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Maximum likelihood estimation

In many ways the maximum likelihood (ML) approach forms the
cornerstone of classical statistical methodology. The conceptual ap-
proach underlying maximum likelihood procedures is an appealing
one which is much less ‘ad hoc’ than other estimation procedures. To
emphasise this point Hendry (1976) shows that many of the conven-
tional estimation techniques, such as three-stage least squares, two-
stage least squares, etc. can be interpreted as approximations to the
maximum likelihood estimator. Generally speaking, an appropriate
maximum likelihood estimation technique is both consistent and
asymptotically efficient, so the ML approach forms a useful point of
comparison for judging other estimators. We present the general
issues behind maximum likelihood estimation and the associated test
procedures (Lr, Wald and Lm) in section 2.1. Next we discuss numer-
ical optimisation procedures and in section 2.3 we outline two special
forms of the likelihood function frequently encountered in the empir-
ical literature: the discrete switching model and various forms of the
ArcH model. In section 2.4 we present two empirical examples, a
model of the mortgage market and a model of time-varying risk

premia in the foreign exchange markets.

2.1  The conceptual approach

ML is a very general procedure with the following common features,

First we assume a particular probability distribution and calculate the
probability of observing a particular outcome. This generally depends
on some unknown parameters. Given our data set we then choose
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those parameter estimates which maximise the probability of the
observed outcome. These parameter estimates are then the maximum

likelihood estimate of the unknown true parameter values.

An example may help to clarify this. Suppose we wish to test a
consignment of goods for quality, we might take a sample of ten
items and test these and find that five fail the quality check. What
then is our estimate of the proportion of total goods which are faulty?
The intuitive answer is, of course 0.5, but the ML procedure would
approach the question rather differently. Consider first the probabil-
ity distribution for the problem at hand. Suppose we draw a random
sample of size n and the (unknown) probability of each item being
defective is II in the population. If we actually find B bad items, then
the probability P of finding B bad items in our sample of # is given
by the binomial formula (i.e. our probability distribution)

n!

P ol

nmea - m»8 2.1
In the example above n = 10, B = 5. Given fixed n and B, from our
sample, if we arbitrarily set IT=0.1 then (2.1) yields P = 0.0015, if
Il = 0.2 then P =0.0254, etc. So in principle we could search over
the whole range of I1 and we would discover that P is maximised
when we chose IT= 0.5 (which gives P, = 0.264). The value of IT
which maximises the probability of getting the observed sample out-
gome (i.e. B=5 for n=10) is therefore IT=0.5. This is the ML
estimate of the true population value of IT. We could of course

maximise (2.1) analytically by setting its first derivative equal to zero.
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I8 the ML estimator and in our case [T = B/n = 5/10 = 1/2.

There are many cases where we can define the probability density
g¢tion but where the problem is too complex for analytical maximi-
tlon. In these cases some numerical technique for locating the
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maximum must be used but even in the most complex cases the
conceptual approach remains that discussed above.

A general statement

Suppose we have a sample of (X1, X3 ... X,) which is drawn from a
probability distribution P(X |A) where A is a set of parameters
which, together with the assumed structural form, define the density
function of X. We further assume that the X; are independent, each
with probability distribution P(X, :/A) and so the joint probability
distribution of the whole set X ... X, is given by:

P(Xy, Xy ... X,|A) = P(X1|4).P(X,|A) . .. P(X,|A)
m P(X;|A)

We assume that the X; are sample values, and therefore fixed. If we
now ask what value of A maximises the probability of observing the
sample values X; we may restate (2.3) as the likelihood function

@23

L(A) = Dm.ﬁh._\»v 2.4)

It is often convenient to work in terms of the log of the likelihood
function, which is simply

log [L(A)] = M_oa:x_._e_ @.5)

The advantage of the ML approach is that it is a very general specifi-
cation which can be applied to a wide range of models. It generally
gives consistent parameter estimates which are asymptotically effici-
ent. The main disadvantages are essentially practical. ML often pro-
duces highly complex non-linear optimisation problems and it also
assumes an exact knowledge of the form of the probability distribu-
tion involved (up to a set of unknown parameters). This means that
ML may be particularly sensitive to any structural misspecification in

the model.

The likelihood function for a general non-linear model

If we write a non-linear model with N endogenous variables Y and
M exogenous variables X, as

e=Y - f(X, P (2.6)
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where g is a set of parameters and e ~ N(0, ©) is a set of error terms

which are normally distributed with zero mean and covariance matrix

@, then the likelihood function evaluated for one period may be
written as

L(B, ) = o exp (1Y - f(X, B

A
@m'”|e|
x 7Y - f(X, B} @7

or the log form may be written (after dropping the constant and
multiplying through by 2):

log[L(B,9)] = —log|8| — [Y — f(X, BIO7'[Y — f(X, P)]
2.9

In the special case where the diagonal elements of © are constant and
the off-diagonal elements are zero, that is all covariances are zero,
then © = 0] and (2.8) is maximised by setting B at the value which
minimises the squared errors of the model. We see therefore that
under the assumption that the model errors are independent and
~normally distributed then the least squares estimator for S, is equival-
‘ent to the maximum likelihood estimator. (The variance—covariance
matrix for B is however different in the two cases, in small samples.)

~If we now return to the general form of the log likelihood function
(2.5), there are two particularly important matrices which can be
derived from it. The first of these is the efficie M. score for A, defined

P

dlog (L(A4)) _ S(A) il va

A

b at the maximum likelihood estimate of A the efficient score is
0, The second matrix is the information matrix. It is defined:

..m:omclivv _n
m_ A 9ABA’ vuzé

‘.. re E is the expectations operator, I(A) is a measure of the
rage) curvature of the likelihood function. Under a suitable set of

larity conditions it may be shown that the variance of the mL

mator of A is given by the inverse of the information matrix.

 Var(Aw) = (1A

@tion (2.11) is a statement of the Cramer—Rao lower bound. As
M1 estimator normally attains the Cramer-Rao lower bound in
samples, it is said to be asymptotically efficient.

(2.10)

(2.11)



50 Maximum likelihood estimation

Concentrating the likelihood function

In (2.5) the parameter vector A contains both the parameters associ-
ated with the equation and the unknown moments of the error
distribution (in the case of (2.8) these are the elements of the covar-
jance terms). It is often possible to deal with subsets of the total
parameter vector however and this is termed ‘concentrating the likeli-
hood function’. This can be both analytically and numerically conve-
nient.

Let A consist of two subvectors A; and Aj, then (2.5) can be
written as L(A;, A;). Now suppose we knew a value for A,, then it
is possible that we could derive an analytical formula for the max-
imum of L(A, A,) with respect to A, for that given value of A,. If
this formula can be represented by a function of the form A, = g(4 1)
then we could write the likelihood function as L(A;, g(A1)) which
could be restated as L*(A,), the concentrated likelihood function. As

an example consider the single-equation version of (2.8). The likeli-
hood function for the non-linear model evaluated over T periods now
is given by

L(A) = —Tlog(0?) — e'e/d*
where e is the T X 1 vector of errors e, = Y, — f(X,, B) and A con-

sists of both B and o>. We may concentrate this likelihood function
with respect to o2 in the following way. The Foc for a maximum with

respect to o” is given by
3L/30? = —T/o* + e'e/(}0?)* =0

and so we can derive an expression for 02 which is dependent on f,
that is o® =e’e/T, (where e, depends on the unknown p). The
concentrated log likelihood function which depends only on f3 be-
comes

L*(B) = —T — Tlog(e'e/T)

The prediction error decomposition

In the likelihood functions specified above, [e.g. in (2.5) and (2.8)]
we make the assumption that the observations are independent of
each other over time. This assumption will not generally be true when
we are dealing with dynamic time series models which include lagged
dependent variables. The maximum likelihood approach may still be
used, even in this case, by adopting the following factorisation called
the prediction error decomposition (Harvey 1981). From the basic
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definition of conditional probability we know that
Pr(a, B) = Pr(a|B) Pr(B) 2.12)

That is the unconditional probability of event a occurring is given by
the probability of o conditional on 8, multiplied by the unconditional
probability of B.

