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Review of the general linear model

This chapter reviews some of the standard theory of estimation of
econometric relationships which makes up many econometric courses.
We show how a set of assumptions regarding the structure of the
model lead ordinary least squares (oLs) to be an optimal estimator
and how the failure of these assumptions can produce highly mislead-
ing results. This chapter sets the scene for much of the rest of the
book as later chapters focus both on the problems which arise when
these assumptions are violated and more importantly on the range of
new techniques which have been developed for dealing with these
problems.

1.1 Economic and statistical models

We may define an economic model as one that has some basis in
economic theory. Economic theory usually (but not exclusively) yields
static, or ‘long-run’ relationships. For example, in the simple Keynes-
jan consumption function, consumption at time ¢, y, say, is assumed
proportional to income, x, say. If we assume instantaneous adjust-
ment of y to x, we may write

Ve =Py + Bax, + & 1.1

where ¢, is a random error term which encapsulates deviations from
the model; we discuss various possible properties of £, below. It may
be possible, however, to obtain a good approximation to the behavi-
our of y without recourse to any economic theory. A simple, pure
time series model of consumption might be a univariate autoregress-
ive model of order one = an AR(1):
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Yr=m + oy T & 1.2)

It may be the case that some economic theory is consistent with
equation (1.2), but a pure time series modeller need not be concerned
with this. Although an ‘economic modeller’ and a ‘time series model-
ler’ may end up with similar statistical models, their aims will usually
be subtly different. The time series modeller is aiming for a succinct

summary of the time series cw:mSoE of the <mnmc_o Typically, the
applied economist will want to go further than this, to test some kind
of restrictions on the time series model, as a test of an economic
hypothesis. For example, the life-cycle theory of consumption under
rational expectations would suggest that a univariate model of con-
sumption of the form (1.2) should hold, with &, =

1.2  Time series and stochastic processes

A stochastic process is a sequence of random <mdmd_mm — any one

element of the sequence may take on any of a range of values in any
particular realisation. Thus, if I plan to roll a fair, six-sided die every
morning before breakfast next week, then I can imagine seven ran-
dom variables (each morning’s score) associated with this activity
which together form a stochastic process. If I denote the number of
dots uppermost on the ith day as d; then the sequence (d;);—1.
denotes a stochastic process. If a stochastic process has one element
for each of a set of points in time, then any realisation of the
stochastic process is a time series. Thus, if the number of dots upper-
most on the die each morning was as follows: Monday 1, Tuesday 3,
Wednesday 5, Thursday 5, Friday 2, Saturday 4, Sunday 4; then the
sequence (1,3,5,5,2,4,4) denotes a time series. Any element of a
stochastic process is a random variable. Any element of a time series
is a ::5?2 which is referred to as an o?&:ﬂ:e: In general, when
of postulating a stochastic process which may =m<o generated the
observed time series. Following standard practice, we shall, where
there is no womm&::% of confusion, use the same notation to denote a
stochastic process, a time series or an element of either.

1.3  Properties of stochastic processes

In the early morning die-rolling example given above, the sample
mean is just the mean of the observed time series (which is 24/7); the
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population mean is the expected value of any element of the stoch-
astic process (which is 21/6). Roughly speaking, if a process is
ergodic, then its moments (i.e. mean, variance, etc.) can be estimated
‘well’ (or, to be precise, consistently — see below) by the correspond-
ing moments of the observed time series over a long period of time.
Consider the following AR(1) model for y:

= Pyt e 1.3)

where &, is a zero-mean random variable with constant variance o2,

which is uncorrelated with any other variable in the sequence
Am ~v~||8v 1.

E(e) =0 (1.4a)
Nar{e) = E(e)) = o (1.4b)
Cov (&, £-j) = 0, for all j # 0 (1.4¢)

A stochastic process a_mv_mﬁnm these properties is often referred to as

Erteits

E}:«:Eﬁ;}iw:omo_mo_unogmm_mmmvoo_m_ommmo».mBOaamononm_
class of stochastic processes, namely those which are ,SESSQ A
covariance QRESEQ stochastic process, y, say, has a constant mean
and variance and the covariation between any two elements in the
sequence is a function only of the distance in time between the two
elements: i

E(y)=u (1.5a)
Var(y,) = E[(y. — W?] = y(0) < ® (1.5b)
Cov (y:, yi—j) = v()) for all j 1.5¢)

