorem (Granger 1983, Engle and Granger
1987). This theorem states that if a set of variables are cointegrated
of order 1, 1 [CI(1, 1)], then there exists a valid error-correction
representation of the data. Thus, if X, is an N X 1 vector such that
X,~(1,1) and « is the cointegrating vector [i.e. o’ X, ~ I(0)], then
the following general error-correction representation may be derived:

O(L)(1 — L)X, = —a'X,_; + O(L)e, 5.7)

where ®(L) is a finite order polynomial with ®(0) = Iy, ©(L) is a
finite order polynomial, ‘L’ is the lag operator and at least one
element of X is non-zero.

Equation (5.7) is a statistical model containing only stationary
variables and so the usual stationary regression theory applies. This
supplies a complete theoretical basis for the error-correction model
when the ‘levels terms’ in X, cointegrate. The Granger representa-
tion theorem also demonstrates that if the data generation process is
an equation such as (5.7) then X, must be a cointegrated set of
variables. The practical implications of this for dynamic modelling are
profound: in order for an error-correction model to be immune from
the ‘spurious regression problem’ it must contain a set of levels terms
which cointegrate to give a stationary error term. The danger with
dynamic estimation is that the very richness of the dynamic structure
may make the residual process appear to be white noise in a small
sample when in fact the levels terms do not cointegrate and the true
process is non-stationary.

There are a number of other, more minor, implications which
follow from a set of variables (X,, Y,) being cointegrated. First, if
X, and Y, are cointegrated then because Y, and Y,_; will be cointe-
grated for all i, then X, and Y,_; will be cointegrated. Second, if X,
and Y, are cointegrated and individually /(1), then either X, must
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Granger cause Y, or Y, must Granger cause X,. This follows essen-
tially from the existence of the error correction model (5.7) which
suggests that, at the very least, the lagged value of one variable must
enter the other determining equation.

5.5 Estimating the cointegrating vector

One approach to estimating the cointegrating vector would be to
work with (5.7), the error-correction representation of the data. This,
however, is not an easy procedure to implement as it must be remem-
bered that (5.7) is a complete system of equations determining all of
the elements of X,. Further, there is the cross-equation restriction
that the same parameter should occur in the levels parts of all the
equations. So it would in principle, need to be estimated as a full
system subject to this non-linear constraint. In fact, consistent esti-
mates may be achieved much more easily following a suggestion made
by Engle and Granger (1987) which relies on two theorems given in
Stock (1987).

We discussed in Chapter 1 the property of consistency. A related
concept is that of and order of convergence. If B is the oLs estimator
in a regression model which satisfies the classical assumptions, then
converges in probability to the true parameter vector f as the square
root of the sample size T tends to infinity, denoted OAHSV. Stock
(1987) demonstrates that, if a set of variables are cointegrated of
order (1, 1) with cointegrating vector a, then if & is the oLs estimator
of a, then & is 0(T), i.e. & converges in probability to a as T tends
to infinity. Since T goes to infinity faster than T%2, this means that
oLs estimates of the cointegrating vectors will generally be better, in
some sense, than usual. This result is sometimes termed ‘super consis-
tency’.

The intuition behind the super consistency result is quite straight-
forward. Say, for example, we have two variables X,, Y, ~ CI(1, 1).
Consider the regression model

Y,=& X, + Z

where Z, is the residual and & is the oLs estimator. For the true
value of &, Y, — aX, ~ I(0). Clearly, for @ # «, the oLs residual Z,
will be non-stationary and hence will have a very large variance in
any finite sample. For & = a, however, the estimated variance of Z,
will be much smaller. Since the ordinary least squares estimator

essentially chooses & to minimise the variance of Z,, it will be
extremely good at ‘picking out’ an estimate close to «a.
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However, offsetting this super consistency result is another result,
also due to Stock (1987) which shows that there is a small-sample bias
present in the oLs estimator of the cointegrating vector and that its
limiting distribution is non-normal with a non-zero mean. Banerjee et
al. (1986) suggest that this small-sample bias may be important in
some cases and they show that for certain simple models the bias is
related to 1 — R? of the regression, so that a very high R? is associ-
ated with very little bias.

It is important to note that the proof of the consistency of the oLs
estimator of the cointegrating vector does not require the assumption
that the regressors are uncorrelated with the error term. In fact, any
of the cointegrating variables may be used as the dependent variable
in the regression and the estimates remain consistent. This means that
problems do not arise when we have endogenous regressors or when
these variables are measured with error. The reason for this may be
seen quite easily at an intuitive level, the error process in the regres-
sion is I(0) while the variables are I(1) (or higher) so the means of
the variables are time-dependent and will go to infinity. In effect
what happens is that the growth in the means of the variables swamps
the error process.

Engle and Granger (1987) demonstrate that once orLs has been
used to estimate the cointegrating vector then the other parameters of
the error correction model may be consistently estimate by imposing
the first-stage estimates of the cointegrating vector in a second-stage
regression. This is done simply by including the residuals from the
first-stage regression in a general error correction model. This pro-
cedure is sometimes referred to as the two-step Granger and Engle
estimation procedure. They also demonstrate that the oLs standard
errors obtained at the second stage are consistent estimates of the
true standard errors.

The advantages of the two-step procedure are that it allows us to
make use of the super consistency properties of the first-stage esti-
mates and that at the first stage it is possible to test that the vector of
variables properly cointegrates. Thus, we can be sure that the full
error correction model is not a spurious regression.

