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Dynamic modelling — the general
to specific methodology

In this chapter we give an account of one particular approach to
econometric modelling. This approach has been developed largely by
individuals associated with the London School of Economics and we
will term it the LSE tradition. This approach does not of course enjoy
universal support; alternative modelling frameworks have for example
been proposed by Leamer (1978), Sims (1980) or Zellner (1971), to
name but a few. Nonetheless, we regard the LSE tradition to be of
sufficient importance that it warrants a detailed exposition. The
founder of the LSE tradition is without a doubt Sargan who both
through his own research Sargan (1964) and through the work of his
students, Davidson et al. (1978), Davidson and Hendry (1981),
Hendry and Von Ungern-Sternberg (1981), Hendry and Mizon
(1978), Mizon and Richard (1986), etc. have had an enormous influ-
ence on applied econometrics. ,

In the first section we will outline the conceptual approach of the
LSE tradition. Section 4.2 will examine a range of test procedures
which have come to play a central role in applying the approach. The
final section will give an example of the practical application of the
approach using the demand for money.

4.1 The conceptual approach

At the centre of the LSE approach lies the concept of the data
generation process (DGp), see Hendry Pagan and Sargan (1984),
which represents a totally general statement of the joint probability
distribution of all variables. As such it is too general to have any
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direct practical use but its importance lies in providing a benchmark
against which more simple models may be measured. It also allows us
to formalise the assumptions and steps we need to make when we
construct actual models for estimation.

Suppose x, is a vector of observations on all variables in period ¢,
and X, ;= (x,-1...x1)’, then the joint probability of the sample x,,
the pGgp, may be stated as

ﬂ D(x,|X,_y; ©) @.1)
t=

where © is a vector of unknown parameters. The process of econo-
metric modelling then consists of simplifying this very general formul-
ation by imposing a set of restrictions. We therefore ‘simplify’ the
DGP to yield a set of explicit equations complete with numerical
parameter estimates. These simplifying assumptions may be categor-
ised into four types.

1. Marginalise the pcp. The full pGp contains far more variables
than we are normally interested in, or can possibly deal with. We
therefore select a subset of ‘variables of interest’ and relegate the
rest to a set of variables which are of no interest given the
problem at hand.

2. Conditioning assumptions. Given the choice of ‘variables of in-
terest’” we must now select a subset of these variables to be the
endogenous variables (Y;). These are then ‘conditioned’ or deter-
mined by the remaining variables (Z,) of interest. The Z, should
be, at least, weakly exogenous for this ‘conditioning’ to be valid.

3. Selection of functional form. The full bGP is a general functional
specification and before any estimation can be done a specific
functional form for the model must be assumed.

4. Estimation. Finally, the unknown parameters in the assumed
functional form must be replaced by a set of estimated numerical
values.

It is wrong to think of these stages as being sequential. As Spanos
(1986) has emphasised, the early stages of marginalising and condi-
tioning are often done with a sharp eye on how the data perform at
stage 4. It is therefore best to view the process of applied econo-
metrics as an interaction among these stages until an adequate model
is achieved.

Given the general pGp in (4.1) we may represent the first two
assumptions by the following factorisation, where the function ‘B’
represents what one might usually refer to as the structural equations
of interest.
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The first component, A, specifies the determination of W, the vari-
ables of no interest, as a function of all the variables X,. The second
term B gives the endogenous variables of interest Y, as a function of
lagged Y and the exogenous variables Z,. The final term C gives the
determination of the exogenous variables Z, as a function of the
lagged endogenous and exogenous variables.

For the conditioning assumptions of the model to be valid we
require that the Z, variables are at least weakly exogenous. This
means that Z, is independent of Y,, as is assumed in term ‘C’ in
(4.2). It also requires that the parameters of interest of the model to
be finally estimated (®) are a function of f only and the B and y are
variation free. !

Other, more general, forms of exogeneity are strong exogeneity
and super exogeneity: Strong exogeneity is given by the assumption
that the third term in (4.2) takes the form (Z,|Z,_;: y) that is, the
exogenous variables are determined without any reference to any
lagged values of the endogenous variables Y ,. The strong exogeneity
assumption therefore amounts to the assumption of weak exogeneity
plus the assumption that Y does not ‘Granger cause’ Z. Super
exogeneity is related to the Lucas (1976) critique. Lucas points out
that when we model expectations by functions of lagged variables
then the parameters of these functions may vary as the regime for
determining the expectation variable changes. Super exogeneity rules
out this possibility by assuming that the parameter vectors 8 and y
are independent. Under this assumption a change in the f vector will
not influence y. Super exogeneity is strong exogeneity plus this as-
sumption of independence of 8 and y. In general, weak exogeneity is
all that is needed for estimation and testing, strong exogeneity is
necessary for forecasting and super exogeneity for policy analysis.

Having made our assumption about the conditioning and marginal-
isation we may then state a partial log likelihood function for our
model as

t
log[L(®)] = >, L(®; ylzss yi-1) 4.3)
=1

and this may form the basis for estimation. It is important to realise,
at this stage, that the assumptions needed to produce (4.3) are virt-
ually never satisfied, in particular the chance of producing a correct
and complete marginalisation of the data set is vanishingly small. As
a result we can characterise the situation reached by equation (4.3) by
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the statement that ‘all models are false’. We do not therefore want to
determine whether our model is the true model but rather we want to
test the model to see if it is an ‘adequate’ model. A model derived as
above cannot be regarded as correct or valid in an absolute sense but
rather as a useful tentative hypothesis. A good model will be congru-
ent with all the evidence, that is to say it will be a statistically
acceptable representation of the data which cannot be unambiguously
outperformed by any other known model.

The LSE tradition in practice

Given an economic variable to be explained, say Y, the first step is
to use economic theory to determine a set of m explanatory variables
X,=(X; ... X,),. This is the marginalisation of the complete set
of all variables into the set of variables to be considered (Y, X),.
The conditioning of the data is determined by which, if any, elements
of X, are deemed not to be weakly exogenous. Given that agents will
normally be operating within an inherently dynamic environment, it is
likely that the X;, will influence Y, with a certain lag structure. Let n
be the maximum lag with which an element of X influences the
current value of Y, and suppose also that Y, be a function of its own
lagged values. (In practice, n will be determined on such consider-
ations as the available degrees of freedom and the nature of the data,
for example four lags perhaps for seasonally unadjusted quarterly
data.) The real-world process generating Y, is then assumed to be
contained or nested within the linear model:

\— s :
5qu+ M_ B%TH+ »M Mm:um5l.+§ ﬁ.e
i= =1 i=0

where u; is a white noise disturbance. Since economic theory gener-

ally has little to say about short-run dynamics, the LSE tradition
starts with the general unrestricted form (4.4) as the maintained
hypothesis. Having estimated (4.4) the next step is to sequentially
impose economically meaningful restrictions on the maintained hypo-
thesis, each restriction being tested for significance against the slightly
less restricted specification which precedes it in the sequence.

Hendry et al. (1984) provide a typology of the various dynamic
specifications which are nested within (4.4), an exposition of which
can be given in terms of the simplest form of (4.4), when m = n = 1:

Yi=ag+t oYyt BoXy + B1 X, + U, 4.5)

Imposing a; = B, = 0 in (4.5) yields a static regression model, while
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setting B; =0 yields the standard partial adjustment form. Setting
a; = B =0 indicates that X acts as a ‘leading indicator’ for Y,.
Imposing a; = 0 makes Y depend on a finite distributed lag of X. If
both of the restrictions a&; =1 and By + B; =0 are accepted, then
(4.4) can be reduced to a first difference formulation (if Y and X are
logarithms, this yields an equation in the growth rates of Y and X).
Setting By =0 in (4.5) yields Y, as a function of lagged values of
itself and X,, and is termed by Hendry et al. a reduced form or ‘dead
start’ equation, for obvious reasons.