This condition may be applied directly to a general form of likeli-
hood function, which is after all simply a particular form of probabil-
ity function. Suppose we have a general log likelihood function
_om:LC\.: =log[L(Y, Y>...Y7)] where the observations at each
time period are not independent due to the dynamic structure of the
model. Then by using the log of (2.12) we may write

log [L(Y)] = log[L(Y7]Y1, Y, ... Y7_y)]
hdaelioo v B @.13)

The aaﬁ term is simply the conditional probability of the final period
Y, given the past realisations of Y. The second term is the uncondi-
tional probability of Y, ... Yr_; occurring. This second term can of
course be factorised again to give the conditional likelihood function
for Yr_, and the unconditional function for Y ... Yr_,. This pro-
cess may be repeated for all periods to give
T-2
log[L(Y)] = Mo 10g[L(Yr-i|Y1, ... Y7_1_5)] + log[L(Y )]

(2.149)

*a.aaooBvomow the likelihood function into a set of one step ahead
ediction errors, v,.

A e O, (2.15)

at is the prediction error is defined as actual Y, minus the models
srecast of Y, conditional on all information up to period ¢ — 1. For
general non-dynamic model (2.8), v, =Y — f(X, B). Then the
lihood function may be restated for the dynamic case as

log[L(B, ®)] = —log|®| — (v'© v) (2.16)

re © is the covariance matrix of the residuals, which is here
med to be time invariant.
structing asymptotic hypothesis tests

no_.uo:__..n:c purpose of hypothesis testing is to construct a test
tistic which has a well-defined distribution under both the null
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(H,) and the alternative (H,) hypotheses but which does not depend
on the set of unknown parameters A.

There are three major classes of test statistic available which allow
the construction of such tests: the Wald test, the Lagrange multiplier
test and the likelihood ratio test. All three tests rely on the mL
procedure and may be regarded as utilising different transformations
of the score function. The three procedures are asymptotically equiv-
alent but there small sample properties differ (except when the likeli-
hood function is quadratic in the unknown parameters). One differ-
ence between the three tests lies in the point estimate which is used
to calculate the test statistics. The Wald test is evaluated using only
an unrestricted estimate of the model, the Lagrange multiplier test is
evaluated using only the restricted estimate of the model (i.e. under
the null) and the likelihood ratio test uses information from both the
restricted and unrestricted estimates. In practice therefore the choice
between the procedures is often made on the grounds of which set of
estimates is actually easiest to compute. All three test procedures are
frequently used when the estimated system is non linear because they
may give different inferences in small samples. ~

Suppose the unrestricted ML estimate of the true vector A is A
then we may wish to test the general restriction H 0:8(A) = 0 against
the alternative H;:g(A) # 0. The function g(A) must be a function
for which all the restricted parameters can be estimated; g(A) must
also be continuously differentiable and (8g/dA) must have full rank
in the neighbourhood of A. Gallant and Holly (1984) give a full set
of conditions on g. The simplest forms for g(A) for a single para-
meter are a; =0 or a; =1, etc. A linear restriction involving two
parameters might be g(A)=a;+a;—1=0or a joint hypothesis
might be a; =0 and a; - 1=0. A non-linear restriction would be
g(A) = a} — 4(a3/a;) = 0, for example.

The likelihood ratio test

The likelihood ratio test (LR) is the oldest of the three procedures,
originating from the work of Neyman and Pearson (1928). It relies on
the comparison between the value of the likelihood function at the
unrestricted estimate A and the restricted estimate [A"|g(A) =0]. It
is clear that

)
L(A)
since by definition E\\,: > L(A"). We need now to express this term

<1 (2.17)

LR
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”b a form €Eo.w will have a well-defined asymptotic distribution. This
§ done by taking a Taylor series expansion of log[L(A)] around the

unrestricted estimate A. (A suitable set of i i
d es : : regularity ass i
needed to justify this procedure.) . ooy ot

log[L(A)] = log[L(A)] + (4 - éw_lowﬁlé_

3”log[L(A)]

A SJ&; T _Quéixc

[ et

(2.18)

Where O(1) refers to a set of s . ;
ble, At A: et of terms which is asymptotically neglig-

dlog[L(A)] _
34 dled 2.19)

3%log[L(A)] p

e (2.20)

log[L(A)] = log[L(A)] + (A — AYI(A)(A - 4) (2.21)
(2.17) we have that

| ~2log (Lr) = 2{log[L(A)] — log[L(AN]} (2.22)
: D-o from (2.21), replacing the ‘unknown’ A by A’,
~2log(Lr) = (A — A")I(A)(A - A" (2.23)

), under a reasonable set of regularit itions it i
| ‘ y conditions it is kn
iptotically an ML estimate gives Pl

Vn(A - A) ~ N(0, I(A)™)

hat (A ~ A)'I(A)(A — A) is y*(m), where m is the number of

nints. Hen i : is :
- o ce using (2.23) we may write the likelihood ratio test

Lt = 2{log[L(A)] - log[L(A")]} ~ 22(m) (2.25)

4 the usual form of the likelihood rati i
| . i tio test and simply stat
he difference in the log-likelihoods (multiplied by 2) is W%C:vm. MW

(B8 statistic, LrT, exceeds the chose iti
‘ iy ’ n critical va .
triction. lue then we reject
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Three test procedures

The three general forms of test procedure used are the (Lr) test (as
described above), the Wald test (W) and Lagrange multiplier (Lm)
test. To illustrate the relationship (Buse 1982) between these three
test procedures, suppose we wish to test the simple hypothesis on the
scalar parameter A, namely H 0:A = Ag against Hi:A # A,. The LR
test computes the value of- the likelihood under both Hy and H; and
directly computes the distance wavrw (Figure 2.1). The distance
(1/2)Lr depends on the distance (A — Ap), and the curvature of the
log likelihood function which we define as R(A) = |(d?log L)/dA?|
evaluated at A = A. For a given distance (A — Ay) the greater the
curvature or ‘steepness’ of the likelihood function the larger is the
distance (1/2)Lr. Thus the ‘precision’ of the ML estimate A is greater
for likelihood function L' (Figure 2.1) than for likelihood L*. With
the likelihood function L', we would tend to reject A = A, more
often than with likelihood L*. If the curvature R(A) is large then the
variability of A around its ML estimate is small: somewhat loosely the
variance is inversely related to the curvature.

The Wald test uses only the unrestricted ML estimates. Intuitively
in the Wald test we estimate the distance (1/2)Lr by standing at point
X, measuring the distance (A - Ao) and estimating the position of
P; (or P,) using the curvature R(A) evaluated at the maximum point
X. Thus we might define the Wald statistic for Hg:A = Ag by

LA)

! hN
Lo(Ag) =

Py

L4(Ad)

Ay A
Figure 2.1 The three test procedures.
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< AT L
W = (A — Ag)’R(A). However, the Wald statistic uses the average
gurvature, as measured by the information matrix:

W = (A — Ag)%I(A)

where I(A) is defined in (2.10).
We can now generalise the above for a set of g non-linear restric-

tlons g(A) =0 on the k parameters g <k, and the Wald statisti
(Wald 1943) is statistic

W = [g(A)]{GU(A) G} ' g(A) (2.26)

Where G is the g X k matrix of partial derivatives 9g(A)/dA evalu-
med at A. Large values of W are generated by large deviations of
ma&v from zero and the deviations are ‘weighted’ by the average
eurvature of the log-likelihood. Hence for large values of W we reject
_m 0 .,;.m Wald statistic is distributed y*(m) where m is the number of
festrictions in the vector g. For example, the hypothesis Hy:A = Ay
(where A(=1 say) is a special case and here g(A) = (A — Ay).
fence G is the identity matrix. It is easily seen that the standard
test for a restriction on a single parameter in a linear regression is a
jcularly simple form of Wald test. Suppose we wish to test the
_ n_._*ozo: B =0 in a linear regression. Then g(B) = B — 0, the Wald
LH
W = B(I(A))7'B = B*/(Var B) ~ (1) 2.27)