A stochastic process is strictly stationary if the joint probability of any

consecutive r observations is always the same, for any integer r. In

this book we shall generally use the term stationary to refer to weak

or covariance stationarity. Note that, if a process is both covariance

stationary and normally distributed, then it is also strictly stationary.
Equation (1.3) can be written in the form

{1~ PLIY; = ¢, 1.6)
where L is the lag operator, which has the property:
Ns:_\f = Yt-m

and (1 = BL) is thus a polynomial of order one in the lag operator. If
we lag (1.3) by one period, we have

Yi-1 = Byi-2 + €, a.mn
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Substituting equation (1.7) into (1.3):
= RNS..N +6; +pe, g (1.8)

If we now lag (1.3) twice [i.e. lag (1.7) once] and substitute into
equation (1.8) we have an expression in y, 3, &, £-1 and &.,.
Continually substituting for lagged values of y in this fashion we
have, mﬁmm n—1 mccm:::_oa

= B"Yin + & + Ber _+mNmH ~+mm3 st
Mmoo e e e LR

If B is less than one in absolute <w_=9 _ m_ <1, then as n maa c_mmma
and bigger (tends towards infinity), B"” gets smaller and smaller
(tends towards zero). Thus, for large n we can write:

y,=¢& + ey + BPea + PPes+ ... (1.10a)
or
y. =[1+ BL + (BL)®> + (BL)? + .. ]&, (1.10b)

where we have again used the lag operator. Multiplying both sides of
equation (1.10b) by AL and subtracting the resulting expression from

(1.10a) gives

yk1— pL) = & (1.11a)
or
= (1 - BL) ¢, (1.11b)
Since ¢, is a white noise process, (1.10a) implies the following:
E(y) = E(g,) + BE(g,-1) + P*E(g;2) + ... =0 (1.12a)
Var(y)= E()= (1482 +.8 80 vi)og
=1-p)"1te? (1.12b)

Cov (ys, yi-j) = E[(&; + P&s—1 + BPein A i)
Xe ;v he g We w0y
= B2E(y?) (1.12¢)

Comparing (1.12) with (1.5), we can see that the AR(1) process (1.3)

is stationary for |B| < 1.

Virtually the whole of standard econometric theory is based on the
assumption that the processes under examination are stationary.
However many economic time series — particularly macroeconomic

and financial time series - appear to be generated by non-stationary
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processes. Recently, however, a body of literature has developed
which deals with non-stationary processes directly. This will be the

subject matter of Chapter

1.4  Properties of estimators

Econometrics is largely to do with estimating the parameters of eco-
nomic relationships and testing hypotheses with respect to those para-
meters. For example, consider again the m_BEo linear Keynesian

consumption function relating ooumEEu:os 'y, to EooBo X

= B1 + Box, + &, (1.13)

Economic theory suggests the form of the consumption function
(Keynes’s ‘fundamental psychological law’ — Keynes 1936), and may
even suggest qualitative restrictions on the parameters. For example,
since B is equal to autonomous consumption and B, is the marginal

propensity to consume, we can infer:
p1=0,0=<p<1 (1.14a)

In general, however, economic theory will be silent on the exact
values of the parameters of a model. Moreover, even when an exact
value of a parameter is suggested by economic Eoomum an economet-
rician may still want to estimate it to see if the data is in accordance
with the theory. Econometrics can thus be used to obtain estimates of
unknown parameters in empirical economic models and to test hypo-
theses with respect to them.

For example, Davis (1952) uses annual data for the United States
for the period 1929-40 (deflated for price and population changes)

and estimates the parameters in (1.13) as:
¥, = 11.45 + 0.78x, (1.14b)

Thus, Davis’s estimate of f#; (‘autonomous consumption’) is 11.45 and
of f, (the ‘marginal propensity to consume’) is 0.78. These are
numbers. To obtain these estimates, Davis used formul
by econometric theory. These formulae are estimators.
There is an infinite number of estimators, all but a few of which
Are unacceptable to an eéconometrician. For example, a particularly
Mlly estimator could be obtained simply by writing down the number
of the day of the month, Whilst it may be obvious that such an
@stimator is silly, there afe other estimators which are not obviously
Thus, we need a formal set of criteria by which to judge an
estimator,
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Sampling distributions

Consider the model
= Bx, + &, (1.15)

where ¢, is assumed to be white noise. Equation (1.15) defines an
assumed data-generating process for y,. Suppose we have observed
time series for y and x. For any given estimator of 8, f* say, we can
construct an estimate using these observed time series. But since time
series are realisations of stochastic processes, it is equally possible
that different realisations, i.e. time series, could have been obtained.
Theoretically, we can consider how the estimate given by the estima-
tor will vary according to different realisations — this is the basis for
the sampling distribution of an econometric estimator. The sampling

distribution simply allows us to calculate the probability of observing
an estimate within a given interval, i.e. it is the frequency distribution
of the estimator.