An interesting reparameterisation of (4.5) may be used to show
how the above dynamic equation can be represented as a ‘static
equation’ with an AR(1) error. This is the basis of the so called
‘common factor’ test. If one believes that a static equation has an
AR(1) error, one cannot simply perform Cochrane—Orcutt (1949)
estimation and accept the ensuing parameter estimates; one must also
‘pass’ the common factor test. To illustrate the latter, rewrite (4.5) as:

[1 = oqL]Y, = ap + Boll + (B1/Bo)L]X, + u, 4.6)

If the restriction a; = —B;/B, is not rejected by the data, then the
polynomial in the lag operator (in square brackets) contains a com-
mon element (factor) namely the coefficient in front of ‘L’. Multiply-
ing (4.6) by (1 — &y L)~! and assuming the common factor restriction
holds, we have

Y, =aof+ BoeXi+ & @.7)
where

Q=al) u, =6 ore = ae g+ u (4.8a)

(1-aL) 'af=0ay oraf=ay/(l — o) (4.8b)

Hence, imposing the non-linear restriction &4y + f; =0 in (4.5) is
equivalent to assuming a first-order serially correlated error AR(1) in
the static model (4.7). Equations (4.7)—(4.8) contain one less para-
meter than (4.5) and it is in this sense that serial correlation can be a
convenient simplification rather than a nuisance (Hendry and Mizon
1978). To present the argument in a different vein, if the naive
researcher runs a highly restricted equation (4.7) and finds evidence
of first-order serial correlation and performs Cochrane—Orcutt, the
results from the latter cannot be accepted unless the researcher also
runs equation (4.5) and tests the common factor restriction. The
Cochrane-Orcutt regression is

Y, — oY, q) = (1l — aq) + Bo(X; — 1 X,1) + vy
- (4.8¢)
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with «; being the AR(1) parameter — obtained from the residuals in
(4.7). The common factor likelihood ratio test is then

Lr(k) = T In [rss(4.8c)/rss(4.5)]

where rss is the residual sum of squares, k is the number of restric-
tions in (4.8c) — in this case 1 — and T is the number of observations.

Lr(k) < x% leads to non-rejection of the common factor restriction
and supports (4.7) and (4.8a). If the common factor restriction is
rejected, then even if a;, of, By are statistically significant, they are
inconsistent estimates. In the latter case we must assume some other
form of serial correlation in (4.7), say MA(q), AR(p); p > 1, or accept
(4.5), the dynamic equation as our new maintained model rather than
4.7) + (4.8).

Another reparameterisation of (4.5) introduces an error correction

mechanism (EcM).
AY, =g+ BpA1 X, — (1 — o) (Y-g — X,9)
4.9)
+yX, 1+ u

where
y=a+ B+ p—1 (4.92)

Equations (4.9) and (4.5) are just different ways of expressing the
same equation. However, proponents of the LSE tradition would
probably argue that (4.9), a form of error correction model (ecm), is
more intuitively appealing than (4.5). To illustrate this point, note
that the static equilibrium solution from either equation is given when
AY, ;=AX, ;=0, and Y, ;=Y; X, ;=X are constant (and
u, =0):
Y = [ao/(1 — ay)] + [(Bo + B/ — ey)]X
However if y =0 in (4.9), then Sy + B; = (1 — @) and the long-run
static equilibrium solution is
X elal-agl+ X

Hence a ¢-test on y in (4.9) provides a very simple way of testing for
a long-run unit elasticity. Suppose y = 0 is not rejected in (4.9), the
dynamic equation then becomes

AY; = BoAX; — (1 — ey} (X 1q — Y i) 4.10)
where
Y= a/(l1-a) + X, (4.10a)

If (1= ay)>0 then if actual Y,_; is above its long-run equilibrium
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value Y} ;, we expect AY, to fall in the next period, which brings
actual Y, closer to Y*. Also, in (4.10) the growth in Y, depends on
the growth in X, with a coefficient §,. Hence fyAX, and the Ecm
terms are ‘sensible’ dynamic decision variables given the long-run
equilibrium condition of a unit elasticity.

In estimation the constant term in the equation for Y} , (4.10)
would be estimated ‘separately’:

AY, = ag + BoAX; + 1 (Y — X)—1 + u, (4.11)

where f; = —(1 — @;). Equation (4.11) imposes the long-run unit
elasticity for any (non-zero) value of f; (and for dynamic stability
—2 < B;<0). One can use the ecm formation in a number of useful
ways; for example, consider the following two equations:

1

AY, = BAX, — B (¥ —0.9X), ¢ : (4.12a)
AY, = BoAXy + B1AXy — B3(Y — X1)i4
= BUY = X9, (4.13a)

with long-run static equilibrium solutions
Y = 09X (4.12b)
Y = [Bs/(Bs + Ba)] X1, + [Baf(Bs + Ba)l X2 (4.13b)

Thus equation (4.12a) imposes long-run elasticity of 0.9 while equ-
ation (4.13) imposes homogeneity between Y and X, plus X, (since
the coefficients in square brackets sum to unity for any non-zero
values of 5 and B,). The latter might represent a production function
with constant returns to scale or a price mark-up equation on wage
costs (X;,) and raw materials costs (X,,). Note that the restrictions
apply to the long run and the dynamic response in the estimated
equations (4.12) and (4.13) is reasonably general. To test for the
above restrictions one merely adds yX, ; to (4.12) and either
y1X1:-1 or ¥,X5,_; to (4.13) and performs a simple ¢-test on the
appropriate y.

Let us now consider ‘growth effects’ in the auto-regressive dis-

tributed lag (apL) framework, our unrestricted AbL model is
4 4

5u§+M35-H+ Mo PNE+5 3.5
i=1 i=
and this unrestricted apL form embodies ‘growth effects’: that is the
level of Y depends not only on the level of the X variables but also
on the rate of growth of X. To illustrate this point suppose we
sequentially test and impose the restrictions on (4.14), namely
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a; =0, i=2,3,4
Bi=0, i=3,4
a1+ Bot+ B1=1
then the restricted form of (4.14) is
MY, =ap+ PoAr1 X, — (1 — o) (Y1 — X,29) + u, (4.15)
The steady-state ‘growth solution’ for (4.15) is obtained by using
AX, =g,AY,=g,, X, 1= X, — g, etc. in (4.15)
e el A e
8x

%o
H|Q~

a1 -a) Li— oy

Taking first differences of (4.16) and noting that by assumption
Ag, = Ag, =0, we obtain g, = g, and hence (4.16) becomes
o (Bo — 1)

it e T i

Unless (By — 1)/(1 — @;) =0 then Y depends on the growth in X, in
steady state. The impact of g, on Y can often be large empirically.
Although growth effects are usually not implied by economic theory,
however, if we impose the restriction of a zero growth effect we may
severely distort the lag structure. In our extremely simple illustrative
example a zero growth effect implies f, = 1, that is the short-run and
long-run response is the same: a strong restriction compared with the
lagged effects in the unrestricted EcM, (4.15). In practice, growth
effects are often ignored and in any case one would not expect a
‘constant growth solution’ from an equation estimated over data that
is quite short and volatile to yield very precise estimates of ‘growth
effects’.