\ore we have noted that the inverse of the information matrix is the
estimate of the variance. The Wald test in this case is therefore
g:@ the square of the standard ¢-test (and gives the same inference

ptotically as applying the x> distribution as in (2.27)).

he Lagrange multiplier test, suggested by Aitchison and Silvey
and a closely related test, the Rao statistic (Rao 1948) are
| based solely on the restricted estimate of the model. The La-
ge multiplier test is sometimes referred to as the efficient score
% It is based on the asymptotic distribution of the score function

1
R S(A) ~ N(0, I(A)) (2.28)

dvely the LM test estimates the distance (1/2LR,) (Figure 2.1) but
') as its starting point. First the likelihood function is evaluated
s restriction A = A, imposed, that is, at point P,. We then
te the point X based on the curvature of L* at P,. The
itleted M estimate A satisfies the equation S(A) =
[ /0A= (0 where S is the score function. At A = A the score
bn I8 not zero and [S(Ag)]? therefore gives a measure of the
re of Ay from A. However, two likelihoods can generate the
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same value for [S(Ag)]? but one has A, closer to the maximum. We
therefore weight the ‘squared slope’ by the curvature of L*. In fact
the greater the curvature (i.e. L’ as opposite to L* in Figure 2.1) for
any value of log[L(Ao)] the closer is the restricted estimate to A
(compare points P, and P; in Figure 2.1, where Aj is clearly closer
to A, and the curvature of L' is larger than that for L*). We
therefore weight by the inverse of the (expected value) of the cur-
vature [1(Ag)]™! evaluated at the restricted estimate Ag. Our simple
LM test statistic is therefore

v = [S(AQ)IP[I(Ap)] ™!
The generalised version is .
v = [S(A0)]' [I(A9)] ' [S(A0)] ~ x*(m) (2.29)

where m is again the number of restrictions.

The intuition behind the test is that if the restrictions hold exactly
(i.e. A" = A) then S(A") = 0 as this is the first order condition for an
unconstrained maximum. The departure of S(A") from zero therefore
measures the strength of the effect of the restriction, on the maxi-
mum likelihood value.

The relationship between the three procedures depends on how
good an approximation the second derivative is able to give of the
value of the likelihood function at the restricted or unrestricted esti-
mates. If we are testing a simple linear restriction, as in the example
above, and the likelihood function is quadratic then the second deri-
vative would provide a perfect estimate of the global shape of the
likelihood function. In this case all three test procedures produce
exactly the same numerical value, w = LM = LR. When, however, the
second derivative is not known with certainty but must be estimated,
this equality disappears and instead we have that w=1rR=>1M as
demonstrated by Berndt and Savin (1977).

A transformation of the LM test

The formula presented in (2.27) for the Lagrange multiplier test is
not a particularly useful one in practice as it requires estimates of
both the information matrix and the score matrix, evaluated with the
restrictions imposed. Following Breusch and Pagan (1980) a
transformation of (2.27) which is particularly easy to calculate and
which is applicable to a wide class of problems may be performed.
Suppose the model takes the form of the non-linear regression
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Y= f(xs A)+e=f+e N (2.30)

where the errors, e;, are identically and independently normally dis-
tributed as N(0, 0?) and f, is independent of all e,. The parameter set
A is split into two subsets: A;, which will be restricted (fixed) and
A, which are unrestricted. The log-likelihood function will have the
general form of (2.8) and the information matrix will be block dia-
gonal between the terms in A and ¢? and so we can concentrate
solely on the term due to A. The non-linear restrictions are
g(A) = 0. Now to evaluate (2.29) we need

CdloEd 0y
S A o “G'e (2.31)
and
mum 1 w1 -
V= m_% = (6*E(G'G))™! 2.32)

where G is a matrix of partial derivatives of g with respect to the
parameter A. We may then write (2.29) as

5 28'G[62E(G'G)]'o72Ge (2.33)

where ~ denotes an estimate formed at the restricted parameter set
A;=A. If E(G'G) is estimated as G'G then (2.33) may be simpli-
fied to
o*e'e (2.34)
which may be interpreted as TR? where R? is the coefficient of
determination in the regression of € on G. ,

This procedure has found a range of applications, the most popular
of which is the Lagrange multiplier test for serial correlation.

Suppose the unrestricted model is

Vo we (2.35)
U = pily—; + & (2.36)

This model may be transformed to give
Yi=pYi + (Xi— Ximip)B + e, = f(p, B) + ¢ (2.37)

which puts it into the notation given above. Now if we wish to
construct the LM test for p; =0 we proceed as above by identifying
=0 with A; = A and f as A,. For p; =0 the restricted estimates
of w are given by an oLs regression of Y on X. The residuals from
this oLs regression =Y — X B may then be associated with & To
derive the elements of G we note that
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3 L

w% =AY g XeaB) =8 (2.38)
3

mm e ey (2.39)

so that G = (i_;, X))
Now under the null hypothesis that p; =0 and that X is strictly
exogenous it may be shown that the Lm statistic becomes Tr? where

r,=@8)7'aLa
An alternative form of this test may also be constructed by perform-
ing the regression

5
Puer .Mm\_.ml s.§
=
The R? from this regression may then be used to form an LM statistic
as TR? ~ y*(m). This test may be constructed either for individual
lagged errors or for a number of lagged errors considered jointly. If
TR? exceeds x2(m) then we reject the null hypothesis that the restric-
tions are valid (i.e. that there is no serial correlation of order
12, Capam),

Both of these forms of the LM test have the same intuitive interpre-
tation. On the assumption that p; = 0 the correlation between u, and
u,_; should be zero. The first test looks at this correlation directly
and its interpretation is obvious. In the second test, because i, are
the oLs residuals, the R? of i, regressed on X, is zero, (recall that
the normal equations for ors imply #'X =0). So the R? of the
auxiliary regression (2.40) measures the extra explanatory power
given by the terms &,_;(i = 1,2, ... m). If R? from (2.40) is low then
there is a low correlation between @, and #@,_; and hence autocorrel-
ation is unlikely to be present.

2.2 Non-linear optimisation procedures

In general the log-likelihood function is a non-linear function of the
parameters of the model and often log (A)/3A =0 is not amenable to
an analytical solution. There are, of course, exceptions to this state-
ment the most important of which is the case of the general linear
model where the ML estimate of B can be derived analytically and is
numerically equal to the oLs estimator. If an analytic solution is not
possible we must use some numerical method for finding the maxi-

Non-linear optimisation procedures 59

mum likelihood parameter values. The techniques which may be used
are applicable to maximising any objective function which is a non-li-
near function of a set of control variables and we will discuss them
within this general framework.

We therefore view the parameters (A) of the model as a set of
n@bﬁ.& variables, C, and similarly the likelihood function itself is
viewed simply as any general non-linear function of those control
<wnmd_om. Our objective may then be described without loss of gener-
ality as

Min H(C) = —log[L(A)] (2.41)

where C is a vector of all the parameters of the system — such as IT in
(2.1) and, in some cases, any unknown variance or covariance terms.

Practical computation

The numerous methods of solving a minimisation problem, such as
(2.41), proceed along a broadly similar set of steps and may all be
classified under the general heading of hill-climbing algorithms. From
an initial, and arbitrary, guess of the optimal solution C*, say Ci,
they attempt to construct a sequence of vectors C;, C, ..., Cy such
that at every point on the sequence H(C;) < H(Cj_1) < H(C;_;) <
...etc.and as N —» o, Cy— C*. ;

The broad steps of achieving this sequence may be outlined as
follows:

1. Set an arbitrary initial value for C;.

2. Determine a direction of movement for C; which will decrease the
value of H(C;).

3. Determine a ‘step length’ for the change C; and evaluate the
objective function of C;,;.

A.\ mxm.Emso a terminal criterion; if it is fulfilled, stop. If it is not
fulfilled, set i = i + 1 and repeat the procedure from step 2.