5.6 Testing for cointegration and drawing inference

Testing for cointegration

Suppose that we have an oLs estimate of the cointegrating vector &
and we may define the ors residuals from the cointegrating regression
ns
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Z,=a'X,
Now suppose Z, follows an AR(1) process so that
Zi,=pZ; +u

Then cointegration would imply stationary errors and hence that
p < 1. The latter suggests testing the null hypothesis that p=1 (i.e.
that the error process is a random walk). The Dickey—Fuller test and
the use of the Durbin—Watson statistic proposed by Sargan and
Bhargava (1983) can both be used to test this hypothesis. There is,
however, a further complication: if « is not known, the problem is
much more complex: under the null hypothesis that p =1 we cannot
estimate « in an unbiased way. Because oLs will seek to produce the
minimum squared residuals this will mean that the Dickey-Fuller
tables will tend to reject the null too often. So we have to construct
tables of critical values for each data generation process individually
under the null hypothesis. Engle and Granger present some sample
calculations of critical values for some simple models. We will discuss
three of their proposed test procedures which have been most com-
monly used, namely the Dickey—Fuller, augmented Dickey-Fuller
and cointegrating regression Durbin—Watson tests.

Consider the following autoregressive representation of a variable
Xy

K= Ag ik g Sy ek tix L 2y o vy (5.8)

where v, is a white noise, stationary error term.
Now reparameterise (5.8):

n+l n+l r/n+1
Dk« = ».o i AM PN|HV.N~IH o AM »;v Dknlu_ + U; (5.9)
i=1

z=1

Consider the regression

Ax, = By + Bix,1 + M aAx, 1 + u, (5.10)
=
Comparing (5.8), (5.9) and (5.10), for stationarity we require ; <0,
while if x, is non-stationary, we would have f; = 0 and the sum of the
autoregressive parameters A; in (5.8) would be unity (i.e. the series
would have a unit root).

Thus, one way of testing for (non) stationarity of x, would be to
estimate a regression of the form (5.10) and to test the null hypothe-
sis B; = 0. Intuitively, this could be done using the ratio of f, to its
estimated standard error. This ‘z-ratio’ is termed the augmented
Dickey-Fuller statistic (apr). Unfortunately, under the null hypothe-
sis of non-stationarity, the distribution of the Apr is not Student’s ¢.
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Fuller (1976), however, has tabulated approximate critical values of
this statistic by Monte Carlo methods. The number of lags of Ax in
(5.10) is normally chosen to ensure that the regression residual is
approximately white noise. If no lags of Ax are required, then the
‘t-ratio’ is termed the (non-augmented) Dickey—Fuller (DF) statistic.
The critical values for the pF and ADF statistics, for a single variable,
are the same and can be found in Fuller (1976). The pF and ADF
statistics thus provide a method of testing for the order of integration
of a variable.

Suppose, for example, x, ~ I(1), then in a regression of the form
(5.10) we would be unable to reject the null hypothesis ; = 0. If we
were then to run the regression

n—1

A%x, = yo + 71Ax,1 + M W A%, + u, (5.11)
=

we should be able to reject the hypothesis y; = 0 against the alterna-
tive 1 <0.

Dickey and Pantula (1988) suggest testing for higher-order unit
roots and then ‘testing down’. For example, estimate (5.11) first, then
(5.10).

If a set of variables is cointegrated of order 1, 1~ CI(1, 1), then
the residual from the cointegrating regression should be I(0). It
would therefore seem that one could test for cointegration by subject-
ing the cointegrating residuals to the pr and ADF tests, and this is
indeed the case. There is, however, and additional complication in
testing cointegrating residuals for non-stationarity using DF Or ADF
tests, which does not arise when applying these tests to single eco-
nomic time series. This is because the oLs estimator ‘chooses’ the
residuals in the cointegrating regression to have as small a sample
variance as possible, even if the variables are not cointegrated, the
oLs estimator will make the residuals look as stationary as possible.
Thus, if we then use the DF or ADF tests on these residuals, we may
reject the null hypothesis (non-stationarity) rather more than the
nominal significance level would suggest. To correct for this test bias,
the critical values have to be raised slightly. Engle and Granger
(1987) have tabulated critical values for tests of this kind, generated
by Monte Carlo methods.

Another test for the cointegrating residuals to contain a unit root,
suggested by Bhargava (1980) and Sargan and Bhargava (1983), is to
test the cointegrating regression Durbin—Watson (crpw) statistic
against a value of zero. This provides a useful complement to the
two-step DF or ADF test, and the Monte Carlo results reported by
Engle and Granger (1987) appear to show that it is quite powerful.
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Intuitively, since cRpw = 2(1 — p), where p is the first-order autocor-
relation coefficient, ckow = 0 when p = 1.

Mackinnon (1988) lists the critical values for the cRpw, DF and ADF
statistics for a number of cases and degrees of freedom.