The ecM specification can be justified theoretically within (finite or
infinite horizon) quadratic costs of adjustment framework (Hendry
and von Ungern-Sternberg 1981; Nickell 1985). Less formally, the
specification captures the idea that agents alter their behaviour ac-
cording to ‘signals’ that they are out of equilibrium. For example, if
Y is the logarithm of (real or nominal) money stock and X is the
logarithm of (real or nominal) income, then the error correction term
(Y;-1— X,_4) is the logarithm of the money income ratio lagged
once. Deviation in the money-income ratio from its long-run value
will lead to future changes in money holdings by agents, in order to
move closer to their desired long-run position.

The ecm specification has worked well in a number of empirical

v g (4.16)

4.17)
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studies of the demand for money in the UK, both for broad defini-
tions (Hendry and Mizon 1978) and a narrow definition (Hendry
1980) and also for the US demand for money (Baba et al. 1987). An
EcM consumption function (Davidson et al. 1978, Hendry 1983) for
the UK also performs well statistically.

Two further points should be noted about the econometric
methodology outlined in this section. Firstly, general-to-specific me-
thodology will inevitably involve a certain amount of ‘data mining’ (or
‘lag mining’ perhaps). For this reason it has become customary to
subject the final ‘preferred’ equation to a number of diagnostic
checks. Whilst these checks will usually have greatest power against a
specific alternative hypothesis (higher-order serial correlation, hetero-
skedasticity, etc.), they will usually also give some idea of the general
adequacy of the specification.

Secondly, when agents have forward-looking expectations, the
parameters of dynamic models of this kind will generally be functions
of the parameters of agents’ objective functions and of the historically
given stochastic environment (see Hansen and Sargent 1980; Sargent
1981; Cuthbertson and Taylor 1987). They may therefore be subject
to the Lucas (1976) critique.

4.2 Testing the dynamic model

Clearly when we move from the general dynamic model (4.4) to a
restricted parameterisation of it such as (4.15) it is important to test
the model in a number of ways. It is important to test the general
unrestricted model for a homoscedastic serial uncorrelated error pro-
cess at an early stage since all further testing is (usually) dependent
on white noise errors in the maintained hypothesis. We must test the
restrictions directly and we must also check that the assumptions
made about the residuals are not violated in the restricted model.

A range of test statistics is used to assess the validity of a model
and this section will outline some of the most common. The under-
lying theoretical derivation of these statistics will not be given here as
Chapter 2 discusses the construction of the three main classes of test
procedures and the relationship between them. Often an Ecm model
is contructed or ‘designed’ so that one ensures it passes a set of
diagnostic ‘tests’. Tests for parameter constancy and encompassing
tests then become of increasing importance in testing competing mod-
els.

S o
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Testing the restrictions (F-test)

At each stage in moving from our general equation to our ‘best’
equation we need to test the acceptability of the restrictions we are
imposing on the model. In the case of a simple exclusion restriction
this can be done using the standard ¢ test. In the case of a combin-
ation of restrictions or a set of linear restriction involving more than
one parameter we must use a more general procedure. The most
commonly used test is the F-test which is a special version of the
likelihood ratio test. Suppose we have a general ‘unrestricted’ model
Y,=pBoX,+ u, and a restricted set of parameters B which gives
Y, = B1 X, + v,, where B, contains fewer non-zero coefficients than
B1. Then we may construct a test of these restrictions by estimating
both the unrestricted and the restricted models (as both are needed
for the construction of the test it is a likelihood ratio test).

We define rss; to be the residual sum of squares from the unre-
stricted regression and Rss, to be the residual sum of squares from
the restricted regression. The F-test may then be most conveniently
calculated as

(4.18)

Bl T = ) Tﬂmmw — RSS; :H oy \«v

RSS; m

where T is the total sample size, k is the number of parameters in
the unrestricted model and m is the number of restrictions. This is
then distributed as F(m, T — k). This test allows a wide range of
restrictions and combinations of restrictions to be tested although it
must be remembered that when a number of restrictions are tested
jointly, rejection may be due to only one of the restrictions being
invalid.

The intuition behind this test is simple; if the restriction is valid

then we would expect Rrss; to be only slightly larger than rss;. We

are therefore testing for an increase in rss, which is ‘too’ large to be
due to chance.

The Durbin—-Watson statistic (DW)

One of the earliest tests for serial correlation in the error process is
due to Durbin and Watson (1950); this test is still used widely so we
present it here, although it does have a number of disadvantages. In
particular it is known to be inappropriate when the model contains a
lagged dependent variable and also the rejection criteria consists of a
region rather than an actual point. The formula for the pw statistic is
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M . (u, — :TDN
S, t=2
s
t=1

where u, is the residual from the estimated equation, Y, = ' X, + u,.
It may easily be shown that

4.19)

DW=2—2p

where p is the first-order serial correlation coefficient in the residual
process u, = pu,_1 + v,. When there is no serial correlation, p=0
and the pw statistic takes a value of 2. Positive serial correlation
(Pmax = 1) produces a pw <2 while negative serial correlation pro-
duces a pw > 2. We set up the null hypothesis Hy: p=0, and a pw
value sufficiently far away from 2 rejects this hypothesis (in favour of
the assumption that serial correlation is present). The pw statistic can
be generalised to tests of higher-order serial correlation but other
tests are more frequently used in such cases.

The Lagrange multiplier (LM) test for serial correlation

A more satisfactory test for serial correlation may be constructed
using the Lagrange multiplier approach discussed in Chapter 3. This
test has an asymptotically exact distribution and is valid in the pres-
ence of lagged dependent variables. It can also be constructed to test
for any order of serial correlation. We begin by setting up two
general models of the error process, an AR(m) model.

U; = P11t Pullsy + & (4.20)
and a Ma(m) one
U = Uy + P1U¢1 -+« Prili-m

where ¢, and v, are white noise errors and u, is the error term from
the structural equation y, = Za;y,_; + ' X, + u,. The null hypothesis

Hy: p1 ... pn=0, is that there is no serial correlation. The Lm
statistic is based on the R? from the auxiliary regression.
K
Gy =vil1 ...+ Ymllyem + M oy + B X, 4.21)
e

where fi, is the residual from the structural equation; @, is the
residual utilising consistent parameter estimates (&;, B).

The LM test statistic with m degrees of freedom is then given by
Lm(m) = TR?, where T is the sample size, and this is asymptotically
distributed as yx?(m), under the null. Intuitively if H, is true we

h
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expect y; in (4.21) to be zero, for the R? from (4.21) to be low and
hence LM(m) to be ‘small’ and less than ¥*(m).

One difficulty with tests of this form, based on the Lm procedure
using an auxiliary regression, is that they are valid only when the
estimation procedure is ors. If any form of 1v estimation is used then
this LM test (and the Breusch-Pagan, Arch or Reset tests given
below) is invalid. Breusch and Godfrey (1981) have however sug-
gested a generalisation of the auxiliary regression LM procedure in the
case of instrumental variable estimation. The null hypothesis is Hg:
P1=...pm =0, and the modified LM(MLM) test is then given as

mim = T(R? — R)

where R? is the R? statistic of the oLs regression of @i, on the full set
of instruments used in the estimation process (and #, are the struc-
tural errors generated by (4.4) with &, & and By the 1v estimates).
R} is the R? statistic of the oLs regression of g, on the same set of
instruments (where g, is the residuals generated by (4.4) when @, ;
... U;_,, is also added to the set of explanatory variables in (4.4)).
This test is again disributed as x?(m).