A usual criterion for termination would be that H(C;_,) — H(C;) < ¢
iroqw € is some small tolerance. Because of the possibility of the
n_.mo_._::: ‘jamming’ at some non-optimal point we might also exa-
mine

or
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2
_mq_ lac’
to see that both of these are close to zero.

Among the hill-climbing algorithms by far the most important
group are those which base the optimisation procedure on the calcul-
ation of derivatives of the objective function. These algorithms are
known collectively as gradient methods for example, the Newton
method, Davidson-Fletcher-Powell, steepest descent, and quadratic
hill climbing. The non-gradient, or derivative free methods, are gen-
erally of most use when the function to be minimised is extremely
irregular. This class includes, for example, the Powell algorithm, the
non-linear Simplex method and grid search methods.

Gradient methods

Given a current value C; the gradient methods all proceed by con-
structing a sequence where

H(Ci41) < H(C) (2.42)
where C;,, is defined as follows
Ciy=C +sdlC)=C; + s[V(C).3(O)] (2.42a)

s = the step length (a positive scalar), 3(C) is the gradient, (we use
‘3’ as shorthand below) a vector of first-order partial derivatives of H
with respect to the control variables (i.e. 3=0H/3C). V=V(C)is a
function which varies depending on the gradient method used. d(C) is
the direction vector and depends on the gradient and the function
V(C). The evaluation of both the first and indeed the second deriva-
tives (see below) may be done either analytically or numerically. For
analytical calculation the actual formulae for the derivatives must be
coded into the computer program (for example, if H (C)=2C%-4cC,
3H/3C = 4C — 4, 82 H/3C? = 4). In the case of complex functions it
is often impossible to calculate derivatives analytically. In practice it
is often satisfactory to use a numerical approximation to the derivat-
ives, so that for the first derivative we use:

OH EAGHQN» QN %+ Du QN+H. Q.\v i mAQT QNu ﬁ_&v
i 2.43)
aCk A

where A is a suitably small number. To illustrate the calculation of
the numerical derivative (2.43) consider the simple quadratic
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H(C) =2C?* - 4C

In this simple case we can solve analytically for the first derivative, d
and second derivatives, 0@

3=0H/3C =4C -4

The numerical approximation 9, for arbitrary values C; =0.5,
C, = 0.52 and hence A = 0.02 is

3, = [H(C,y) — H(C1)]/0.02 = [(—1.5392) — (—1.5)]/0.02
= —1.96
We can check this approximation by evaluating the ‘true’ slope using
d=4C —4. mm: O.H = 0.5, 9; = -2, while for C, =0.52, 3, = —1.92,
so the approximation 9, lies between the two analytic values as one

Mzoc_a expect. Similarly the second derivative 8% can be approx-
imated by ,

3P = (342 — 3u)/(C2 — Cy)

]

Equation (2.43) is a ‘one-sided’ derivative calculation; improved ac-
curacy can be achieved, at extra cost, by using a two-sided approx-
_Bm.:oa. The choice of A embodies two considerations: an accurate
amw_<m.n<m requires a small A, but if there is any inaccuracy in the
objective function evaluation H(C) itself then A must not become so
small that the inaccuracy significantly affects the calculation of 3.

The Newton method

The Newton (sometimes called Newton-Raphson) method is perhaps
the most fundamental of the gradient methods. Many of the other
methods are developments of it, or approximations to it, and are
often called quasi-Newton methods. The Newton method makes use
of the matrix of second derivatives of the objective function with
respect to the control variables (the Hessian matrix) for V:
i

/,< i Amq@n\v st
and s = 1. If the function H were quadratic the Newton step pro-
cedure i.oc_a reach the optimum point in one iteration. In essence
the algorithm works by making a series of local quadratic approxim-

uzo.:m of H, solving this problem and then recomputing the approxi-
mation.
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In order to give some intuitive understanding of the vu@nnacwo
consider the one control variable case where the BEEEB. mw given by
C*. A Taylor series expansion of H(C) around the minimum C*
gives

H(C) = H(C*) + (C — C*)3(C*)
+ (1/2)(C — €*)?8(C™)
Differentiating with respect to C and noting that
H(C*), 3®(C*) are constants (for a given C = C*) then
3(C) = 3(C*) + (C — C*)RA(CH)
Rearranging and noting that at the minimum 3(C*) = 0, we have
c* = C — [0P(0)]713(C) (2.45)

If H(C) is quadratic then C could be set at any initial value and C*
would be given exactly by the rus of (2.45) (see below). For more
general functions the latter does not hold but (2.45) suggests an
iterative scheme

Gy = €1 = [3P(C]13(Cy) (2.46)

In this single parameter case V(C) = [3%(Cy)] 7!, the general case is
shown in (2.44). :

To illustrate some of the above points consider our quadratic
example H(C) = (2C? — 4C). Analytically the minimum is m.?o: .3
3(C)=4C—-4=0, and hence C*=1. How would our . iterative
scheme handle this problem starting with an arbitrary starting value
C, =2 and the analytic derivatives 3 =4C —4 and 9@ =4 so that
3(Cy) = 4, 3?(C,) = 4, hence

C,=2-1/44=1

The minimum is achieved in one iteration when H(C) is quadratic
and we utilise analytic derivatives. (This is because the curvature 0?
is constant for any quadratic.) Consider next a cubic for H(C):

H(C)=C*-3C*+7
hence
3(C) = 3C? — 6C
3@ (C)=6C — 6
If we begin with C; = 1.5, then 3 = —2.25, and 9® =3, hence
9‘" (1.5) = (=2.25)/3 = 2.25
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The next iteration is
Cs; = (2.25) — (0.168)/7.5 = 2.02

Analytically we know the solution namely 3(C) = 0, which implies
C* = 2 so our second iteration is close to the optimum. One problem
with the Newton—Raphson method is that it may move away from
the minimum if 3® is not positive definite. For example if we had
chosen C;= 0.5 then 9® =-3 (i.e. negative) and C,=
0.5 — (—2.25)/(1.3) = —0.25 and we move in the wrong direction.
Some techniques modify the basic Newton-Raphson procedure to
ensure that the gradient 3(C) is always multiplied by a positive
definite matrix (see below).

Method of steepest descent

At the current point C;, the direction which will improve the object-
ive function most rapidly is given by the vector of first derivatives, O.
The method of steepest descent therefore simply sets V equal to the
identity matrix (or minus the identity matrix if the problem is being
maximised). The important choice therefore becomes the determin-
ation of the step size. In this case some variant of the Armijo (1966)
step procedure is generally used. This works as follows: a succession
of steps is generated using

Ry ey,

where A is some given maximum step size and B is a constant
0 < B<1. Some form of grid search may then be used over these
step sizes to check for the best step size at each iteration.

The method of steepest descent avoids the costly computation of
the Hessian matrix but its disadvantage is that convergence can often
be slow and there are well-known examples where the algorithm will
not reach a maximum.

Method of quadratic hill climbing

The method of quadratic hill climbing (Goldfeld et al. 1966) is a slight
extension of the standard Newton algorithm to include a variable step
size and to ensure a positive definite matrix. The iterative scheme is
C; = C, — sQ3 where Q = (V + ul)~!, with u a positive scalar. This
may improve the performance of the algorithm when the function is
non-concave or is not close to quadratic.
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Quasi-Newton methods

In order to calculate the Hessian matrix required by the Newton
method, either an expensive numerical procedure must be repeated at
each iteration or the analytical second derivatives must be calculated
and supplied by the user. The quasi-Newton methods are a family of
algorithms which avoid this necessity by calculating an approximation
to the Hessian matrix and continually update it and hence improve on
the approximation (to the true matrix of second derivatives).

