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Time series modelling

In Chapter 1 we discussed briefly the relationship between the purely
statistical approach to time series modelling and an approach which
may be more appropriately thought of as economic modelling. In this
chapter we discuss the purely statistical approach to time series
modelling in more detail. Time series modelling is, of course, a
discipline in its own right but our interest is more in the use which
has been made of time series techniques in other branches of econo-
metrics. So basic time series representations of data are often useful
in modelling expectations (see Chapter 6); the cointegration analysis
of Chapter 5 also grew out of this approach.

While good applied econometrics is much more than time series
analysis the techniques of time series analysis are now widely seen to
be a basic building block of econometrics.

\

3.1  Autoregressive time series models

Perhaps the simplest, purely statistical time series model is the first-
order autoregression, or AR(1) process:

3= pr o+ E, 3.1

where |p| <1 and & is a white noise error process. Equation (3.1)
states that the time series behaviour of x, can be approximated by
assuming that it is determined largely by its own value in the preced-
ing period. j

More generally, an nth order autoregressive process, or AR(n) can
be written as

83
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= P1Xe_y + PaXeal oo+ Pk + & 32

So that n lags of x are deemed to be Eﬁoﬁmi in determining the
time series behaviour of x;.

The concept of stationarity was E:.oacooa in Chapter 1. In (3.1)
we imposed the condition |p| <1 specifically in order to guarantee
stationarity of the AR(1) process. If we had |p| > 1, then x would tend
to get bigger and bigger each period, in absolute value, and so would
be an explosive series. We can write the Ar(n) process (3.2) using the

lag OﬁoSSH as
Sl -l —pl? xpd) = &
or
eAN\v.ﬁn = mw Aucuv

The stationarity of an AR(n) process is guaranteed only if the n roots
of the polynomial equation

P(z) =0 3.4
(where z is a real variable) are greater than one in absolute value.
For the ar(1) equation (3.1), this condition reduces to the roots of

(1 —-p2)=
being greater than one in absolute value. If this is so, and if the first
root is A, then the condition is

Al = [1/p] > 1
which is the same as

ol < 1.

A necessary, but not sufficient requirement for an Ar(n) ?doomw to
be stationary is that the sum of the n autoregressive 8@3&@8
should sum to less than unity:

i=1

3.2  Moving average time series models

A second kind of pure time series model which is frequently applied
is one where the stochastic process under consideration is postulated
to be a moving average of current and lagged values of a white noise
process. For example, a first-order moving average, MA(1), model
would be written:
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=§ + 05, : 3.6)

. where m is a white noise process. More mm:ﬁ.m:w. an MA(n) process

would be written

x=(1+ 6L+ 6,L*+...0,L"E, 3.7

. Oor

x = O(L)E, | (3.8)

woomcm.a any MA(n) process is, by definition, an average of n station-
ary white noise terms, it follows that every moving average is station-
ary. /

A property which is often discussed in relation to moving average
processes is invertibility. Consider the ZZ: process (3.6), rewritten
using the lag operator:

=1+ 6L)&
Equivalently

x/(1+ 6L) = E, (3.9)

if || <1, then the left-hand side of (3.9) can be considered as the
sum of an infinite geometric progression:

x(1—- 6L+ 6’L? - 6°L% + ..) =§, (3.10)

Alternatively, (3.9) could be derived by mccm:E::m repeatedly for
lagged values of &, in (3.6). Thus, the MA(1) process has been in-
verted into a high-order autoregressive process with geometrically
w%_n_swnm weights. For the MA(1) model to be invertible, we require
<
In general, the ma(n) process (3.7) is invertible if the roots of the
polynomial

O(z) =0 3.11)

are greater than one in absolute value.
It is often useful to consider, at least in theory, infinite-order
moving m<oammo representations. Such a process would take the form:

= Ww 8.5 ; 3.12)

¥

If £ is a white noise process with constant variance Qm“ then the
variance of x, is given by

x =0t 2 6} (3.13)
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~ Clearly, although all finite-order moving average processes are
stationary, in the infinite-order case it is necessary to place some
restrictions on the moving average parameters in order to ensure that
the process has finite variance. From (3.13), these restrictions are
easily seen to be

Ypri-w (3.19)
i=0 7

Any model which can be written in the form (3.12) where (3.14)
holds is said to be an indeterministic process. An alternative termino-
logy, motivated by (3.14), is to say that it is an infinite-order, square-
summable process. Note that any finite-order moving average process
can be thought of as an indeterministic process with coefficients on
lags beyond a certain point identically equal to zero.