5.7 Inference on parameter values

It has been well known for some time that non-stationarity not only
presents problems for the consistency of estimation techniques but
that the problem of inference is also greatly complicated. The Dickey
—Fuller statistics discussed above do not have a standard Student’s ¢
distribution even though they are calculated as standard z-tests. Stock
(1987), and Engle and Granger (1987) point out that the standard
errors produced by oLs when performing a static cointegrating regres-
sion are biased and so valid inference about the parameters of the
cointegrating vector cannot be carried out in the usual way. This bias
arises for two quite separate reasons. First and most simply, a static
regression will generally be subject to considerable serial correlation
in the error process and for conventional textbook reasons this will
give rise to inconsistent estimates of the standard errors of the para-
meters. The second reason is more important and more complex. The
non-stationarity in the data gives rise to ‘nuisance’ parameters in the
asymptotic distribution of the parameter estimates which means that
the distribution of the parameter estimates is not generally normal.
More recent work, notably by West (1988), Sims et al. (1986) and
Park and Phillips (1988, 1989) has shown that the situation is even
more complex in that the presence or absence of drift terms in the
non-stationary variables can crucially affect the form of the distribu-
tion of the parameter estimates. ;

We will discuss this topic initially within a bivariate framework of
only two non-stationary variables Y and X and one stationary vari-
able W, whereby assumption Y and X cointegrate. So the model is

Y, =oX,+ W +e,

where Y,, X, are I(1) and by assumption W,, e, are 1(0). Now we
assume that X, is generated by the following univariate process
X,= X, + u+ u,, where p is the drift term (in the random walk)
which may be zero. Now the key point in understanding the way
inference lies in noting the way the asymptotic sample moments alter
as the drift term alters from zero to a non-zero (positive) value. Some
of the key results are summarised below: .
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Case: u=20 Case: u#0
N..!wgkkle/\ N..INE\WN'VQ
M x, — RV M x, — NRV

Distribution of the oLs estimators

T(@ — «) is NSRV Hw\n@\ — @) is NRV
T2(B - B) is Nrv TY2(B - B) is NrRV

where M y, is the moment matrix of X and e, etc., rv is a random
variable, NsrRv is a non-standard random variable and Nrv is a normal
random variable. Note that with zero drift u = 0, the distribution of «
is non-standard while the presence of non-zero drift causes the dis-
tribution to become a normally distributed random variable. Also
note that the presence of non-stationary variables does not affect the
distribution of the stationary variable W,, so that inference can pro-
ceed in the usual way for the stationary components of a dynamic
regression.

The general point here is that a researcher cannot normally use
[-statistics to draw inference about the significance of parameters on
the non-stationary terms in a regression. One exception which can be
made is that if X, is strictly exogenous then the randomness in the
distribution of the oLs estimators comes only from e, which is, of
course, asymptotically normal by virtue of the assumption of cointe-
gration. Then the distribution of the oLs estimators becomes normal
and standard ¢-tests can be used. A further complication is that the
above results for the case u# 0 (i.e. presence of drift) apply only to
the bivariate case. If there are three I(1) variables with non-zero drift
then only some linear combination of the drift terms will be normally
distributed and this cannot be assigned uniquely to any of the para-
meters.

5.8 Exogeneity and cointegration

Engle and Yoo (1989) give a classification of the possible combina-
tlons of cointegration and exogeneity assumptions and their effects on
the distribution of the oLs estimator of the cointegrating vector. If we
#gain continue the bivariate example, suppose we have the general
nystem

Y= aX; + AX,; + u, @)

X, =yAY 1+ &Y,-1 = aX,1) + v, (i)
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Note that in this general model the same cointegrating parameter «,
appears in both equations. This has an important implication for the
weak exogeneity property of both Y and X (the definition of weak
exogeneity is given in Chapter 4). The key point is that even though
X, is a function of lagged Y (and not current Y,), it is not weakly
exogenous in (i) above. This arises because the parameters of the
equation generating X are not independent of the parameters of the
equation generating Y: this is obviously true because they both have
« in common. The general properties of the estimators are now given
for various restrictions on this general model:

1. No restrictions imposed. The model is equivalent to a general
var model and the distribution of the estimators are non-
standard.

2. B=y=06=0. X, is strongly exogenous and so the FiML estima-
tor of @ may be obtained from equation (i) alone and the dis-
tribution of the parameter is asymptotically normal.

3. 8=0. X, is weakly exogenous and again the FiML estimator of «
is given by oLs on equation (i) and the distribution of the para-
meters is asymptotically normal.

4. B=y=0. X, is predetermined but not weakly exogenous as « is
common to both equations. In this case oLs estimation applied to
either the Y or X equations alone will yield non-normal asymp-
totic distributions and both equations should be estimated using a
systems technique (see below for the ML estimator for the unre-
stricted system).

5.9 Three-step estimation

Engle and Yoo (1989) have proposed a ‘third step’ to the Engle and
Granger two-step estimation technique which is computationally tract-
able and overcomes two of the disadvantages of the two-step pro-
cedure. The full three-step procedure is actually given for an unre-
sticted multivariate system. This general form is not, however, par-
ticularly relevant as it has no claim to priority over the maximum
likelihood procedure given below. In the special case of a unique
cointegrating vector and the assumption of weak exogeneity of the
conditioning variables of the dynamic model, the procedure becomes
particularly easy to implement and has some claim to being of rele-
vance to practical work. We will discuss this special case.
The two problems of the two-step procedure are:

1. While the static regression gives consistent estimates of the co-
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integrating vector these estimates are not fully efficient.

2. The distribution of the estimators of the cointegrating vector
provided by the static regression is generally non-normal and so
inference cannot be drawn about the significance of the para-
meters.