Instrument validity test

Much of this chapter has proceeded on the assumption that the
estimation technique being used is oLs; section 1.6 (Chapter 1) de-
monstrated that when the right-hand side variables are not all weakly
exogenous then a suitable estimation strategy is instrumental variables
(1v). The choice of a correct set of instruments in the absence of a
complete knowledge of the system is difficult and even if we know
the full system the full set of instruments may be too large given the
available data set, so a subset may have to be used. We would then
naturally wish to test our chosen set of instruments to see if they are
independent of the structural error term &;. Under the null hypothe-
sis that the instruments are independent of the error term, the IV/2SLS
residuals are consistent (see Chapter 1). Define the instruments as

W = (wy, x1)

where x; is the weakly exogenous variables in the equation and w;
are the instruments for the endogenous variables. If W is independ-
ent of £; we would expect a regression of &; on W to yield a low R?.
This intuitive argument is consistent with the Sargan instrument valid-
ity test. In place of the unobservable &;,, we use the 1v residuals &,.
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The required oLs regression is:
g, = Wa
The R? from this regression is then used to form the Sargan test:
sarG = (T — k)R? ~ x*(r)
where
T = number of observations
k

r

number of parameters in the structural equation

number of over-identifying restrictions (the number of
instruments in w; minus the number of endogenous
variables on the right-hand side of the equation)

Under the null( H,) of independence of the instruments and errors
SARG is asymptotically distributed as ¥%(r) and hence for sarc < y?
we ‘accept’ H,. If sara is greater than the chosen critical value then
we conclude that at least one of the instruments is correlated with the
error term and the 1v estimates are invalid. The Sargan test may be
written in an alternative form which often appears in the literature:

SARG = (8, P, 8,)/s
where P,, = projection matrix of instruments = WW'wW) lw’

s =(&/e)NT - k)
These two forms of the test may easily be shown to be equivalent.

The Box—Pierce and Ljung—Box test

Clearly an important source of information in detecting the presence
and form of serial correlation, for example AR(1) versus MA(1), is the
correlogram, discussed in Chapter 3. Qualitative examination of the
correlogram is an important diagnostic tool but it does not constitute
a formal statistical test. The Box—Pierce and its related test the
Ljung-Box test are both portmanteau tests which allow us to test the
hypothesis that the first m points on the correlogram are random with
a true value of zero. If we define r; as the ith autocorrelation
coefficient (or point on the correlogram) then it may be shown that
asymptotically, r; is approximately N(0, T~-172) under the null of no
serial correlation of order i. Hence for T =64 observations any
individual |r;| > 0.23 is indicative of serial correlation of order i (this
test is very approximate for i =1...4 and.more precise for i > 4).

e
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Box-Pierce test (generally denoted Q) is defined as
m
il g
i=1

and asymptotically this will be distributed as x?(m). In fact it has
been noted that the Q statistic has rather poor small sample proper-
ties and a better small sample statistic is given by Ljung-Box (often
denoted Q%) statistic which is defined as

Q*=T(T+2)D(T-ir? 4.23)
i=1

This is again distributed as x?(m) under the null hypothesis of no
serial correlation. Intuitively, if a subset of r? are ‘large’ then Q (or
0%*) will be ‘large’ indicating the presence of serial correlation. For
both Lm and Q(Q%*) acceptance of H for say m = 8, requires one to
check the individual r; to see if a large number of r; close to zero do
not mask the presence of a highly significant individual or subset of
;.

Heteroscedasticity

The general Breusch-Pagan procedure

The most general forms of heteroscedasticity considered in the econo-
metric time series literature usually take the form

Q.w = QNQ\Nw = QNAQO o kaf, + QNNNn e .v 4.24)
2

o= o' X)) =0*[ad + aiX?, + ...
+ M > 0 Xy X ] 4.25)
i#]

Q.w = QNON@AD\NLN = Q.NON@_”Q‘\W + QWNW e

- M > @i Xy X (4.26)
i#]
where X, is a vector of variables which is assumed to be associated
with the changing variance of the errors u,. (The first element of X,
is a constant, and « is a suitably dimensioned vector of parameters.)
Often X, consists of a subset of the variables of the ‘structural
equation’ Y, = BX, + u, (where X, may contain lagged dependent
variables but this is not necessary for the procedure to be valid).
Breusch and Pagan (1979) point out that the assumption of homo-
scedastic errors is equivalent to the null hypothesis
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mc a1]'= "ty = ...QS"O

Under H,, a, = ko® (where k is a constant) and is therefore con-
stant and homoscedastic. They propose a standard rLm test of this
hypothesis based on the auxiliary regression for (4.24) for example:

(@?2/6%) = Al 4.27)

where &% is the standard error of the structural equation

=f'X,+u,. Once again the 1M test in this case is
HT(m) = TR?, where the R? is from equation (4.27). Under H,,
HT(m) is asymptotically distributed as y*(m). ,;m intuition behind
this test is as follows. Under the null o, = . . =0 and so the R?
of this regression should be zero. If the R? mm Emr then it says there
is a systematic movement in u? which is Eme correlated with one or
more of the X variables and so E(u?) # o0? (a constant).

(¢4} = 5 QNRM.‘ e

Testing for an ARCH process

An alternative form of heteroscedasticity is termed auto-regressive

conditional heteroscedasticity (arcH). Instead of relating o? to a

vector of variables (X) as above, u? is assumed to depend on past
squared errors u?_y, u?_,... The ARCH process is autoregressive in
the second moment. Engle (1982) proposed a LM test for the presence
of an ArcH process. The appropriate auxiliary regression in this case
is:

~2

0F ='ag F aqlsir £ ol @i, 4.28)

and again the test statistic Arca= TR? from (4.28). Under
Hya1y=a,=...=a,,=0 ARcH is asymptotically distributed as
¥*(m —1). The most common form of this test considers only the
first order autoregressive model (m = 1).

Parameter stability tests

Two types of Chow test (denoted c; and c, below) are used to test
for statistical parameter stability, that is whether parameters remain
stable given that they are always estimated with error. The general
idea of parameter stability tests is that we have some known data Ty,
after which we believe a structural break may have occurred in the
model. So there is the possibility that the general model has the form

Y, =B X, +u,, u ~N@Oodt<T (4.29)
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and
= B,’X, + u,, u, ~ N, 03): t= T4 (4.30)

The total number of observations is T=T1+T,. Ty=1... T,
Ty=Ti+1.:.2T

Hro null hypothesis that the model is structurally stable is H:

= B, and o} = 03. This of noE.mm involves two separate hypo-

EOmOm H}: B,= B, and H% ﬂ = 0% where we are generally more
interested in testing H{ than H3.

A complication which arises in constructing tests of this hypothesis
lies in the choice of T;. In order to estimate both of the models
(4.29) and (4.30) we require T > k and T — T, > k, where k is the
number of regressors in the model. This is simply a requirement that
there are sufficient degrees of freedom in both sub-samples to esti-
mate the models. We need to consider a test statistic for the case
where both T; > k and T — T; > k holds, and when it does not.

Case A: T; >k and (T—T;) >k

This is an analysis of variance (anova) test. In this case we can
estimate the model over the whole period and each of the sub-samples.
We define rssy as the residual sum of squares for the model estimated
over the whole period, rss; as the residual sum of squares over the
period with T observations, and Rss, as the residual sum of squares for
the second period with T, observations. Then under the null H, (the
joint hypothesis), the statistic c;:

i Awmmﬂ — (RsS; — RSSy) XH - N»v
i RSS; + RSS; k

is distributed as F(k, T —2k). c; is ooBEo:J~ om__oa the O:oi test
(Chow 1960). We can also separately test H3, namely o? = 03 using the
statistic

4.31)

MMIAWM&IVE @.32)

174 =
irogd rssy ) (T2 — k)

2
where s; is the standard error of the appropriate regression in periods
T, and T, s; Iwmm.\Q, E V, is distributed as F(T,— k, T1— k)
aunder the null that o? = FEE<0€ the test (V;) for equality of
variances in the two sub- mmBEom is straightforward. If we have equal
variances across sub-samples then V; =1 and it will be less than the
critical value of the F distribution.