3.3 ARMA and ARIMA process

Sometimes, as we shall discuss later in the chapter, it may be appro-
priate to model a time series as a combination of both autoregressive
and moving average components. Such a process is termed, not
unnaturally, an autoregressive moving average, Or ARMA, process. An
ARMA(p, q) process can be written

X, = PrXe 1+ X o ope + OgXLp th E 406, 1+ . ..
B E L
or, more generally:
®(L)x; = O(L)E; '(3.15)

The stationarity of an ARMa process depends entirely upon its autore-
gressive component, and requires that all the roots of

d(z) =0

lie outside the unit circle (i.e. greater than one in absolute value).
Similarly, invertibility of an ARMA process requires that all the roots
of the characteristic equation -associated with the moving average
polynominal, i.e. :

B(z) =0

lie outside the unit circle.

“In Chapter 5 we will discuss integrated processes. An integrated
process of order d must be differenced d times before it has a
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stationary, invertible ARMA representation. If this ArRmMA representa-
tion is of order (p, q) then the original, undifferenced process is said
to have an autoregressive integrated moving average representation
of order (p, d, q), i.e. it is ARIMA(p, d, q). If a process, x say, has an
ARIMA(p, d, q) representation, then A‘x, has an ARMA(p, ) repre-
mo_:maon“ :

A-¢L—...— ¢ LP)A%, = (1 % 6L + ...+ d,L)E,
(3.16)

3.4 Wold’s decomposition

An important result in time series analysis, known as Wold’s decom-
position theorem, states that any covariance stationary process, x say,
can be represented as the sum of a deterministic component, X, say,
and an indeterministic component:

X=X+ .Mo 65 (3.17)

(T
Note that the deterministic component ¥, need not be constant but it
must be non-stochastic — it may for example be a trigonometric

function of ¢ (e.g. cos Ar). Often, however, X, is in practice thought of

as a constant.

Wold’s decomposition can be thought of as a central motivation for
considering pure time series models. If we believe or know that a
certain time series is covariance stationary, then Wold’s decomposi-
tion tells us that it can be decomposed into deterministic and indeter-
ministic components. We can then take out the deterministic compon-
‘ent by assuming that it takes a particular form, such as a constant.
This leaves a potentially infinite-order, square-summable component.
If the coefficients of this component are very small beyond a certain
lag, then it may be convenient to approximate the indeterministic
component by a finite-order moving average process, Alternatively, it
may be better to approximate the process by an ARMA process of
finite orders.

. This can be illustrated by means of the following examples. Con-
sider the following indeterministic process:

x,=&@Q+ L +0.5L%+0.25L% + 0.125L* + 0.0625L°
+ 0.03125L% + ...) (3.18)

This is clearly a square-summable process since the coefficients are
geometrically declining:
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M
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[1+1+(0.5?2+©0.25>+...)

1-05]+1=2}<w

The fact that the moving average coefficients are geometrically declin-
ing gives us a clue that (3.18) can be written as a stationary, invert-
ible ARMA process of finite orders.

Consider the ARMA(1, 1) process:

.Kn = O.Mkan + mu + Q.an|H
This can be written
x (1 —05L)= &1 +0.5L)

3.19)

or

E(1+05L)1-0.5L)71!
E(1 +0.5L)(1 + 0.5L + 0.25L% + 0.125L3 + ...)
=&+ L+05L%+0.25L%..)

Xt

So that (3.18) and (3.19) are in fact equivalent. In practice, of course,

there is no reason why the indeterministic component should have

coefficients which decline in such an exact geometric pattern; but

even if they do so only approximately, then an ARMA representation

of finite orders may yield a sufficiently close approximation to the
time series behaviour of the process.

As another example, consider the indeterministic process:

x, = E,(1 + 0.7L + 0.34L? + 0.068L> + 0.0136L*

+ 0.00272L° + ...) (3.20) ,

The reader should verify that, providing the coefficients beyond the
fifth lag are very small, this process would be well approximated by

an ARMA(1,2) process of the form
x(1 —0.2L) = (1 + 0.5L + 0.2L?) (3.21)

3.5 Autocovariance and m,:Sno.._d_m:o: functions

The covariance between two random <mimzomv w, z, is defined to be
Cov(w, z) = E{(w — E[w])(z —E[z])}

Thus, since any two elements of a stochastic process x;, x,.; say, are
themselves random variables, we have:

\
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Oo< (x5 Xe43) = E{(x; — E[x])(xr+; — E[x:+:])} 3.22)

This is called the autocovariance function. The autocovariance func-

tion is an extremely useful tool in characterising the properties of

stochastic processes. For example, in Chapter 1 we defined a white

noise stochastic process to be one which had constant mean and finite

variance and for which the autocovariance function was always zero.
Consider the first-order autoregressive process