The third step provides a correction to the parameter estimates of the
first stage, static regression which makes them asymptotically equiva-
lent to FIML and provides a set of standard errors which allows the
valid calculation of standard ‘¢’ tests.

The third stage consists simply of a further regression of the
conditioning variables from the static regression multiplied by minus
the error correction parameter, regressed on the errors from the
second-stage error correction model. The coefficients from this model
are the corrections to the parameter estimates while their standard
errors are the relevant standard errors for inference.

The three steps are then: first estimate a standard cointegrating
regression of the form

Y, =aX, + Z,

where Z, is the ors residual to give first-stage estimates of &, al.
Then estimate a second-stage dynamic model using the residuals from
the cointegrating regression to impose the long run constraint:

AY; = O(L)AY 1 + QL)AX, + 6Z, 1 + u,
The third stage then consists of the regression
=n = mﬁlwknv l_l Cn

The correction for the first-stage estimates is then simply
@ =al+¢
and the correct standard errors for a; are given by the standard
errors for € in the third-stage regression.
We now turn to a practical example using the cointegration
methodology.

5.10 Long-run purchasing power parity in the 1920s

Taylor and McMahon (1988) test for long-run purchasing power par-
ity using cointegration techniques. Purchasing power parity (ppp) re-
guires that the exchange rate between two currencies should be equal
to the ratio of their price levels. If this is the case, then, at the going
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exchange rate, one unit of the domestic currency will have the same
purchasing power in both countries. If we write

G Py Wy

where e, is the (logarithm of the) nominal exchange rate (domestic
price of foreign currency), p, is the (logarithm of the) ratio of
domestic to foreign prices, and u, represents short-run deviations
from ppp (logarithm of the real exchange rate), then long-run pep
would allow u, # 0 in the short run, but would require u, =0 in the
long run. At least a necessary condition for this to be the case is that
u, be a stationary process. If u, is non-stationary, then it will tend to
get larger over time and e, and p, will tend to diverge without bound.
Thus, if e, and p, are I(1), long-run ppp would require that they be
cointegrated with a unit cointegrating parameter. Taylor (1988) uses
simple models of mesurement error and transportation costs, to sug-
gest that, even if long-run ppp holds, the cointegrating parameter may
deviate from unity. Taylor and McMahon (1988) (Tm) test for cointe-
gration between exchange rates and relative prices for a number of
exchange rates during the 1920s (i.e. under floating exchange rates).
For illustrative purposes, we consider here only their results for the
French franc-UK sterling exchange rate.

T™ first test the exchange rate and relative price series for I(1)
behaviour. For franc—sterling they obtain ADF statistics of —0.71 and
—0.78 for the exchange rate and relative prices respectively. The null
hypothesis is that the series in question is I(1). The rejection region
is {ADF < ¢} with ¢ = —3.58, —2.93 or —2.60 at a significance level of
1%, 5% or 10% respectively (Fuller 1976). Thus, TM are unable to
reject the hypothesis of 7(1) behaviour of exchange rates and relative
prices.

Regressing the exchange rate on relative prices, they then obtain:

e, = 3272 #/1.061 py+ o, (5.12)

where o, is the oLs residual. They then use w, to construct the ADF
and crRDW statistics, and obtain values of —4.62 and 0.662 respect-
ively. The 1% rejection regions for the ADF statistic (applied to the
cointegrating residuals) and for the crow are:

ADF: {ADF < —3.77}

crpw: {crDW > 0.511}

Thus, ™ clearly reject the null hypothesis of I(1) cointegrating re-
siduals (i.e. non-cointegration) and conclude that the exchange rate
and relative prices are cointegrated.
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Since the slope coefficient in (5.12) is close to unity, T™ suspect
that the cointegrating parameter may in fact be unity. They thus test
the real exchange rate, u, = e, — p,, for non-stationarity, using the
ADF statistic, and obtain a test statistic value of —4.15. Since the
cointegrating parameter has been imposed rather than estimated, this
is compared to the Fuller (1976) critical values and the I(1) null
hypothesis is easily rejected. ™™ thus concluded that exchange rates
and relative prices are cointegrated with a unit cointegrating para-
meter, implying that - at least for the 1920s — long-run ppp held
between the franc and sterling. TM then proceed to estimate an error
correction model for the franc—sterling exchange rate and report the
result:

Ae,= 0.857 + 1.727Ap, — 0.803Ap,_; —0.258(e — p),_
(0.323)  (0.135) (0.189) (0.098)

R? = 0.76, DW = 2.05, LM (6, 36) = 0.18

which has acceptable diagnostics. (LM is a Lagrange multiplier test
statistic for up to sixth-order serial correlation.)

5.11 A maximum likelihood approach to cointegration

In sections 5.5 and 5.6 we outlined methods of testing for cointegra-
tion and estimating cointegrating vectors, based on ordinary least
squares estimation. A major advantage of the least squares approach
is that it is relatively simple and intuitive. It does, however, suffer
from a number of disadvantages. One disadvantage is that the dis-
tribution of the test statistics discussed in section 5.6 will, in general,
be slightly different in any particular application — they are not
invariant with respect to the nuisance parameters which characterise

‘any particular situation. Thus, the critical values given in Engle and

Granger can be taken only as a rough guide.