Since c; tests for the E:: _dﬁoﬁom_m H, it is useful to first test V.
If V, is not rejected (i.e. 3 = 03) then we test c;. Rejection of ¢; then
implies B;# B,. If V; is rejected we would also expect ¢; to be
rejected but we cannot say whether the latter implies that B; # B.
Inference on By = B, in such circumstances must remain inconclusive.
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Case B: T, <k

It is usual to consider only the case where T, < k since the case of
T; < k may be dealt with in an exactly analogous fashion. When there
are not enough degrees of freedom to estimate B, or rss, directly, a
second version of the Chow test is possible:

O Awwmﬂ Iwm& VA HRI wv Aauuv
il RSS1 N;m ;

This is distributed as F(T,, T — 5 EEQ the null that B; = B, against
the alternative that B, # B, and o= 03 C, is a Ho_E hypothesis and
to test separately for constant error variance o7 = 03 we proceed as
follows. Estimate over the first 7'; observations to ocSE B'. If we
denote the values of (Y, X,) over the second period as X% X% then
the one-step-ahead forecast errors (usin ng ww are il = M\N B X}
(there are T, of these) under the null of = 03, the variance of Eomo
one-step-ahead forecast errors in the maoona period, should equal those
in the ?.mﬂ Wonoa — as measured by s7 = rss;/(T; — k). Under the null

that o? = 03,
HE(T,) = (sH! M i, 4.34)

is distributed as x?(T,). This test is sometimes referred to as the
Hendry forecast test. >mm5, the sequence of testing should be first to
use HF to check that 0% = 03 cannot be rejected, and then C, to check
that B; = B, cannot be rejected.

Although HF is a test of constant error variances, it may also be
viewed either as an indicator of numerical parameter constancy or
equivalently as a test of the relative accuracy of out-of-sample point
forecasts. s7 is a measure of the within sample variance of the errors
or within sample forecast accuracy since @l =y} — 94,. The iy, series
measure out-of-sample forecast errors (using the estimate of B based
on the first 7 observation.) If B is numerically the same in 7'; and
T, @onoam we would expect i, to be of the same order of magnitude
as #i;;,. Hence HF would be unity for each of the T, periods, and
HF < y2, that is we do not reject numerical parameter constancy. A
word of caution: if the equation fits badly within sample (s? large)
then one may have HF < y2 but the absolute value of the out-of-sam-
ple forecast errors ii;; may be large. Here we have a ‘bad’ fit within
the sample and equally poor predictions out-of-sample. It is therefore
worth looking at individual #,, values.

These structural stability tests may be used more powerfully in a
recursive setting by computing a sequence of tests where the ‘break’
period moves through time (see below). Another useful test pro-
cedure is the Salkever (1976) test which is similar in approach to the
Chow tests. In this test a set of dummies (pv; =00 ... 0100, each
with unity in the ith period) are added to the equation for j sub-

——
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periods. Then a joint F-test of the significance of the set of dummies
is constructed to test for a structural break over the sub-period. The
size of each dummy coefficient is equal to the out-of-sample forecast
error and the ‘¢’ statistics on individual coefficients indicate those
periods for which the equation undergoes a statistically significant
shift in its parameters.

Recursive estimation and testing structural stability

Recursive estimation may be viewed as a special case of the Kalman
filter and as such it is a powerful and interesting technique of its own
right. In this section, however, we will be considering the more
limited use of recursive estimation in testing the stability of structural
models. One of the difficulties of the formal stability tests presented
above is that we make the assumption that a possible break point is
known ‘a priori’ and we simply wish to test this known point. In
general, however, we have no strong prior knowledge of specific
structural breaks and so it is useful to have a general framework to
investigate the stability of a model. Recursive estimation provides
such a framework.

Recursive estimation may be thought of as a series of conventional
oLs estimation of the same model where the data period is increased
mcooo%:\m_% by one period in each estimate. It therefore produces a
time series of estimates of 8, B, from the estimated equation:

Yi=B X, +8 d=1..86 1=k .71 (4.35)

It must be stressed that while B, varies, the underlying B is assumed
to be constant, so this is not a time-varying parameter model. We
simply derive varying estimates of the constant f from different data
sets. It is intuitively clear that if our model is structurally stable the
variation in f3,, as we move ::o:wr time, should be small and
random. So sudden large changes in B, may indicate vonoam of
structural break, while non-random or trend movements in B, may
indicate some underlying misspecification. Once a specific period of
instability is detected we could then turn to one of the structural tests
above. However, the usefulness of recursive estimation does not end
with the estimation of 5, as we see below. The recursive residuals are
defined as:

v, =Y, =B X, t=k+1...T

This amounts to the one-step-ahead forecasting error made by the
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oLs estimation procedure. Under the null hypothesis that f is con-
stant and u,~ N(0,0%?) then v,~ N(0,0%d?) where d,=
i xd XX, ) tx) 7! defining: XL ov = kxps v v Xrid)s8nd 50
we may define the standardised recursive residuals as

w, = v,/d, ~ N(O, QNV

While the standardised recursive residuals follow the same distribu-
tion as the ors residuals they have a number of advantages. The first
is that the oLs residuals are constrained (when a constant is included
in the regression) to sum to zero. So, by definition there can be no
overall departure of the residuals from zero. This is not true of the
recursive residuals and so they will often show systematic departures
from zero if there is any misspecification of time variation in the
parameters. The second important property of the recursive residuals
is that it may be shown that

RSS; = RSS;_1 + Sw

That is, the residual sum of squares for an oLs estimation over period
1 to t is given by the residual sum of squares for an oLs estimation
over the period 1 to (¢t—1) plus the squared standardised recursive
residual for time ¢. So given w, it is possible to construct a wide
variety of alternative Chow tests. For example, we could construct a
series of one-period Chow tests, each testing the hypothesis that a
structural break occurs in a successively later period.

Two test procedures which take special advantage of the properties
of the recursive residuals are the cusumMm and cusumsa tests of Brown,
Durbin and Evans (1975). Both tests consist of a series of statistics,
defined as:

t
cusum, = (1/s) D, w;
i=k+1

where s is the full sample estimate of the standard error of the
regression

t T
RSS;
CUSUMSQ, = A > va A b :\wv -

i=k+1 j=k+1 RSST

The cusuM test is therefore simply the sum of the recursive residuals
normalised by the standard error of the residuals. If the residuals are
random we would expect the cusum statistic to remain close to zero;
any systematic departure from zero would suggest misspecification.
The cusumsq statistic is simply the sum of the squared recursive
residuals normalised by the residual sum of squared errors for the full
period, so at T, cusumsa = 1. Both of these tests are used generally
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in the form of a plot of either the cusum or cusuMsaQ statistics against
time and critical values may be found in Harvey (1981). It is generally
recognised however that the formal power of the tests is rather low
and in practice they are often used as an informal diagnostic tool.

It is perhaps finally worth noting that the cusumsa test may be put
into the form of a recursive Chow test since the Chow (c,) test given
in (4.33) may be written as

e NIk
5 CUSUMSQ, T-T,

Hence the cusumsao test may be interpreted as a particular form of
sequential Chow test.

Testing functional form

An important simplification in the move from the general pGp to an
actual maintained hypothesis that is estimable is the assumption of a
particular functional form. The Box-Cox (1964) procedure provides
one method of, assessing functional form, but a simple yet fairly
general test is that due to Ramsey (1974). In Ramsey’s test the
alternative model involves a high-order polynomial to represent a
different functional form. The rREseT test (Ramsey 1974) in its most
common form consists of the following regression

. Y, =P X, +a: X2+ ¥+ ...+ e, m (4.36)

where ¥, = mum , are the predictions from the preferred structural
model. The higher order powers in Y, implicitly involve higher order
terms in X, as well as cross terms (such as X;,X,,) and hence
embody a functional form different from Y = B'X.