Xer1 = PX + Eiq 3.23)

where |p| <1 and where &,.; is white noise and is, in particular,
uncorrelated with x,. From (3.23), substituting repeatedly for lagged
x, we have:

Xe1 = p'xg + (P& + BTHWN e T

Since |p| < 1, p’ will be close to zero for large ¢. Thus, we have:

(3.24a)

.N.Alev = E(p'§; + bnlamu +...8641)=0 (3.24b)
Since E(&;) = O for all i. Also,
Var (x,41) = m.ﬁbﬁm o bualumW o mw+L
o e R (3.25)

where Qm is the variance of §,.,. For large ¢, the geometric progres-
sion (3.25) can be summed:

Var (x,41) = QW\AH ~ ¢

Now consider the autocovariance function for the autoregressive
process:

3.26)

Cov (x,X;+£) e E(xpx;+k)

E[x(px;+r-1 + &r+4)]
PE(xxrsk-1) + E(x:Er41)
= PE(xX1+k-1)

= PE[x(pxi+1-2 + Erri-1)]
= PP E(xX+k-2)

Continuing in this fashion it is easily seen:
Cov (x, X44) = b» Var (x,)

= p*a}/(1 = p?) (3.27
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If we write
Var (x,) =
and

Cov (x;, X141) =

then (3.27) becomes

Yi = p*ol (3.28)
Moreover, it is clear that, for all k,

Ye = Y-k

so that it is only necessary to consider non-negative k. The sequence
{¥} %=o is the autocovariance function. Note that y, = o2.

Note that the autocovariance function is not expressed as a pure
number - its units of measurement are dependent upon the underly-
ing units of measurement of the x process. Thus, the size of y; would
differ, for example, if x were measured in pounds rather than pence,
or dollars rather than cents (by a factor of 10000). In order to
circumvent this problem, it is sometimes more convenient to consider
the autocorrelation function rather than the autocovariance function,
since the former is expressed in terms of pure numbers, and is
independent of the units of measurement of the underlying process.
The wEOOOQmumsos function is obtained simply by dividing each of
the y; by yo = 02, thereby cancelling out the units of measurement:

= vu/vo, k=0,1,2,... (3.29)

Note that py = 1, by definition.
For the autoregressive, AR(1) process considered above, for exam-
ple, we have:

= yi/vo = p*oifol = p* (3.30)

As another example, consider the first-order moving average, MA(1)
model:

= & + 05, | (3.31)
where &, is again white noise. We have: r
E[(&: + 05.-1)(§ + 65,-1)]
E(&) + 6?E(&-1) + 20E(E/5,-1)
(1 + 6%)ot (3.32)

Yo

Il
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Similarly
71 = E[(& + 05,_1)(§;-1 + 65,5)]
= E(§&,_1) + 6E(5_1) + 0*E(&_1&:2)
= fo? (3.33)
Since &, is serially uncorrelated, it also easily seen that
=0,k>1 : 3.34)

Thus, the autocorrelation function for an MA(1) process is given by:
=1 o = QL5 0" o =0 k=1 (3.35)

3.6  The correlogram

In general, when a researcher is analysing a time series, he or she will
have to estimate the autocovariance function by using the sample
moments. This estimate is termed the correlogram. A commonly used
estimator for py is

Lk = Q\ao

where
D »

i
T 5

= N =) (e fienx) fory = Q02 o (3.36)
and where

T
M (3.37)

~1|»~

and where T is the sample size. Sometimes, especially where the
sample size is relatively small, T is replaced in the denominator in
(3.36) by (T — k) to correct for lost degrees of freedom.

Under the null hypothesis that the x process consists of independ-
ent drawings from identical populations, it can be shown that, for
large T, ¢, will be approximately normally distributed with mean zero
and variance 1/T under weak conditions:

cx ~ N(0, 1/T) (3.38)
Thus, the 95% confidence interval for ¢, is given approximately by
Cy — N\/\Nﬂ Ck s N\/\N.. AM.WWV

Hence, if this interval does not contain zero, the null hypothesis
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pr =0 can be rejected at a nominal significance level of approxi-
mately 5%.
If the series is not white noise, then the appropriate formula for
the large-sample variance of cy is
2 2 2
H+N€_+b~+..;@=vVP?—.:VO (3.40)
T 3
where n is such that p; #0 for k=n and p; =0 for k> n. Thus,
the fact that 1/T is only an approximation to the sample autocorrela-
tion variance suggests that, even when the sample autocorrelations
are apparently insignificant when using 1/T as an estimate of the
variance, one should still look for apparent regularities in the shape
of the correlogram.