A more fundamental problem concerns the number of cointegra-
ting combinations which may exist between a set of variables. Con-
sider two variables, each of which is integrated of order one
X,~1I(1) and Y,~ I(1). Now, if (X,, Y,) cointegrates with para-
meter « then:

U, = N« b Qﬂn e NAOV AmonV

and « can be shown to be unique. To see this, suppose we had
another cointegrating parameter, f3:

w, = X, — pY, ~ 1(0) (5.14)
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Adding and subtracting Y, in (5.13):
.= X, —(a- P Y, —pY,
that is,
u = w;, — (@ — BY; (5.15)

By assumption, u, and w, are both I(0) while Y, is I(1). The latter
three conditions can hold only if o = B that is, « is unique. Unfortun-
ately, once we consider more than two variables, it is no longer
possible to demonstrate the uniqueness of the cointegrating vector.
Indeed, it turns out that if we have a vector of N variables, each
integrated of the same order, then there can be up to (N —1)
cointegrating vectors. (In the preceding paragraph, we merely demon-
strate this for N = 2.)

Thus, if we cannot reject cointegration between a set of three or
more variables, based on least squares methods, we have no guaran-
tee that we have an estimate of a unique cointegrating vector. In a
system with three variables, for example, it is quite possible that
there are two statistically significant distinct cointegrating vectors and
that our oLs estimate is a linear combination of them.

Johansen (1988) suggests a method for both estimating all the
distinct cointegrating relationships which exist within a set of variables
and for constructing a range of statistical tests. The method begins by
expressing the data generation process of a vector of N variables X
as an unrestricted vector autoregression in the levels of the variables:

N~ 5 :HNMIH A ukxalk Fiey AM.HQV

where each of the IT; is an (N X N) matrix of parameters. The
system of equations (5.16) can be reparameterised in EcM form:

>N~ = H‘H>N~I» 4+ H,MDN..IN n i H,NIHDN“I»+H
+ MJNAN«|W + Nn AM.H.QV
HJ.."|N:THH~..T...HHT u."“_.v....\ﬂ.

Thus I';, now defines the long run ‘levels solution’ to (5.16).

Now, if X, is a vector of I(1) variables, we know that the left-hand
side and the first (k — 1) elements of (5.17) are I(0) but that the last
element of (5.17) is a linear combination of I(1) variables. Johansen
uses cannonical correlation methods to estimate all the distinct
combinations of the levels of X which produce high correlations with
the I(0) elements in (5.17); these combinations are, of course, the
cointegrating vectors. Johansen’s approach is a maximum likelihood
method of estimating all of the distinct cointegrating vectors which
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may exist between a set of variables. Johansen also shows how one
can test which of these distinct cointegrating vectors are statistically
significant, and also how to construct a likelihood ratio test for linear
restrictions on the cointegrating parameters.

Consider an N-dimensional vector of variables X,. Johansen starts
by considering a kth order vector autoregression (var) for X, (5.16)
where e, is an independent and identically (normally) distributed
vector of disturbances, with zero mean and covariance matrix A. All
terms on the right-hand side of (5.17) are clearly 1(0) except the final
term. Thus, the last term on the right-hand side must also be 1(0):
I'x X,_x ~ I(0), either X contains a number of cointegrating vectors
or I'x must be a matrix of zeros.

Now consider an N X r matrix f3 such that

QNT» gt NAOV

If all the elements of X, are I(1), then the columns of f must form
cointegrating parameter vectors for X,_; and hence X,. Since there
can only be up to (N — 1) cointegrating vectors, B must have r less
than N. If, however, X, is I(1) but the elements are not cointe-
grated, B must be a null matrix. Now define another (N X r) matrix
« such that:

—T; = ap’ (5.18)

The Johansen technique is based upon estimating the factorisation
(5.18). Suppose, for example, that there was in fact only one co-
integrating vector. Then we need consider only the first column of «
and S, (5.16) could then be written:

DNM — HJHNNIH = H;ND\N_,IN A|9\HN“|\«V + e (5.19)
where Z, = X, ~ 1(0).

The system (5.19) is directly analogous to (5.7). Indeed, it is the error
correction representation of the system where the lag length k is
assumed high enough to allow one to assume a white noise disturb-
ance vector, e,, and the error correction term enters with lag k. (It is
in fact easy to show, by simply rearranging terms, that the error-cor-
rection term can enter at any lag.) Thus, Johansen provides a tech-
nique for estimating all possible cointegrating vectors, the f matrix as
well as the corresponding set of error-correction coefficients, the o
matrix. If the X, vector does in fact cointegrate — one or more of the
B: vectors are statistically significant - then, by the Granger
representation theorem, we know that a; must contain at least one
non-zero element. In general, considering all of the logically possible
cointegrating vectors, (5.19) is written



146 Non-stationarity and cointegration

Dkw = HJHN«lH + HJNDNH|N + o e AIQR\VNuI»\ﬁ = &u AW-NQV

A fuller discussion of the Johansen technique is given in the appen-
dix. Here, we can consider the following sketch.
The likelihood function for the system (5.20) is proportional to

T
Lia, B AL, o0 Dya) = (0 28 %T\N 2 @b-ﬂsvv

Where T is the number of observations Q is the covariance matrix of e.
Rewrite the system (5.20) as