Subtracting B’ X, from both sides of (4.36) we obtain

m
8, =7X + >a it @.37)
i=1
where ¥’ = (B’ — B)’. Under the null Hy: &y = a3 = ... a, =0, the
RESET test is RESET(m) = TR? and is distributed as y*(m).

Testing for normality
An important assumption underlying the use of ors, and most test

statistics, is that the residuals of the model are normally distributed.
When this assumption and the others regarding marginalisation and
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conditioning are valid then oLs is the maximum likelihood estimator.
There are several non-parametric tests for normality (the Kolmo-
gorov—Smirnov test and the Shapiro—Wilk test are examples) which
we will not discuss here. The most widely used parametric test is
based on testing the third and fourth moments, skewness and kurto-
sis, for departures from normality. Skewness is given by the formula

Hﬂ Hq
mxu AI M =wv AI M &v% Aa.né
T 5 T 5
sk is centred on zero and, when standardised by T°° has a variance
of 6. Kurtosis is given by

Hﬂ
mwu Al M ﬁv A M SV 3@3
1
When this is standardised by T2 it has a mean value of 3 and a

variance of 24. Given those properties it is possible to construct the
following test for =9.Bm=€, due to Bera and Jarque (1982):

—l sk + Amx — 3) _ (4.40)

and under the null that the error term is normally distributed this will
be distributed as x*(2).

While testing for normality is obviously important in practical
applications the By test is perhaps even more useful as a test of
outliers. It is very sensitive to the presence of outlier observations
and so failing the By test is often simply a signal to look for one or
two large errors and see if there are data problems or specific effects
(such as strikes, incomes policy periods) which can be ‘eliminated’
with dummy variables.

Encompassing test

The idea of a model being adequate in the sense of being congruent
with the data is an important one. It involves passing all the tests
outlined above, but it also involves the model being one which cannot
be dominated in all senses by some other model. To implement the
latter point we need a framework for testing models against each
other; this is the encompassing principle, see Mizon and Richard
(1986). In general terms the notion of encompassing is a simple one.
A model M; may be said to encompass another model M, if it can
explain the results of that model. As an example, suppose M; con-
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tains an important weakly exogenous variable which behaves erratic-
ally at some point in time. If M; represents the pce fairly well and
M, excludes this variable we might expect to see structural instability
of M, at the point in the data set where the omitted variable changes.
In this case M; would predict the structural failure of M, and we
would say that M; encompasses M,. More formally we may follow
the definition of Mizon and Richard. Let ® denote some statistic
which we are using to assess M, and let ©; = E 1(B) denote the
expectation of ® when it is applied to M;. Then under a suitable set
of exogeneity assumptions we may consider the statistic.

¢=06-0,

which compares the observed value of @ with its expectation under
M;. It may be shown that M; encompasses M, with respect to 6 if ¢
does not differ significantly from zero. Clearly in order to implement
this we must derive forms of ¢ with a known distribution. One of the
advantages of the encompassing principle is that it provides a frame-
work for linking many existing test procedures. In particular, when
we are dealing with nested pairs of models (i.e. when either My C M,
or M, CM;) then Mizon and Richard show that the standard test
procedures may be given an encompassing interpretation. So we may
use F-tests or likelihood ratio tests in the usual way, giving the results
an encompassing interpretation. Similarly in a non-nested framework
(when neither M; is contained in M, nor M, is contained in M;) then
many of the non-nested tests may be applied as encompassing tests,
for example the J test of Davidson and Mackinnon (1981) or the
Hausman (1978) specification test.

To illustrate the case of variance encompassing consider the follow-
ing two competing explanations of Y

Mi:Y=Xa+u u~(0,0%) 4.41)
My:Y=ZB+w w~(0,0%)" 4.42)

For any given sample of data we have the following relationship
between the variables X and Z

X=Zy+wv (4.43)

On the assumption that M; is true we would expect M, to be
estimated as

Y = Z(ya) + (va + u) (4.44)
Comparing (4.44) and (4.42) under M; we expect
0% = 0% + o&?ol (4.45)
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and o7 < 0%, asymptotically. Hence if M is true we expect it to have
a lower standard error than a competing model Mj,; this is a variance-
encompassing test.

In the case where one model M, is nested within another larger
model M; (i.e. ZC X) the M; will automatically encompass M,.
This means that a model can always be made to encompass rival
models simply by adding variables so as to nest the rival models. This
approach is of little value and to rule out this trivial form of encom-
passing the concept of parsimonious encompassing is used. A model
is said to be parsimonious when it uses the minimum number of
estimated parameters to adequately represent the pgp. So we may say
that M, parsimoniously encompasses M, if and only if M, encompas-
ses M; and M, is nested within M;. (Note that it is possible for both
M; to encompass M, and M, to encompass M;.)

Where we are dealing with two non-nested hypotheses the encom-
passing principle offers a new approach to the standard non-nested
tests which is intuitively appealing. Hendry and Richard (1987) de-
monstrate that if we define a model M, as an artificial model which
nests both M; and M, within it, then M; encompasses M, if and only
if M; encompasses M.. So a conventional F-test against the artificial
nesting model M., may be given an encompassing interpretation. The
Hendry and Richard result is however based on a moderately strong
set of assumptions including fixed regressors and strong exogeneity.

4.3  An application to the demand for M2 in three
European countries

In this section we will illustrate the general to specific and Ecm
modelling strategy discussed above using an example taken from
Taylor (1986) of the estimation of broad money (M2) demand func-
tions for three European Countries — West Germany, France and the
Netherlands.

The data

A common problem encountered in investigating money demand in
European countries is that data definitions, particularly for the
broader measure of the money stock, are not consistent across the
various countries concerned (OECD 1977). Partly in order to attenu-
ate this problem, and partly because some of the required data series
are not available in published sources, Den Butter and Fase (1981)
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(BF) asked the Central Banks of eight European countries to provide
data on the relevant variables. The data series published in BF there-
fore constitute a fairly consistent data bank which is highly desirable
in comparative studies of this kind. Even within this data bank,
however, unbroken series on all variables for the whole of the sample
period is available for only three countries: West Germany, the
Netherlands and France. Also, all series on these three countries start
at 1960(1) and terminate at 1978(4).

The series used were nominal M2, nominal e (Gpp for France),
the implicit one (Gpp) deflator (1970 = 100), the long-term interest
rate, the short-term interest rate (for West Germany and the Nether-
lands only, the three-month interbank rate for the former, the local
authority three-month rate for the latter), and a business cycle indi-
cator (derived from industrial output indices for France and West
Germany and from the labour utilisation rate for the Netherlands).
All data except those for M2 are seasonally adjusted.