From (2.42) we can see that for iteration i + 1, the inverse of the
second derivative matrix at iteration i was

mn : IH
Iuﬁ.lﬁ.w.lm. G.ad
A 2aCacC’ v_. A i+1 LA _+~ b
so by comparing the parameter estimates (Cj,, C;) and the derivat-
ives (3;41,9;) at two succeeding iterations we can estimate the Hes-
sian at the last iteration. This may be compared with the estimate at
iteration i, namely, E; and then some correction based on the error
can be made so that

SC3C (2.48)
where ‘f’ is a function of the Hessian evaluated at iteration i, the
precise form of the correction determines the form of the quasi-New-
ton algorithm under consideration. One of the most common al-
gorithms in this class is the Davidson-Fletcher—Powell method. Him-
melblau (1972) presents a number of correction formulae.

3*’H
Ein1=E; + \Am: v

Scoring

It is sometimes easier to obtain a numerical approximation to the
expectation of the matrix of second derivatives, that is the inform-
ation matrix, I(C)

I(C) = —E[3*H/3CaC’]
The iterative scheme is then
Cis1 = C; + [1(O)]13(C)

and the procedure is known as the method of scoring. It is likely to
have a slower rate of convergence than Newton-Raphson since I(C)
is only an approximation to the Hessian. However, the information
matrix is easier to compute and will be estimated more quickly. A
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variable step length is also often incorporated. If the model is identi-
fied then I(C) is always positive definite.

Derivative-free techniques

Generally speaking, optimisation techniques which employ derivatives
are fast and reliable when the function being maximised is well
behaved. However the derivative-free techniques are recommended
for highly non-linear functions or functions which are subject to
discontinuities. In principle the reason for this is simple to under-
stand: the gradient-based techniques work by examining the first and
second derivatives at a single point and drawing an inference about
the whole surface based on some simple regularity conditions. When
a function is either discontinuous or highly non-linear the information
given at a single point can be very misleading. (Consider trying to
find the direction of Everest, based on the slope of a minor peak in
the foot-hills of the Himalayas.) The derivative-free techniques gener-
ally derive their ‘working information’ by examining a larger area
around a current point on a surface and so they are less likely to
draw very fragile inferences about the shape of the surface being
climbed. (Derivative-free techniques maybe likened to having a
powerful pair of binoculars at the top of a local peak from which one
can see Everest in the distance, although, of course, there is no
guarantee of this.)

The two widely used algorithms in this class are the conjugate
gradient method of Powell (1964) and the non-linear Simplex method
suggested by Spendley, Hext and Himsworth (1962). The Powell
technique works essentially by carrying out a set of linear searches in
orthogonal pairs and deriving a direction of movement from this
information. The Simplex technique constructs a simplex around
some initial point and evaluates the objective function at the vertices
of the simplex. A simplex is the simplest shape which has positive
area in any given dimension; in the two-dimensional plane it is simply
a triangle. The algorithm works by starting from an arbitrary simplex
in the hill-climbing space and examining the value of the objective
function at each corner; it then drops the least desirable corner and
calculates a point which is a weighted average of the other corners. A
line search is then conducted from the least desirable corner in the
direction of the weighted point. The best point along this line then
forms one of the corners of a new simplex which is completed by
using the corners of the old simplex with the exception of the worst
one which has already been dropped. The algorithm then repeats
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itself, thus moving the simplex around the n-dimensional space until
the maximum is bracketed within the simplex and then collapsing the
simplex around the maximum until all the corners lie arbitrarily close
to the optimal point.

Inequality-constrained optimisation

In many cases we may wish to maximise an objective function H(C)
while obeying a set of inequality constraints (for example, that the
probability of default in a loan is always greater than zero). This
complicates the maximisation algorithm substantially. There are basic-
ally two approaches to dealing with this problem: the first involves
adapting the objective function so as to penalise any violations of the
constraint; the second adapts the optimisation algorithm.

When we adapt the objective function the technique is generally
known as a barrier method. The idea is to define a barrier function
which heavily penalises violation of the constraint but has a near-zero
effect when the constraint is satisfied. If we have the following set of
inequality constraints

G(C) =0 (2.49)
we create a set of barrier functions such as
B[G(O)] (2.50)

Where B[G(C)] is near zero for G(C)=0 and is large for
B[G(C)] <0, a typical function for iteration i, might be

B{G(CO)] = —yIn[Gi(O)]

where 7 is a suitably chosen weighting factor. Since as G(C) — 0 the
log approaches minus infinity, this severely penalises moving G;(C)
towards zero.

Disadvantages of this technique are: (a) a good barrier function
should be highly non-linear and therefore makes the optimisation
more difficult; (b) if the unconstrained optimum were near or on the
constraint the barrier function will tend to distort the final solution. If
a barrier function is to be used it is often advisable to experiment by
sequentially dropping some or all of the constraints, to check which
individual constraints do not hold in the unconstrained optimisation.

The second main approach to inequality constraints is to adapt the
direction finding procedure so that the algorithm does not move in
directions which violate the inequality constraints. This amounts to
deriving a value ‘V(C)3(C)’ in (2.42a) in such a way that it will not
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cause steps out of the feasible region. Algorithms which implement
such procedures are collectively termed methods of feasible direction
and a detailed survey of these techniques may be found in Polak
(1972). A typical procedure would be to derive the gradient vector
ind then calculate the derivatives of any close inequality constraints.
A linear-programming problem may then be formed which maximises
the change in the objective function, given from the gradient vector
subject to non-violations of the constraints.

2

2.3  Special forms of likelihood functions

Qualitative response models

The basic idea which lies behind the qualitative response (Qr) model
(sometimes referred to as limited dependent variable model) is that
there are times when we either have only partial information on a
Varlable or the information is not continuous. For example in Tobin
(1958), a model of the demand for cars is constructed using disaggreg-
Mled data. The basic idea is that expenditure on cars is related to an
idividual’s income. The problem is that some individuals choose not
buy cars at all, and so individuals are divided into two groups, G,
ios¢ who had bought a car and G,, those who did not. Hence we
Ve only partial information. If we simply remove the group G,
om the sample we would get a biased estimate of the income
ticity. Consider the second case where we have a non-continuous
table, in the simplest case 1 or 0 say. For example, we might know
I8N an incomes policy is on ‘1’ or off ‘0’ but we have no continuous
ure of the strength of the policy. Finally, a classic example from
 field of biology is the testing of the effect of poison on insects.
| hypothesis is that more poison increases the probability of death,
‘the observations on the individual insect come in the form of
vors ‘0’ or deaths ‘1.
1e general approach to this class of problem is to assume a linear
ssion model:

Y, = X, + u,
.&ﬁo?o Y, only if Y, > 0, so that the model becomes
Y, = BX, + u, if BX, + u, > 0

Y, = 0

Attempt to estimate this equation by ors using only the G,
vations when Y,>0 then the resulting estimates would be

otherwise
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biased and inconsistent since we cannot assert that the E(u,) =0 for
all ¢. The approach in the or model is to define the likelihood
function for the model on the assumption that the error term follows
a particular distribution. The assumption made by Tobin (1958) was
that u, has a normal distribution with zero mean and variance o2, this
gives rise to the Tobit (or Tobin’s probit) model. We may then write
the likelihood function L for the model as

1 1
hu: Aqﬁas ee—n mwﬂcon u@“:

YeG,
0 1 H ]
\_‘18 QANS.VH\N expl— ) (Y, — BX)-|dy

(2.51)

X:A

<MQ~

This may be maximised to give estimates of o and fB using the
numerical techniques discussed earlier in this chapter.