\VNM =+ D‘\\w\knlk o H.NDNT.H el H,\nIHDN«I»+H +'e; AM.NHV

If (af’) were known, maximum likelihood estimates of the I'; could
be obtained by ordinary least squares. Consider therefore, correcting
for the effect of the k lags of AX; on AX, and X,_;. Correcting the
right-hand side for AX,_; (j=1, 2, ...), i.e. taking out their effect,
just leaves e,. We can correct X, and X,_, for the effects of k lags of
X, by replacing AX, and X,_, with the residuals from regressing
them individually on {AX,;, ...AX, ;}. Note that this will not
change their basic properties; X, , remains (1) and AX, remains
1(0). Thus (5.21) becomes:

Ry + af'Ri = e (5.22)
where R, is the vector of residuals from regressing AX, on to
AX, 1, ..., AX, ;} and Ry, is the corresponding residual vector for

X ,_«. The expression for the likelihood function, (5.20), can now be
written:

N\HAQ, \w, mwv
T
= _>_|ﬂ\N exp AIH\N M (Ror + Q@%av‘@lﬂﬁm& + Q\m\havv (5.23)
t=1 .

If B were known, an estimate of o and of A could be oc::zoa in the
usual way from a regression of R, on 8'Rg,. Thus, & and A can be
expressed as functions of .

a(B) = —So BB SuB) ™ (5.24)
Q(p) = g — SokBB'SixB) "1 B’ Sko (5.25)
e i M w: jto ~.v \ 0 k Am.Nav

After substituting (5.24) and (5.25) into (5.23), the concentrated
likelihood function can be seen to be proportional to

Ly(B) = |Q(B)|~ T :
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= |Soo — SokB(B' Sk B) 1B’ Sko| =T (5.27)

Thus, maximum likelihood estimation of the full set of possible coin-
tegrating vectors, B, involves choosing f to minimise the function

= S0 — Sok BB SkicB) B’ Sio| A (5.28)

Johansen shows how this can be done by solving an eigenvalue
problem. The matrix B is thus obtained as a set of eigenvectors
together with a corresponding vector of (N — 1) eigenvalues 4. The
columns of B are significant only if the corresponding eigenvalue is
significantly different from zero. Let the elements of A; be ordered
such that

MHV MNV MZIH

and let the columns of § also be ordered accordingly (i.e. so that in
the column of j, m: is the eigenvector noa.omvosa_:m to v These
eigenvalues are defined such that the maximum likelihood estimate of
Q is given by

N
(8 = |8, m 1- %) (5.29)

Now suppose we wish to test the null hypothesis that there are at
most r cointegrating vectors:

HolL<h 8781 N~1

where only the first r eigenvalues are non-zero. If these restrictions
are imposed, the restricted estimate of A denoted A is

S(B) + S0l m (1-4) (5.30)

Since the likelihood function can be expressed in terms of the esti-
mate of A, equation (5.27), we can use (5.27), (5.29) and (5.30) to
form a likelihood ratio statistic for the null hypothesis of at most r
cointegrating vectors.

iR(N — r) = —2In(Q) = - T M In(1 -7, (5.31)

i=r+1
where
restricted maximised likelihood
unrestricted maximised likelihood

Q"

LR(N — r) has degrees of freedom equal to the number of restric-
tions, (N — r). Note that for ;=0,i=r+1,... N, LR(N — r) will
be zero, and will tend to get _m:mo as one or more of the A; approach
unity.
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The likelihood ratio statistic defined in (5.31) does not, in fact,
have a xn distribution, even in large samples. Johansen does,
however, find the asymptotic distribution of LR(N — r) by applying
some results in Brownian motion theory. This distribution does not
vary with the particular model being estimated or other variable
factors as in the case of the Dickey—Fuller tests for cointegration;
however, it is not invariant to the assumption made about the under-
lying vaR model. In particular, there are three main assumptions
which may be made:

1. The var may be as specified in (5.16) without any constant term.

2. The vAr has a restricted constant term which appears only as a
part of the cointegrating vectors so that the Ecm form (5.17)
contains any constants within the term I'g X,_g only.

3. The var has an unrestricted constant. This means that if the ecm
form of the var (5.17) has some equations which do not contain
a cointegrating vector (so that they are purely difference equa-
tions) these equations will still contain constants. This is unlike
assumption 2, where the constants were associated with the co-
integrating vectors. So these variables will behave like generalised
random walk variables but with a drift term and the data will
contain deterministic trend terms. This assumption is therefore
characterised by the presence of deterministic trend in some of
the variables.

Johansen (1989) gives the critical values for all three cases for the test
outlined in (5.31).

5.12 Testing linear restrictions on the cointegrating
parameters :

In section 5.11 we gave an outline of a maximum likelihood technique
for testing for and estimating the set of unique cointegrating vectors.
Johansen (1988) also demonstrates how the technique can be applied
to test linear restrictions on the parameters of the cointegrating vec-
tors.

Suppose that, after an initial application of the Johansen tech-
nique, we have decided that there are at most r cointegrating vectors
among the N-dimensional vector X,. Let the (N X r) matrix of
cointegrating vectors be . Johansen considers linear restrictions on
which reduce the number of independent cointegrating parameters
from Nto S, S<N.