The implications of using seasonally adjusted/unadjusted data
should be pointed out at this point. For ease of exposition, consider a
two-variable relationship using polynomials in the lag operator L(i.e.
Lix, = x,_;), and suppress the constant term:

a(L)y; = B(L)x,; + u, (4.46)
where

a(l) =1 I:Sh o a,L? — ... — a,L"

B(L) = Bo + BiL + BL? + ...+ B,L"

Suppose that y, is seasonally adjusted to y{ by means of the filter
A(L) (a scalar polynomial in the lag operator):

yi = ML)y, (4.47)

and similarly, x, is seasonally adjusted by applying the filter w(L) (a
scalar polynomial in the lag operator):

=l (4.48)
Substituting (4.47) and (4.48) in (4.46):

a(L)y? = B(L)x? + v, 4.49)
where

v, = [ML) — w(L)]B(L)x, + ML)u, (4.50)

From this we can note the following (see also Hendry and Mizon
1978). Firstly, if u, in (4.46) is ‘seasonally serially correlated and is
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‘whitened’ by applying the filter A(L) and if, further, the same filter
is applied to both y, and x, i.e. A(L) = u(L), then the disturbance in
(4.49) will be white noise. Secondly, seasonal adjustment does not
alter the appropriate lag structure for the equation. Thirdly, although
it may seem odd to adjust seasonal variables such as interest rates,
the above algebra makes clear that this is reasonable in the context of
estimation since the whole equation is seasonally adjusted. Fourthly,
problems may arise when (as in the present context) the same filter
has not been applied to both the left- and right-hand side variables
(A(L) # u(L)). As expression (4.50) makes clear, this may introduce
serial correlation into the disturbance term and distort the testing and
estimation procedures. Since all the data used in this section are
obtained from the BF data base and are not readily available else-
where, this appears to be an insuperable problem.

However, the following method was applied in mitigation. Suppose
the seasonal filter for the x variables, u(L), can be approximated
closely by the standard method of regressing the unadjusted variable
on to seasonal dummies and using the residual as the adjusted series.
Since, as is well known, including seasonal dummies in a regression is
identically equivalent to adjusting all of the (left- and right-hand side)
variables prior to estimation, this will have the effect of seasonally
adjusting the dependent variable in the same fashion as the right-hand
side variables (see Frisch and Waugh 1933; Malinvaud 1970, pp
486-9). Accordingly, seasonal dummies were included in all regres-
sions. It should be noted, however, that previous empirical appli-
cations in the LSE tradition to money demand often use seasonally
adjusted data.

Estimation results

Since the data on M2 was seasonally unadjusted and all series were
quarterly, we decided to set the length of the lag structure for the
maintained hypothesis at four periods. The maintained hypothesis for
each of the countries was therefore:

4 4 4

m,=ag+ X aimu_; + > BiPri + D ViVi-i
i=1 i=0 i=0

4

\ﬂ.%wlm & M Nmﬁnlm - U; AA.MHV
0 i=0

M-

4
!
+ M Ol
i=0 i

where m denotes M2, p the price level, y real income, r the long
interest rate, r° the short interest rate, and ¢ the business cycle
indicator. All variables are in natural logarithms except r® and r'.
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The business cycle indicator was included, following BF, on the argu-
ment that precautionary balances should rise as economic activity
slows down. The short-term interest rate was included for the Nether-
lands and West Germany, again following BF, in order to pick up
switching between components of M2 and less liquid assets that
occurred in these countries during the 1970s. As in BF, r°® is entered
as zero up to the fourth quarter of 1969 and a dummy variable taking
the value one for 1960 (1)-1969 (4) and zero otherwise was included
to adjust for the discontinuity. The short rate was entered in levels in
order to allow its elasticity to vary, since switching becomes more
likely as short rates rise. Three seasonal dummies were also included
in all regressions (but are not reported) as well as a dummy in the
French equations to account for the student riots of May 1968 (see
BF).

The first four observations of each series were lost because of lags
in (4.51). In common with BF, we reserved the last eight observations
for post-estimation stability tests. The specification search therefore
took place using data for 1961 (1)-1976 (4), a total of sixty-four obser-
vations. We used ordinary least squares for estimation purposes, and
tested for the validity of this procedure rather than use an estimator
such as instrumental variables (see below). In what follows we use a
nominal test size of five per cent (unless stated to the contrary).

Our final, parsimonious short-run money demand functions are
listed in Table 4.1, together with a set of diagnostic statistics for each
equation. The equation for demand for M2 in the Netherlands is
particularly encouraging. It relates short-run growth in real M2
demand to an error correction term of the kind discussed above (with
one lag), implying a highly significant ‘inverse velocity’ effect on
short-run money balances. The current rate of inflation (A;p,) and
lagged values of the long and short rates are also found to be
significant explanatory variables and have coefficients of the expected
signs. This indicates significant switching between components of M2
and less liquid securities and real assets over the period. The current
value of the cyclical indicator also was high explanatory power and
indicates a significant level of precautionary demand. These and the
other terms in the Netherlands equation allow an extremely rich
pattern for the short-run dynamics of money demand.

Turning to the diagnostic for the Netherlands equation, ‘RESET’ is
the F-statistic for the restrictions imposed on the general unrestricted
form (4.51) in order to arrive at the final specification, and is highly
insignificant — as one should expect given the data-based nature of
the specification search (see Note 1). We can see that the equation
explains nearly ninety per cent of the variation in real money growth
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Table4.1 Final parsimonious equations for money demand

Netherlands:

Ai(m — p), =499 — 0.26(m—p—y),_1— 0.95A;p, — 0.059r,_3
(6.52) (7.34) (8.43) (4.34)
—0.082A3rl_, + 0.0043r;_, = 1.13¢, + 5.17Ac,
(2.40) (5.75) (6.74) (6.01)
— 5.38A%,;
(3.21)

R? = 0.88, pw = 2.09, BP(12) = 8.23, ser = 0.010,
RESET(21, 30) = 0.38, SK = —0.07,

ek = —0.42, BJ(2) = 0.42, LM4(4, 43) = 1.02, Q(16) = 13.47,
ARCH(1) = 0.13, RESET(4, 47) = 2.17, EX(1, 50) = 1.44,
CHOW(7, 4) = 0.48, HF(5, 51) = 2.00

Germany:
Ai(m —p)) = —-017 + 0.23A,y, — 0.15(m—p—y),_1) 0.40A,P,
(2.11) (2.67) 3.6) (3.20)
— 0.056r,+ 0.052r,_, + 0.0031rs —0.38A(m — p),—3

(292 (3.18) (3.55) (3.43)

R? = 0.81, pw = 2.12, ser = 0.012, RESET(21, 20) = 1.15,
sk = —0.36, ex = 0.39, BJ(2) = 1.55, BP(10) = 12.40,
LM(44, 45) = 1.48, Q(16) = 15.77, ARCH(1) = 0.032,
RESET(4, 45) = 2.22, EX(4,49) = 1.17,

CHOW(7, 46) = 1.47, PF(6, 53) = 1.64.

France:

Ay(m - p), = 0.64 + 0.13y, + 0.17A.y, + 0.52A,y,.;— 0.20(m—p—y),—4

(1.96) (2.78) (2.59) (3.98) (3.56)
—0.34A,p, — 0.11A%3! + 0.052rl,_, + 0.11A,7!_s+ 0.29A,(m — p),,
(1.91) (2.21) (1.61) (1.91) (2.20)
02lc - 0.67A5c,,
(2.46) (4.49)

R?2 = 0.73, pw = 2.08, ser = 0.009, RESET(13, 33) = 0.43,
sk = —0.61, ex = 0.65, BI(2) = 3.84, LM4(4, 40) = 2.40,
Q(16) = 22.89, ARCH(1) = 0.047, RESET(4, 44) = 0.53,
EX(4, 44) = 1.30, CHOW(12, 36) = 1.73, HF(5.48) = 1.34.

Note: Figures in parentheses below coefficient estimates denote ¢-ratios.

(R? = 0.88) with an equation standard error (ser) of one per cent.
pw is the Durbin—Watson statistic which, together with the Lagrange
multiplier statistic for up to fourth-order (moving average or auto-
regressive) serial correlation (LM4), indicates that the non-systematic
dynamics of the equation are white noise (see Note 2). This impres-
sion is echoed by the value of the Box—Pierce portmanteau statistic
for sixteen lagges (Q(16)). sk and Ex are the moment coefficients of
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skewness and excess kurtosis and should be approximately zero for
normally distributed errors. Their size should also give an indication
of any significant outliers in the residuals. Bs tests for the joint
significance of sk and Ex and is thus a test for normality of the
residuals.