Variations on the or model generally involve alternative assump-
tions about the distribution of the error term. We can therefore
present a compact form of the likelihood function by defining f(.) to
be a given density function and F(.) to be the cumulative density
function. Using this notation we may restate the likelihood function

as

L= T |2 rc, - pxysel| T1 tF-Bx/01 @52

YeG, o YeG,
An important alternative or model arises when F(.) is defined as the
logistic function

Ne<

14 e”

This model is then known as a logit model. Its main advantage over
the Tobit model is the ease of numerical calculation, as the logistic
function is much easier to calculate than the cumulative normal func-
tion. (Amemiya, 1981 discusses the relative merits of the two func-

tions at some length.)
In the case where we have only discrete observations on the

F(w) =

dependent variable, then the likelihood function is a simplification of .

the general or model. For example, suppose Y =1 when a govern-
ment is operating an incomes policy and Y =0 if the policy is in-
operative. If G, is the group when Y = 0 then the likelihood function
involves only the cumulative density function of the following form:

L= T[] F(-Bx) [ [1 - F(-BX)] (2.53)

YeG, YeG,
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The _.m_naEpoon_ function would then represent a Probit model, when
F(.) is the cumulative normal (density) function and a logit model
when it is in the logistic function.

Discrete switching disequilibrium models

A model closely related to the qualitative responses Qr model is the
discrete switching disequilibrium model. The link between them lies
in the form of the likelihood function. Both the or and disequili-
brium model contain terms in the cumulative density function of the
error terms of the model. The disequilibrium model contains equa-
tions for the ‘notional’ or ‘desired’ demand Y¢ and supply Y* of the
good Y. These typically have the form .

%m 7 a:NUn + \wmwﬂ s Uy,
M\w = o P, + umku + uy,

(2.54)
(2.55)

where P, is the real price of the good, X, is a vector of exogenous
Variables, By, B, are vectors of parameters and u;, and u,, are
hlormally distributed error processes. Equations (2.54) and Am.mmﬂv are
h_-an_m_d to any single market model. The distinguishing feature of
disequilibrium model is given by the method of determining Q
actual quantity of the good Y, which is to be traded in each QBM
_._on.c‘:._o standard equilibrium model makes the assumption that
)= YP = Y$ that is, the actual quantity Q, is given by the intersec-
o of demand and supply. Other assumptions which are sometimes
lde are, Q, =YY, that is demand side dominance only, or Q,=Y?$
pply w.ao dominance only. The assumption made in &monEE_uaEm
dels is QO = min(Y?, Y*), that is the traded quantity is determined
the smaller of the notional demand or supply.
T'he justification for this approach is based on the idea of voluntary
hange. A notional demand or supply curve may be thought of as
" uw.::w maximum amount of a good which will be exchanged
ntarily at any given price. If someone is offered a smaller quan-
than he demands at a given price, he will generally accept this
as profitable, but an individual will not generally purchase a
I quantity than indicated by his demand curve.
| order to close the disequilibrium model it is necessary to make
. Jm-:.BﬁﬁO: about the determination of prices. The typical as-
ton is:

Pi=P._,+ yY}- (2.56)

emand ma greater than supply, the real price will rise and vice-
. Equations (2.54)-(2.56) then constitute a full statement of the

wv+=u: V\VO



70 Maximum likelihood estimation

single market disequilibrium (sMpm) model. Over time, the real price
will tend to adjust to the market clearing price and the speed at which
it does this is governed by y. If y becomes very large the disequili-
brium model will closely approximate the equilibrium model. Alter-
natively, if y is small the disequilibrium will persist for a considerable
time. One of the advantages of using an empirical model based on
(2.54)—-(2.56) is that the estimate of y will give us an indication of
how closely the model approximates a market clearing model.

An early attempt to estimate a model of this type is due to Fair
and Jaffee (1972). However, their work is not based on the maximum
likelihood approach but makes the simplifying assumption that
us, =0 and utilises instrumental variable estimation of the model.
The likelihood function for sMpm was developed by Maddala and
Nelson (1974).

The derivation of the likelihood function begins by defining:

YR XD (2.57)

as the joint probability density function of the unobserved random
variables (Y9, Y$) and h(Q,) as the probability density function of
Q,, the traded quantity. We can then relate

h(Q)) to g(Y?, Y?) (2.58)
in the following way:
wQ) = fQIYP < YHPr(YP < Y?)
+ f(QIYT = YP)Pr(Yi < YD) (2.59)

That is to say, the pDF of Q, is given by (a) the conditional ppF of Q,
when Q is demand constrained, multiplied by the probability of being
demand constrained plus (b) the epF of Q, when O, is supply con-
strained, multiplied by the probability of being supply constrained.

Now:

0

|, 8, YiIYP < YHavs

FRIYP < YD)

and similarly f(Q,|Y$ < Y?) may be expressed as
[1/pr(¥$ < YD) [, 8(YP, Q)aYP

The ppoF of Q, may therefore be written as

[1/er (Y2 < Y91 | 8(Q, YHAYS @.60)
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-}

0, 8(Y% @)Yy 2.61)

nQ) = [, 80, DY+
the likelihood function may then be specified as
b = : h(Q))
L

‘L’ is a function of all the parameters of the system and the cova-
riance matrix of the errors, uy,, Uy, and us,.

(2.62)

ARCH and GARCH likelihood functions

Our general statement of the likelihood function of the non-linear
model (2.7) assumed that the error terms had a constant covariance
structure ©. In fact it is not obvious that the covariance matrix will
always be constant over time and it is easy to further generalise (2.7)
10 take account of this. If the covariance matrix is known over time,
that is ©, is a known series, then ®, may simply be entered into
(2.7). If ©, is assumed to vary over time but its value is unknown
ien the problem is more complex and we cannot simply estimate all
elements of ©, as there can never be sufficient degrees of free-
him to allow this.

One approach to estimating O, lies in a suggestion made by Engle
U82) to model the expected (or conditional) covariance matrix as a
netion of observed past squared errors, this model is termed the
loregressive conditional heteroskedasticity (ArcH) model. The basic
gumption is that H, is a conditional expectation of ®, based on past

prmation, thus

H, = E(©,.:Q,.) (2.63)

o £2,., is the relevant known information set. The specific as-
iption of the ARcH model is that

N
Vech (H,) = v + .Mﬁs_<§ (ec_iei—i) (2.64)
i=

Vech (H) denotes column-stacking the lower triangular ele-
L of a symmetric matrix H and y, and y; are suitably dimen-
I vectors of parameters. A scalar version of (2.64) is simply
&y + > ae?_;; the conditional variance h, depends on past
¢ forecast errors. H, may then be substituted into (2.7) in
B of © to produce the arcH likelihood function.,
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A further extension to the ArRcu model is the generalised autore-
gressive conditional heteroscedasticity model (carcH) (due to Bol-
lerslev 1986) which basically allows other terms to enter the ARCH
equation beyond simply the lagged errors. One particularly useful
form of GarcH model is when the lagged conditional expectation of
the covariance term enters the equation. In this case

P N

Vech(H,)) = yo + .MH§~.<morAmT_.v + .MHE\./&%ASJ.&J.V
i= j=

(2.65)

In its general form this would be termed a GarcH(N, P) model,
denoting the number of lags in H and ee’ which feature in the model.
Once again H, can simply be substituted into (2.7) to produce the
GaRrcH likelihood function. A simple scalar version of the above is
e2_,, which would be a GARCH(1, 1) model.

A final further elaboration of this type of model is due to Engle,
Lilien and Robins (1987) who point out that many theoretical models,
especially in finance theory, include terms in ‘risk’ which can be
modelled by including conditional elements of the covariance matrix
into the specification of the model. Thus (2.6), the structural equ-
ations of the model may include any elements of H; as ‘risk’ terms:
y; = f(x, ) + 8H, + e,. When this is done the models are then gener-
ally termed ArcH-in-Mean (ARCH-M) OF GARCH-in-mMean (GARCH-M)
models.

2.4  Empirical applications using maximum likelihood

A discrete switching disequilibrium model of the market for building
society loans

In this section we present an example of maximum likelihood estim-
ation of a disequilibrium model for mortgage lending from building
societies (taken from Hall and Urwin 1989). The model involves
formulating equations for the demand and supply for mortgage lend-
ing and the determination of mortgage interest rates. The model is
estimated on the assumption that the short side of the market domin-
ates and uses the discrete switching model discussed above.