3.7  The partial autocorrelation function

The correlogram is useful for identifying a pure moving average
model, since there will tend to be a cut-off of significant points on the
correlogram after the appropriate lag depth. For autoregressive or
mixed processes, however, the order of the autoregressive component
may be harder to determine from the correlogram. For this reason, it
is usual to use a complementary procedure which involves plotting the
estimated coefficient of x,_,, from an oLs estimate of an AR(k)
model for x,, against k. If the observations are generated by an
AR(p) process,-then the theoretical partial autocorrelations are zero
at lags beyond p. Since any invertible MA process can be represented
as an AR process with geometrically declining coefficients, the partial
autocorrelation function for an MA process should decay slowly.

The identification of the orders of a mixed model may be more
difficult to determine, and a good deal of skill must be exercised.

3.8 Common factors

A simple approach to econometric modelling involves deliberate
over-parameterisation — more than enough variables and lags are
included in a fitted equation, with the objective of eliminating those
with poor explanatory power (i.e. insignificant coefficients). In the
context of pure time series modelling, such deliberate over-paramet-
erisation will often prove disastrous, because of the presence of
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common factors. As an example, suppose that the ‘true’ model is an
ARMA(1, 1):

X =¢x 1 + & + 05, (3.41)
Multiplying the right-hand side of (3.41) by (1 + yL)/(1 + yL) = 1:

% = ¥ s e el (3.42)
X =(P—1x-1+ yex 2 + & + (0 + 1)Ei1 + ¥0E,,
3.43)
(3.42) is in the form of an ARMA(2, 2):
X = Prxe1 + BoXpa + & + &g + M6 (3.44)

with
Br=(@—-1), b=yl =(0+7),4 =170

Thus, if an ARMA(1,1) model such as (3.41) is correct, then an
ARMA(2,2) model such as (3.44) will fit well. Moreover, this will be
true for any value of y. Thus, (3.44) is in fact unidentified.

This example therefore illustrates the pitfall in over-parameterisa-
tion of a pure time series model. A much more subtle approach to
model selection is required.

3.9 Model selection: the Box—Jenkins approach

Box and Jenkins (1976) suggest a three-stage approach to pure time
series modelling, the three stages being identification, estimation and
diagnostic checking.

At the identification stage, a tentative ARIMA model is specified
that may approximate the data-generating process for the given sam-
ple, through examination of the correlogram and the partial autocor-
relation functions. This stage is discussed in more detail below.

Once a model has been tentatively identified, the next stage is to
estimate its parameters. The estimation stage is also discussed further
in a following section.

Once the tentative model has been estimated, a set of estimated
residuals are automatically generated. For example, for an AR(1)
model we would have the estimated residuals:

=X — Px;q

(where a circumflex denotes a fitted value), while for an ARIMA(0, 1, 1),
we have:
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§= A5
(where one would normally set £, = 0). If the fitted model is correct,
then this residual series should be approximately white noise. One
test of the adequacy of the model thus includes testing for the
whiteness of the fitted reiduals using diagnostic checks such as the
Box-Pierce or Ljung—Box portmanteau statistics (see Chapter 4).

If the estimated parameters of the fitted model are significantly
different from zero and the fitted residuals appear to be approximate
white noise, then the fitted ARIMA model may be held to be adequ-
ate. If the model fails on either of these counts, then the identifica-
tion stage should be returned to.

The Box-Jenkins approach to model selection thus involves three
stages: identification, estimation and diagnostic checking. The pro-
cedure is summarised by the flow chart presented as Figure 3.1.

1 Identification stage

Use correlogram and partial autocorrelation
function to identify a tentative ARIMA model.

Y
2 Estimation stage

Estimation of the parameters of the model
-identified in stage 1.

Y

3 Diagnostic checking

Examine the performance of the model
in terms of significance of coefficients
and whiteness of fitted residuals.

Y

4 s model adequate?

Y Y

Yes No

Y
Stop

Figure 3.1 Flow diagram for the Box-Jenkins model selection procedure.
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3.10 Model identification

The theoretical autocorrelation function for an AR(1) process was
shown above to be given by

pr = ¢F (3.45)

where ¢ is the first-order autoregressive coefficient. Stationarity of
the process requires

¢ < 1

Thus, non-stationarity of a first-order process will be revealed by a
correlogram which shows no sign of decay in the absolute magnitude
of the estimated autocorrelations. This is, in fact true more generally:
if the estimated autocorrelations to not die out or show signs of
decay, the data must be transformed to induce stationarity. A com-
mon stationarity-inducing transformation with economic data is to
take logarithms and then to first difference once. This will induce
stationarity, for example, if the data exhibits a fairly consistent aver-
age growth rate.