For concreteness, suppose that x is in fact non-stochastic — for
@xva_o, it may be a time trend. Then we ooc_a “carry out a Ee:R
Qie _experiment whereby say, 2000 series for £ were generated using
a random number generator. Given the series for x, equation (1.15)
then implies 2000 time series for y — we simply fix 8 at a number,
e.g. 2.5. Since the true value of § is known in the experiment, we can
then see how the estimator behaves with respect to it in repeated
samples by constructing, say, 2000 estimates of B (i.e. realisations of
B*). The manner in which these estimates differ is called the empir-
ical sampling distribution, which could be approximated by construct-
ing a histogram of the estimates. Monte Carlo studies are often used
to construct empirical sampling distributions where the model or the
estimator is particularly complex, or its behaviour is known only in
very large samples. Often, however, we can deduce the properties of
the sampling distribution from the assumptions we have made con-
cerning the model.

Econometricians normally judge the quality of an estimator by
considering the properties of its sampling distribution. In particular,
an estimator will clearly be more attractive if there is a high, rather
than a low probability that it yield an estimate that is close to the
true (but unknown) <mEo of the parameter which is being estimated.

Unbiasedness

The first property we consider is unbiasedness. An estimator is un-
biased if the mean of its sampling distribution is in fact the true value
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of the parameter being estimated. This does not mean that, ‘on
nverage’ we should expect an unbiased estimator to yield the true
value of the parameter vector, since the sampling distribution is
continuous, the probability of this happening is in fact zero.

An alternative way of thinking about this property is to consider
the bias of an estimator. The bias is the difference between the mean
of the sampling distribution — the expected value of the estimator —
ind the true value:

B =E(B*) - B (1.16)

Consider the sampling distributions of two univariate estimators: f*
which is unbiased but which has a large variance and B which has a
small degree of bias but with a very small variance. Because the
variance of the mmEESm distribution of f is smaller than the sampling
distribution of B*, B is more efficient than B*. Thus it is probable
that B will yield an estimate closer to § than B* in any particular
tenlisation. This example shows very clearly that the variance, as well
a8 the mean of the sampling distribution should be considered when
assessing the quality of an estimator.

_ﬁoa unbiased

The preceding discussion illustrated the importance of considering the
variance as well as the mean of the sampling distribution. In general,
we should choose estimators which have ‘low’ variance. It is,
lowever, almost meaningless to speak of a ‘minimum variance’ esti-
tor, Suppose, for example that whenever a model with one para-
er was being considered, we used the estimator f* = 103.9
ardless of the context, or the data, or whatever. Because this
timator never varies, its variance is zero, the smallest possible,
thstanding its patent silliness. For this reason, it is necessary to
ulify the search for low variance. Normally, this is done by consid-
fing only estimators which are unbiased. Consider the sampling
tribution of two unbiased estimators, one of which, B*, has lower
rlance than the other, . Clearly, 8*, the more efficient estimator,
more likely to yield an estimate closer to the true value of the
ameter than is W .

An estimator which has the lowest variance — is the most efficient
» within a certain class of estimators is said to be the best estimator
that class. As we shall see in Chapter 2, there is a general principle
for choosing estimators, the maximum likelihood principle, which will
‘Mlways give the best unbiased estimator, if it exists. Often, however,
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econometricians will want to restrict the analysis to consider only
estimators which are linear functions of the errors. An estimator
which is linear, unbiased and minimum variance among all linear
unbiased estimators is termed the best linear unbiased estimator
(BLUE).

Where we are considering estimating a parameter vector with more
than one element, the discussion of efficiency has to be qualified
somewhat. In general, if we are considering two k X 1 estimators B*
and B, then we will be comparing the k X k covariance matrices of
these estimators. If the matrix

Var (B) — Var (6*)

is a positive semidefinite matrix, then B* is said to be more efficient
than f.

Asymptotic properties of estimators

The properties discussed above relate to an estimator’s sampling
distribution, regardless of the number of observations in the time
series employed by the estimator. An unbiased estimator, for exam-
ple, has an expected value equal to the true parameter, independently
of how many data points, or observations are available. In many
situations, however, an estimator with these desirable properties does
not exist, and it is then necessary to inspect an estimator’s asymptotic
properties, i.e. to see how it behaves when very large samples of data
are used. Sometimes, where an estimator’s properties are known only
asymptotically, Monte Carlo experiments are performed to try to
simulate the behaviour of the estimator in small samples.