For example, suppose we analysed a vector consisting of the ex-
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change rate (e;) and domestic and foreign prices, pf and p, respect-
ively (all in logarithms). As in the example discussed in section 5.10,
if Z, = (p.e,p})’ was an I(1) vector, then long-run purchasing power
parity would suggest that

8 = e — p, + pf~ 1(0) (5.32)
Thus, if we found r = 1 statistically significant cointegrating vectors:
Bne: + Bop: + Bupi =8, i=1,...,71 (5.33)

Then, the restrictions in (5.32) involve reducing the number of inde-
pendent cointegrating parameters from three to one. For the full
(N X r) matrix 8, they can be written:

1

Batolle
1

where ¢ is a (S X r) (in this case 1 X 1) matrix of parameters.
In general, Johansen considers restrictions which can be written in
the form

H,:p=H¢ (5.349)

where H is an (N X §) matrix of full rank = § and ¢ is an (S X r)
matrix of unknown parameters.

The method of obtaining the restricted estimates is straightforward.
Since H is known, simply replace § with H¢ in the procedure
discussed in the previous section, to obtain an estimate ¢* say. The
restricted estimate of f is then given by f* = H ¢*.

Along with the restricted estimates will be produced a set of
eigenvalues, A, corresponding to the set produced in the unrestricted
estimation, and similarly ordered such that Af > A%, ... A}. The rela-
tionship between these eigenvalues and the maximised value of the
likelihood function, see (5.27), (5.29), (5.30), can then be exploited
to yield a test of the hypothesis based on the first r cointegrating
vectors:

LR¥[r(N — §)]= —2InQ =T ME: -/ - %))

(5.35)

This will have an asymptotic chi-square distribution with r(N — §)
degrees of freedom. As is generally the case with likelihood ratio
statistics, the number of degrees of freedom is equal to the number of
restrictions r(N — §) since (N — §) fewer parameters are estimated
in each of the r cointegrating parameters vectors.
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5.13 Example: The demand for broad money during the
Gold Standard

Taylor (1991) estimates a ‘long-run’ demand function for UK broad
money for the period 1871-1913. He starts by testing for unit roots in
a pre-specified set of variables — broad money (m;,), prices (p,), real
income (y,), the long bond rate (rRL,) and the prime bill rate (reB,),
(all data except interest rates in logarithms). The results are listed
here as Table 5.1. Taylor uses the DF test and the Johansen statistic
(5.31), where ‘cointegration in one variable’ simply implies that the
variable is 1(0). Table 5.1 suggests that all of the ‘levels variables’
listed above correspond to I(1). Table 5 .2(a) then demonstrates that
at a nominal significance level of 5% the hypothesis of zero cointe-
grating vectors is strongly rejected, while the hypothesis of one or
more cointegrating vectors is not. Taylor thus concludes that there is
a unique statistically significant cointegrating vector relating the vari-
ables. This is reported as the unrestricted equation 1 in Table 5.2(b),
where the cointegrating parameters have been normalised on m;,.

Taylor then argues that, whilst the short interest rates RD, and RPB,
may effect ‘long run’ or ‘average’ money demand, their long-run
effect will be felt only through their constant means. He therefore
tests for cointegration amongst, m;, ps, y; and RL;. He then estimates
a VAR for these variables with lag length two (chosen on the basis of
standard diagnostics, see Chapter 4) and applies the Johansen pro-
cedure. The results are given in Table 5.2.

Table5.1 Unit root tests for money, prices, income and interest rates

Variable Dickey—Fuller statistic Johansen statistic
m, 1.00 1.04
Am, —4.21 16.80
D: —1.60 1.66
Ap, =503 22.97
Y ~0.32 0.28
Ay, —3.82 21.82
RL, —0.68 2.24
ARL, —3.54 9.87
RD, —3.68 14.35
RPB, -3.30 11.69

Note: The null hypothesis in each case is that the variable in question is I(1); the 5%
rejection region for the Dicke —Fuller statistic is {preR|pF < —2.93} (Fuller 1976,
p. 373); the 5% rejection region for the Johansen statistic is {JeR|J > 9.094} (Johansen
1989). .
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Table5.2 Applying the Johansen procedure to money demand during the
Gold Standard

(a) Tests for cointegration

Null hypothesis Likelihood ratio statistic 5% critical value
Number of cointegrating vectors r

r<3 0.001 9.094
r<2 5.12 20.168
r=1 20.65 35.068
r=0 60.21 53.347

(b) Estimated cointegrating vector (largest eigenvalue only)

1. Unrestricted: m, = 1.06p, + 0.97y, — 0.097rL,

2. With homogeneity restrictions: m, = p, + y, — 0.076rr,
Likelihood ratio statistic: LR(2) = 1.39 (0.50)

3. With exclusion restriction on RL: m, = 0.78p, + 1.01y,
Likelihood ratio statistic: LR(1) = 7.618(0.5E — 2)

Note: Em.E.nm in parenthesis are marginal significance levels. The Lr(n) statistics are
asymptotically x*(n) variates under the null hypothesis.

The likelihood ratio statistics

Given the cointegrating vector (non-normalised) from the Johansen
procedure:

Bum; + Bp; + By + PurL, ~ 1(0)
then equation 1 in Table 5.2(b) corresponds to

m; = —(Bi/B11)P: — (B13/B11)y: — (Bua/B11)RL,

This equation clearly looks like a ‘textbook’ money demand function
— it has a negative interest rate semi-elasticity and the coefficients on
prices and income are positive and close to unity [Table 5.2(b),
equation 1].