Once apparent stationarity has been achieved, the next step is to
identify the orders of the ARIMA process. For a pure moving average
process of order g, Ma(q), the correlogram will tend to show esti-
mated autocorrelations which are significantly different from zero
only up to lag g, while the partial autocorrelation function will tend
to taper off. For a pure autoregressive process of order p, the
estimated partial autocorrelations will tend to be insignificantly differ-
ent from zero beyond lag p while the correlogram will show the
estimated autocorrelations tapering off.

If neither the correlogram nor the partial autocorrelation function
show a definite cut off, then a mixed process is suggested. In seeking
to identify the orders of the moving average and autoregressive parts,
it then may be useful to think of the correlogram and partial autocor-
relation functions of the pure Ma and AR processes being superim-
posed upon one another. For example, if both the correlogram and
the partial autocorrelation function show signs of a slow tapering off,
then an ARMA(1, 1) process may be identified. Similarly if the correlo-
gram has two spikes at lags one and two and then exponential decay,
while the partial autocorrelation function shows either exponential
decay or damped sinewave behaviour, then an ARMA(1,2) may be
identified. Table 3.1 lists other possible combinations for low-order
ARMA processes.
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Table 3.1 Correlogram and partial autocorrelation patterns for low-order

ARMA models

Correlogram pattern

Partial autocorrelation pattern

Underlying model

Single spike at lag 1 Exponential decay or damped  MA(1)
sinewave

Exponential decay or damped  Single spike at lag 1 AR(1)
sinewave

Spike at lag 1 followed by ex-  Spike at lag 1 followed by ex-  ARMA(, 1)
ponential decay or damped ponential decay or damped
sinewave sinewave

Spikes at first two lags followed Spike at lag 1 followed by ex-  ARMA(I, 2)
by exponential decay or ponential decay or damped
damped sinewave sinewave

Spike at lag 1 followed by ex-  Spikes at first two lags followed ARMA(2, 1)

ponential decay or damped by exponential decay or
sinewave damped sinewave

Spikes at first two lags followed Spikes at first two lags followed ARMA(2, 2)
by exponential decay or by exponential decay or
damped sinewave damped sinewave

In general however, identifying mixed processes involves a fair
degree of trial and error, and this is why the estimation and diag-
nostic checking stages are important to see if the tentatively identified
model] ‘flies’.

3.11 Estimation

Estimation of pure time series models can be carried out by maxi-
mum likelihood methods, which were discussed in general in
Chapter 2.

For a pure autoregressive AR(p), process, maximum likelihood
estimation is in fact little different from an ordinary least squares
regression applied to x; on p lags, x;_1, ..., x,_.

For moving average and mixed processes, non-linear techniques
must be used. In nearly all cases, maximum likelihood estimation can
be approximated closely by minimising a sum of squares function.
This is because, as we showed in Chapter 2, the likelihood function
can always be broken down into a form involving only squared
one-step-ahead prediction errors. But the one-step-ahead prediction
errors are in fact the residuals of the model.

Consider, for example, the AR(1) model:

X = ¢x1 + &
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Conditional on information (i.e. observations on x) at time ¢ — 1, the

model predicts x, as
X = ¢x

Thus the prediction error is
X = %= mn

Thus, for any given value of ¢, the prediction error is just the fitted
residual. One could then form the sum of squared residuals function:

S(¢) = M mm

and ¢ could be chosen by minimising it — which is, of course, exactly
what oLs does.

For an ARMA(p, g) model, the residuals can be generated recurs-
ively by an equation of the form:

mn i g e By T e mT.w g 0 el .m,uuTn
with mw = mnu_ = mwAi = 0. The conditional sum of squares
function would then be:

T
Mﬁﬂﬁg...wﬁﬁuwu“...gmnv" M mw
t=p+1
In general, the covariance matrix of the estimates can also be ob-
tained from an approximation of the information matrix and applying
standard maximum likelihood properties (see Chapter 2).

3.12 Conclusion

We have discussed how data may be categorised and described purely
in terms of their time series properties; this is an important and useful
technique which has a wide range of applications. In Chapter 4 we
will discuss dynamic structural models; the time series representation
is often a useful benchmark against which to measure a structural
model. In Chapter 5 we will discuss cointegration; this analysis rests
heavily on recognising the importance for structural modelling of the
univariate properties of the data we are dealing with. Chapter 6
considers rational expectations; here again time series modelling is
used widely as a way of capturing the expectations formation pro-
cedure for variables which are not of central interest to the model at
hand.