The demand for mortgages

The demand for mortgages may be derived from a fairly simple utility
maximisation problem. Suppose a representative household has a
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utility function U(H, G) where H is housing services and G is an
mm.mnomma. of other goods (in real terms). The household maximises
this function subject to a total limit on disposable income of the form:

g(r", PYH + GP = DY (2.66)

Where g(r™, PH) is a cost function of servicing a mortgage which will

provide housing services H. The cost function depends on r” the rate

of interest on mortgages and P the price of houses. DY is (nom-

inal) disposable income and P is the general price level (of goods).

W”mxmnmmmbm U(H, G) subject to (2.66) yields a demand function of
e form:

=107 P2 DY P) (2.67)

Hall and Urwin then relate the demand for mortgages (MP) to this
basic function by introducing the number of owner-occupied houses
(NOH). They then invoke adjustment costs to introduce lagged act-
1& mortgage borrowing and a term for the effects of banks moving
into the mortgage market (ZBL). This then gives the general demand
function:

log(MP/P) = Ay + A;log(r™) + A,log(P¥/P)
+ Azlog(NOH) + A,log(DY/P)
+ Aslog(P) + AgAlog(P) (2.68)
+ A;log(ZBL) + Aglog(M/P),_,
where A, A, <0; Ay, Ay, Ag>0

The supply of mortgage lending The supply of mortgages depends
on two main factors. First, the supply of building society shares and
deposits (primarily) from the personal sector and second the action of
the building society when it carries out its role as an intermediary
between depositors and lenders.

The supply of deposits is given by a fairly simple application of
portfolio theory. The supply of deposits to building societies is given
by the demand function of the personal sector for building society
deposits. Deposits will therefore vary with income and relative re-
turns between building society deposits and other assets (rP/r?).

They then introduce terms in the loan to value ratio of first time
buyers (LV') and the loan to income rate of first time buyers (LY) as
proxies for the willingness of societies to lend. To capture changes in
the supply of mortgages they introduce a term for building societies
borrowing in the wholesale money markets (ZWB). Lags are intro-
duced to model adjustment costs giving the supply equation:
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log(M5/P) = By + Bjlog(rp/r') + B,log(DY/P)
+ BsAlog(P) + Bylog(LV) + Bslog(LY)
+ Bglog(ZWB) + B;log(M/P),_1 (2.69)
where B;, B,, Bs, Bg, B;>0

The interest rate adjustment equation Finally, in order close the
model we need an interest-rate adjustment equation. We assume the
change in log(rp/r') is a function of excess demand or supply to
which is added a set of other relevant interest rates. This part of the
model is really of only minor interest. A simple ‘ad hoc’ equation
involves the change in the long-term consol rate (20YC), the change
in the treasury bill yield (r!) and a lagged dependent variable:

Alog(rP/r!) = Co + C1Alog(20YC) + CrAlog(r)
+ C3Alog(rP/rY),_1 + Cylog(MP/M?)
(2.70)

Estimation of the model

The likelihood function for the discrete switching disequilibrium
model is an extremely complex one. It is not available as part of any
of the standard econometric computer programs and it is sufficiently
ill-conditioned to present serious problems for any of the standard
numerical maximisation procedures. Numerical optimisation is there-
fore achieved by the combined use of a non-linear simplex algorithm
and a conventional quasi-Newton algorithm using analytical first
derivatives. The non-linear simplex algorithm is used first as it is
relatively robust to the presence of local maxima and discontinuities;
its final convergence on the maximum point is, however, slow. When
we are close to the maximum the quasi-Newton algorithm takes over
the optimisation problem from the simplex procedure and it then
efficiently pinpoints the true maximum. Verifying that a true max-
imum has actually been located is of course difficult. One check is to
use a graphical search around the final solution, resulting in a set of
line searches across the likelihood space, and these may be used to
detect a failure to find a true maximum.

We outlined above the general form of the model to be estimated,

but there is of course scope within this general framework for a wide -

range of dynamic specifications. In a ‘general-to-specific’ modelling
exercise we start from a general model and ‘test down’ on the dynam-
ics until a parsimonious form of the model is achieved. This is not a
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practical procedure for this type of system estimation as the general
form would involve far too many parameters for successful optimisa-
ao?. Even in the final form to be reported here the model involved
Bw.x_nm.mmnm the likelihood function with respect to 26 parameters. The
o-:Emcos procedure is therefore less systematic than one might like.
It is also worth pointing out that the standard battery of diagnostic
test procedures on the error process are not applicable to this model.
The reason for this is that the observed error, Q — O (where Q is the
traded quantity of mortgages), cannot be uniquely associated with any
of the structural error terms in the model. The observed error will be
il combination of the errors on the notional supply and demand
curves and as such it provides no formal evidence about the proper-
ties of the structural errors. We do not make the assumption that
Q ~ Q is white noise and uncorrelated and so there is no point in
testing this assumption. Residual tests may however be constructed in
] _.EBU.Q of complex ways, see Hall, Henry and Pemberton (1991).
Maximising the log likelihood then produces the results detailed in
Table 2.1 which gives the parameter estimates of the preferred model
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(model 1). This model estimated excluding the last eight data points
which are then used the test structural stability (model 2). In model 3
we combine the terms in the stock of housing and the price of
housing and use the value of owner-occupied housing. The term
o(Q — 0) is the standard error of the observed forecast of the model
which may be compared with the standard error of the Anderson and
Hendry (1984) model of 0.0029 and the Wilcox (1985) model of
0.0029.

The preferred model 1 conforms with our prior views about the
signs of the parameters. It produces a model which tracks the data
reasonably well even in comparison with conventional oLs models.
This is indicated by the standard deviation of the observed error
which is of a size similar to that found in other studies of mortgage
lending (although the data periods are quite different). The tendency
of the models to move towards equilibrium is measured by the size of
C4, (C4=0 implies equilibrium is never reached, C4= * implies
continuous market clearing) this parameter estimate suggests that
there is only very slow adjustment and that for practical purposes
disequilibrium may persist indefinitely. This conforms well with the
conventional view of building society prior to 1986. Nevertheless the
market for mortgages is not characterised by a very large degree of
disequilibrium. Figure 2.2 shows the model’s forecast for the stock of
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Figure 2.2 Demand and supply of mortgages.
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mortgage demand and supply in contrast with the actual level of
lending. It is quite clear from this figure that, by and large, the
building societies are able to equate the demand and supply of mort-
gages fairly effectively.

However, this is not to suggest that disequilibrium is insignificant
in this market. Figure 2.3 shows the deterministic model estimates of
excess demand over the period 1969 Q2-1986 Q1. The degree of
disequilibrium peaks in 1974 at around 4% of the mortgage stock.
This represents a sizeable constraint on households borrowing. For
example, in 1985 this would have implied a constraint in excess of
£1,000 million. The overall pattern of excess demand corresponds
remarkably closely with that estimated by Wilcox, although this
model does not detect such strong excess demand in the period
1979-80. Unfortunately there is no time series available for the size
and duration of mortgage queuing to compare with Figure 2.3.

Figure 2.3 also suggests that the incursions into the mortgage
market of non-building society lenders, particularly the banks, have
had a very significant impact on either the degree of excess supply or
demand. The three periods (the start of the 1970s, 1981-3 and
1986-7) in which the banks’ market share rose very rapidly are
estimated to have been those in which the extent of rationing fell
substantially, or even that conditions of excess supply prevailed. The
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Figure 2.3 Excess demand for mortgages.
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fact that lenders did not attempt to reduce their lending standards in
order to eliminate excess supply suggests that competitive forces have
had a relatively weak impact on such standards and that lenders have
attempted to retain the appropriate prudential criteria. It is perhaps
surprising that the degree of rationing is estimated to have been
greater in 1984-5 than in the second half of the 1970s, as in the later
period building societies were thought to have adopted a more m_wx-
ible interest-rate policy. While this finding may not be consistent with
general perceptions of the way of the mortgage market operated at
that time, the results do indicate that over the period as a whole,
societies’ propensity to use interest rates to equilibriate the demand
for and supply of mortgage was greater when competitive pressures
were more intense.