In order to examine possible heteroskedasticity in the residuals, we
computed a test for a non-scalar covariance matrix due to Breusch
and Pagan (1979) (Bp), which was found to be insignificant. We also
calculated a Lagrange multiplier test for possible first-order auto-
regressive conditional heteroscedasticity (ArRcH) effects in the res-
iduals and this statistic (ARcH) was also insignificant. Since the equ-
ation was estimated by ordinary least squares, we implicitly assumed
the econometric exogeneity of the current-dated, right-hand side vari-
ables. This hypothesis was tested using a test due to Hausman (1978)
(ex) and we were unable to reject the hypothesis of exogeneity of the
right-hand side variables (see Note 3). The general test for misspecifi-
cation of the model, (ResET) is insignificant at the five per cent level.

Finally, we performed two tests for parameter stability on the
model. cHow is the analysis of covariance test for parameter stability
due to Chow (1960), and tests for a structural break from the first
quarter of 1970 onwards; it is insignificant. HF tests for the predictive
accuracy of the equation of the model over the period
1977 (1)-1978 (4), which was not included in the estimation period.
We used the indicator variable method due to Salkever (1976) and
Pagan and Nicholls (1984) to perform this test. This essentially invol-
ves defining a dummy variable for each of the post-estimation data
points and testing the joint significance of these dummies when the
equation is run over the whole sample including the prediction
period. Salkever (1976) shows that the coefficients of these dummies
are the prediction errors with confidence intervals which can be
calculated from the estimated standard errors.

A major advantage of this method is that it controls for sampling
variations in the parameter estimates. It was found, however, that
some of these dummies were individually significant when added into
the general unrestricted form (5) when the whole sample was used.
This indicates that the maintained hypothesis itself is incapable of
explaining these observations and may be indicative of extraordinary
circumstances in these periods or that the maintained hypothesis is
itself incorrect (Baba et al. 1985, for example, include variables to
control for items such as risk to long-term bond holding). Since there
was some degree of overlap in the significance of the dummies in the
maintained hypothesis for each of the three countries (1977 (3),
1978 (3) and 1978 (4) for the Netherlands, 1977 (1) and 1978 (4) for
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West Germany, and 1977 (1), 1978 (2) and 1978 (3) for France) and
because the maintained hypothesis could not readily be expanded
because of data limitations, the predictive failure tests were computed
without testing for the significance of dummies which were found to
be individually significant in the unrestricted form. The resulting
value of ur for the Netherlands is insignificant.

Similar comments apply to short-run equations obtained for West
Germany and France. Good fits were obtained and all of the dia-
gnostic statistics are insignificant at nominal test sizes greater than
five per cent. In particular, both equations pass the Chow test for
in-sample parameter stability. In the German equation, the short-
term interest rate again showed the significant explanatory power and
yielded a coefficient of the expected sign. However, the business
cycle indicator dropped out of the German regressions during the
sequential specification search, indicating the absence of any signifi-
cant precautionary elements in German money demand over the
period.

Following BF, the short interest rate was not included in the French
regressions, but the business cycle indicator does appear with a signi-
ficant coefficient of the expected sign in the final equation. Another
interesting feature of the French equation is that the error correction
term appears with a lag of four periods, indicating a slower response
to the ‘inverse velocity effect’ than in the other two countries. Also,
the French equation includes a significant value of the current level of
real income. As discussed above, this destroys the property of long-
run unit elasticity of money demand with respect to real income.

The long-run or steady-state solutions to the short-run demand
functions are given in Table 4.2. Long-run unit real income elasticities
are found for the Netherlands and West Germany. This contrasts with
the results of Br (and also of Boughton 1979) who find real income
elasticities in excess of unity for these countries — 1.19 and 1.21
respectively for the Netherlands and Germany (see Note 4). On the

Table4.2 Steady-state solutions for money demand equations

Netherlands: m, = Kk + p, +y, — 023r! + 0.017rs — 4.34c,
(k; = 19.20 + 0.92¢g, — 1.71g,)

Germany: m, =k, + p, + y, — 0.026r! + 0.02rs
(x, = —1.11 — 2.67g, — 0.27g,)

France: m, = k3 + p, + 1.64y, — 0.26r! — 1.02¢,

(k; = 3.19 — 0.43g, + 1.33g,)

Note: g, and g, denote the annualised steady-state growth rates of prices and real
income respectively. f
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other hand, we estimated the long-run income elasticity for
France to be 1.64, which is very close to BF’s estimate of 1.61. The
steady-state, long-term interest rate elasticity for France is indentical
to BF’s long-run elasticity at —0.26, and the long-run coefficients of
the business cycle indicator are also very close (—1.02 on our estimate
against —1.05 on BF’s).

In the Netherlands long-run equation the long-term interest elasti-
city of —0.23 is very slightly lower than B’s estimate of —0.30, and
the size of our long-run coefficient on the business cycle indicator
(—4.34) compares with that of BF (—3.61). In the German steady-
state equation, on the other hand, our long-term interest state elasti-
city of —0.026 is much smaller than the value reported by BF (—0.20),
and we found the business cycle indicator to be insignificant al-
together in explaining German money demand.

We find a long-run elasticity of 0.02 for the short interest rate in
the German equation. This translates into an elasticity of 0.12 at the
mean interest rate of about six per cent, and compares with the
corresponding figure reported by Br of 0.15. In the Netherlands
steady-state equation, at a mean short interest rate of approximately
six per cent over the period, the semi-elasticity of 0.017 becomes
0.102, comparing with 0.13 reported by BF.

Overall, therefore, our steady-state money demand equations com-
pare well with the long-run solutions to the transfer functions esti-
mated by Br. A major difference between the two sets of results
being that we find long-run real income elasticities of unity for West
Germany and the Netherlands, in contrast to BF who find long-run
elasticities or real income substantially in excess on unity. We believe
that this may be due to the arbitrary (and untested) restrictions which
BF impose on the lag structure of their equations.

4.4 Conclusion

In this chapter we have developed the methodology of dynamic
modelling which has grown out the LSE tradition of econometrics and
we have illustrated its power and usefulness by presenting a study of
the demand for money. Dynamic modelling is a flexible tool which
allows a complex interaction of economic theory and time series data
so that both theory coherence and data coherence can be achieved.
We would end on a note of warning, as dynamic modelling is some-
times presented as an almost mechanical rule for model building; this
is almost never the case. Dynamic modelling is a framework for
bringing together data and economic theory which requires skill and
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understanding on the part of the user; if this is absent then dynamic
modelling can be little more use than step-wise regression and it is
unlikely to yield insights into the real world.

Notes

L

Test statistics which appear in Table 4.1 with two figures in brackets (e.g.
REsT (21, 30)) should be referred to the F-distribution with the indicated
degrees of freedom, while those appearing with one figure (e.g. BJ(2))
should be referred to the chi-square distribution with the indicated degree
of freedom. : :
We calculated the Langrange multiplier statistic for serial correlation as
an F rather than a chi-square statistic in the light of the Monte Carlo
evidence of Kiviet (1983).

The Hausman exogeneity test requires an estimator which is consistent
even under the alternative hypothesis of exogeneity of the current-dated
right-hand-side variables. For this purpose we used an instrumental vari-
ables estimator with the once-lagged ‘foreign’ values of the putative
endogenous variables as instuments (e.g. the French and German lagged
inflation rates were used as instruments for the Netherlands inflation). In
each case the instruments set was tested and accepted on the basis of
Sargan’s (1964) test for the validity of the instruments.

We refer to BF’s estimates of real money demand (1981, Table 3).