Taylor then tests for price and income homogeneity, i.e that the
‘long-run’ coefficients on prices and income are unity when normal-
ised on money. In terms of (5.34), these restrictions are written:

B 1y

ok R e .PQ
B3 )
Bra s

so that

P_ = P11, B2 = =1, Pra = =y and m: = ¢z
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The restricted estimates are given as equation 2 in Table 5.2(b) and
the likelihood ratio statistic (5.35) for the restrictions is LR(2) = 4.57.
The restrictions are not rejected at the 5% level.

Finally, Taylor tests whether rL, can be excluded from the co-
integrating vector. The likelihood ratio statistic listed alongside the
restricted equation 3 in Table 5.2(b) shows that this hypothesis is
easily rejected at the 1% level.

5.14 Summary

Cointegration deals with the relationships between variables that have
stochastic trends. If cointegration is not rejected then there exists one
or more ‘long-run’ linear relationship between the variables. The
economic interpretation of the these relationships requires an a priori
economic theory. Cointegration implies the existence of a dynamic
error correction model, which again must be interpreted with the aid
of economic theory. Hypothesis testing on the cointegration para-
meters, of I(1) variables, is possible although not standard. Cointe-
gration is currently one of the most active research areas in time
series econometrics and innovative results are frequently appearing in
journals. We have provided an overview of the basic ideas in this area
that are likely to be of use to the applied economist.

Appendix: The Johansen procedure

Johansen (1988) sets his analysis within the following framework.
Begin by defining a general polynomial distributed lag model of a
vector of variables X as

e i G S i P o )

where X, is a vector of N variables of interest; m; are NXN coeffi-
cient matrices, and ¢, is an idependently identically distributed N-
dimensional vector with zero mean and covariance matrix Q. Within
this framework the long-run, or cointegrating matrix is given by

I—-m~—my...="T =17 (A2)

where I is the identity matrix.

7 will therefore be an NXN matrix. The number, r, of distinct
cointegrating vectors which exists between the variables of X, will be
given by the rank of 7. In general, if X consists of variables which
must be differenced once in order to be stationary [integrated of
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order one of I(1)] then, at most, » must be equal to N — 1, so that
r<N —1. Now we define two matrices @, § both of which are
N X r such that

7= aff

and so the rows of f form the r distinct cointegrating vectors.
Johansen then demonstrates the following theorem.

Theorem: The maximum likelihood estimate of the space
spanned by B is the space spanned by the r canonical variates cor-
responding to the r largest squared canonical correlations between
the residuals of X,_; and A X, corrected for the effect of the lagged
differences of the X process. The likelihood ratio test statistic for the
hypothesis that there are at most r cointegrating vectors is

N
—2InQ=-T > In(1- 1) (A3)
i=r+1
where Ll i y are the (N — r) smallest squared canonical corre-

lations. Johansen then goes on to demonstrate the properties of the
maximum likelihood estimates and, more importantly, he shows that
the likelihood ratio test has an asymptotic distribution which is a
function of an (N — r) dimensional Brownian motion which is inde-
pendent of any nuisance parameters. This means that a set of critical
values can be tabulated which will be correct for all models. He
demonstrates that the space spanned by f is consistently estimated by
the space spanned by B.

In order to implement this theorem we begin by reparameterising
(A1) into the error correction model:

DuXM T H,ND»NMIH i e H;»I~>»N~lk+~ #+ H‘anlw gl o) A>hv
where

HU.":I.N-TS.HAT...S.NW Pl g ke

The equilibrium matrix 7 is now clearly identified as —I';.

Johansen’s suggested procedure begins by regressing AX; on the
lagged differences of A X, which yields a set of residuals R,,. We then
regress X,_; on the lagged differences AX,_; which yields residuals
Ry;. The likelihood function, in terms of &, B and Q is then propor-
tional to

4
L(a, B, Q) = |Q|"T2exp[~1/2 X, (Ry + af'Ru)’  (AS)

t=]

Q7' (Ry + f'Ryy))
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If B were fixed we could maximise over o and Q by a regression of
R,; on —f'R;, which gives ,
&(B) = — S BB SuB) ™ (A6)

and

Py

Q(B) = Soo — SorB(B'SiB) ™" B’ Sko (A7)
where

T
Sip= gl M} Wt etk
t=

and so maximising the likelihood function may be reduced to mini-
mising

__.m.ee ¥ Mow\wA\w‘M;mvlﬁh‘hwo_ (A8)
It may be shown that (A8) will be minimised when
|B'SkkB — B'SkoSSoo " SoiBl/|B’ Sl (A9)

attains a minimum with respect to S.

We now define a diagonal matrix D which consists of the ordered
eigenvalues ;> ... > Ay of (Si,S54S0k) with respect to Sy. That is
A; satisfies

WSk 7 SisSop. Skl =0 (A10)
Define E to be the corresponding matrix of eigenvectors so that
SikED = SioSp0" ' So E (A11)

where we normalise E such that E'S, E = 1.

The maximum likelihood estimator of 8 is now given by the first »
rows of E, that is, the first r eigenvectors of (Si,S,, 'S,k) with
respect to Sy;. These are the canonical variates and the corresponding
eigenvalues are the squared canonical correlations of R;, with respect
to R,. These eigenvalues may then be used in the test proposed in
(A3) to test either for the existence of a cointegrating vector r = 1 or
the number of cointegrating vectors N > r > 1.

Johansen (1988) calculates the critical values for the likelihood
ratio test for the cases where m <5, where m = P — r, and P is the
number of variables in the set under consideration and r is the
maximum number of cointegrating vectors being tested for.