The long-run properties of the demand and supply equations are
fairly sensible. The long-run solution to the demand equation is:

log(MP/P) = —0.75log (r™) + 0.5log(P"/P)
+ 12.5log(NOH) + 1.0log(DY/P)
— 2.0log(P) — 1.4log(ZBL)

These parameter estimates are all quite reasonable with the vOmm.mEo
exception of the elasticity on the number in owner-occupied housing,
NOH , which will be discussed further below.

The long-run solution for the supply equation is:

log (M3/P) = 0.03log(r?/r') + 1.11log(DY/P)
+ 1.2log(LV) + 4.2log(ZWB)

Rather surprisingly, the level of liquidity was not found to .co a
significant variable in the supply equation. Because of the non-linear
transformation used for both ZBL and ZWB neither of these coef-
ficients may be interpreted as a simple elasticity.

There is an interesting asymmetry between the long-run effect of
prices in these two equations. Real mortgage demand shows a strong
permanent price effect while the supply equation has a zero _o=.m-q.==
response. This may be explained in terms of the fact that m:. existing
mortgages are reduced, in real terms, by a rise in the price level
leading to a permanent fall in mortgage demand. No such effect
would be expected in the supply equation.

The only unrealistic elasticity is the effect of the number of houses,
NOH, on the demand for mortgages. A long-run elasticity of 12 is
clearly unreasonable. It would be quite plausible to have an elasticity
greater than one and we would certainly expect the elasticity on the
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number of houses to be larger than that on house prices, as almost all
houses which are additions to the owner-occupied stock have associ-
ated mortgages. None the less, a long-run figure of 12 is clearly
implausible. There would seem to be two possible explanations. First,
we may have failed to pick up the full dynamic effect and so we may
have a plausible short-run effect from housing but a very poorly
defined long-run. Second, there may be a trend factor in mortgage
demand which we have failed to model but which is highly collinear
with the housing stock. In this case, part of our long-run effect on
NOH , may be due in part to this unidentified component.

In an attempt to investigate these possibilities we performed a
number of experiments. First, lags in the housing stock were intro-
duced to allow for the possibility of more complex dynamics. This did
not change the long-run elasticity on NOH, to any great extent.
However, it is possible that more complex dynamics are required but
our data, which span less that 20 years, are simply not long enough to
analyse a market where the average term to maturity of loans is
about 7 years. Second, model 3 in Table 2.1 considers the effect of
restricting the housing terms to be the value of the owner-occupied
housing stock. This restriction when applied to the model has a
number of undesirable features. In particular, the demand equation is
dynamically unstable and so the long-run solution is no longer de-
fined. We therefore conclude that this real-world application of the
smpM has yielded useful insights but clearly specification problems
still remain.

Measuring the risk premium in the forward exchange rate market

A simple ARCH-M example

Under the assumptions that economic agents are risk neutral, there
are no transaction costs, expectations are formed rationally and the
market is efficient, the forward exchange rate should be an unbiased
predictor for the future spot rate. There is now considerable empirical
evidence which rejects this proposition however; for example, Hansen
and Hodrick (1980), Hakkio (1981) and Taylor (1987). As the as-
sumption of zero transaction costs seems reasonable in this case, we
might question either rationality or market efficiency. However in
neither case do we have a readily acceptable alternative and clearly
another extreme assumption is that agents are risk neutral. Much
recent work has concentrated on a search for the ‘risk premium’ such
as Frankel (1982), Domowitz and Hakkio (1985), Fama (1984),
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Hodrick and Srivastava (1984), Nelson (1985), and Taylor (1987). An
important element of this research has been the recognition that, in
principle, the risk premium will vary over time depending on the
degree of uncertainty in the system.

Our example will assume that the existence of a risk premium
causes a differential between the forward rate and the expected future
spot rate in accordance with a simple ARcH-m model.

If the log of the forward exchange rate i periods ahead is denoted
as f,4:, and the log of the spot exchange rate is denoted s, then the
risk premium p, may be defined as

Pr = frvi — St+i 2.71)

where s¢,; is the market expectation of the spot exchange rate at
period ¢ + i, based on information at time #(R2,). Under the rational
expectations hypothesis

Stri = E(504i|Q0) = Stai + Er4i (2.72)

where ¢,,; is the R forecast error, hence
P = firi — (Se+i + €144) (2.73)

A formal derivation of the risk premium is complex and will not be
given here (see Grauer, Litzenberger and Stehlf 1976, or Stockman
1978). The important feature of the derivation which holds irrespec-
tive of the specific form of the model, is that the risk premium is
determined by the degree of risk aversion of the market agents and
the variances and covariances of the assets in the system. It is perhaps
reasonable to assume that the degree of agents risk aversion is con-
stant but the idea that uncertainty about asset returns and in partic-
ular exchange rate movements is constant is rather hard to accept.

As a simple first step towards recognising the importance of the
time-varying nature of the risk premium, suppose that £.,; has zero
mean but a time varying conditional variance, so that & ~ N(0, h,).
Agents form an expectation of the variance, h, based on available
information. A simple assumption is that the risk premium p, is
positively related to the conditional variance of the Re forecast errors
p, = Ag + Ah,. Using (2.73) we have,

(fivi — Se4i) = Ag + A1h, + &, 2.79)

This is a simple arRcH-m model. To complete the model we need to
make k, an explicit function of the information set, again a simple
approach is to assume that the expected variance is a linear function
of recent lagged squared errors:
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h, = By + w_AM D.mwl.v (2.75)

Then, conditional on the initial values of the data, the log likelihood
function may be expressed as

T
log(L) = MT_om h, — €%/h,) (2.76)

In order to simplify the estimation we assume that the weights C;,
decline linearly over eight months to zero and this leaves four para-
meters to be estimated: By, B;, Ag, A;. Note that if By # 0 and
B; =0 then the risk premium is not time varying, so this model has
the constant risk premium as a special case.

Estimation may be carried out using a numerical maximisation
technique as described above, ¢ statistics may be derived for the
parameters of the system from the inverse of the Hessian of the
likelihood function and standard likelihood ratio tests may be used to
test special versions of the model.

Estimation results

The model outlined above was estimated using monthly data from
1973 M2 to 1987 M6 for the sterling-dollar spot rate and three-month
forward rate. The parameter estimates are given below

Ag = 0.034 (1.63)

A; = —7.655 (1.61)

By = 0.002 (5.01)

B, = 0.431 (3.30)

Log likelihood = —806.22

SEE(¢g,) = 0.059

Normality test (see Chapter 4)x*(2) = 0.85

The coefficient B; has a reasonable size and sign and is signifi-
cantly different from zero, which suggests that there is an important
ARCH component to the error process. The coefficients A, and A,
both have sensible magnitudes but are not strictly significant; this
suggests that either term may be dropped from the model and hence
the risk premium may not be time varying. On balance there is weak
evidence in favour of a time-varying risk premium (i.e. Ay #0) and
clearly there is an ArcH process in the error term (B #0). This
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suggests that a more complex relationship determining the conditional
variance is required, perhaps of the form

h, = By + Bih,_1 + Byg?_, + B3 Z, 2.77)

This GARCH(1,1) process allows ‘shocks’ £,_; to have an impact on
the conditional variance A, in all future periods (but with declining
weights). Z, consists of other information which might influence the
conditional variance (such as domestic and foreign interest rates or
current account factors). .

Although ArRcH and GARcH type models have proved useful in
modelling time-varying risk premia in financial markets (e.g. Chou
1988, or Hall et al. 1989), nevertheless the exact formulation of the
ARCH equation (2.77) is often not well based in a formal framework
where agents optimise some explicit objective function.

2,5 Summary

We have explained the basis of maximum likelihood estimation and
discussed testing using the likelihood ratio test, the Wald test and the
LM test. We have outlined several numerical optimisation techniques
and demonstrated how certain ‘non-standard’ models may be exam-
ined in the maximum likelihood framework.