To get an intuitive idea of what asymptotic theory is about, con-
sider again the Monte Carlo experiment with reference to equation
(1.15). The independent variable, x, is assumed non-stochastic (e.g. a
time trend) and the Monte Carlo procedure consists of generating a
time series for the disturbance term and so, for a given value of 8, of
y. The estimator is then applied to this data to produce an estimate.
Repeating this a large number of times then produces an estimate of
the sampling distribution of the estimator.

Now, this will be for a given sample size — i.e. we generate series
for € and y which are a certain length, say 100 observations. Let us
denote the sample size or number of observations by 7', so initially
T =100. We could then repeat the Monte Carlo experiment for
T =101, then for T = 102, then for T = 103 and so on, letting 7" get
bigger and bigger. For each value of 7' we would have a different
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empirical sampling distribution. If the estimator’s properties do not
depend on sample size, then the empirical sampling distribution will
look very similar, regardless of the value of T'. If, on the other hand,
sample size does affect the estimator’s behaviour, then the shape
und/or the location of the empirical sampling distribution will tend to
alter as T gets bigger and bigger. For many estimators, we do not in
fact have to carry out such experiments to find out what its properties
ure when T is very large — we can work out mathematically how it
behaves as T tends in the limit to infinity. The properties of an
estimator as 7 tends to infinity are termed its asymptotic properties.

As we mentioned previously, however, the shape and location of
the empirical sampling distribution for small values of T may be
examined in order to assess the small-sample properties of the estima-
tor if these cannot be determined mathematically. Note that the
sequence (B%)7-x, where B% denotes the estimator applied to a
sample of size T, is itself a stochastic process since each element in
the sequence is a random variable which can take on any of a range
ol values depending on the particular time series used.

The sampling distribution of an estimator as T tends to infinity is
termed the asymptotic distribution. If the asymptotic distribution has
§ mean equal to the true value of the parameter being estimated, the
‘@alimator is said to be asymptotically unbiased. Often, however, we
e more concerned with another asymptotic property — consistency.
the asymptotic distribution is concentrated on the true value of the
rameter, then the estimator is said to be consistent. Formally,
nsistency requires that the probability of an estimate generated
m an estimator being an arbitrarily small distance from the true
ue should be unity as the sample size tends to infinity:

q:E Pr{|B% — Bl <&} =1 1.17)
—p 00
an estimator is consistent, then its probability limit is equal to the
value of the parameter. If we are considering estimating a
ameter vector then the estimator is said to be consistent if each
ment converges in probability to the corresponding element of the
parameter vector.
“A shorthand way of writing equation (1.17) is:

w:B B =B (1.18)
ppose we have two estimators applied to a sample of size T, af
d % such that equation (1.18) holds and

lima} = « (1.19)

"y 00
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Then the following properties of probability limits can be established:

plim(a% + B%) = plima¥} £ plimp% = a £ B (1.20a)
T—o T— T— o
plim (a4) = (plim o} }{plim B} = B (1.20b)
T— — 00 T—o
If B%#0 and B #0:
wm_wﬁw\uﬁ = {plim aﬁ\ﬁmw B¥} = o/B (1.20c)
If f=0and =0:
plim VB% = V(plim %) = VB (1.20d)
T— T—o
If y is a constant:
plimy = vy (1.20e)
T—

If ¢( ) is a continuous function:

pimglin) = o) (1.209)
The last expression, (1.20f), is sometimes referred to as the Slutsky
theorem.

A common source of confusion in econometrics concerns the rela-
tionship between the mean and variance of the asymptotic distribu-
tion, the asymptotic mean and variance and the probability limit of an
estimator. The asymptotic mean and variance are the limits of the
first and second moments of the sampling distribution:

Asymptotic mean = lim E(f%)

T—»

Asymptotic variance = lim Var (%)

T—oo
= lim E{(p} - lim EBD)

There are circumstances in which the asymptotic mean and variance
do not exist while the mean and variance of the asymptotic distribu-
tion do, so that the latter are often thought of as the more useful
concepts. A sufficient condition for an estimator to be consistent is
that the mean of the asymptotic distribution be equal to the true
parameter value and that the variance of the asymptotic distribution
be zero. The following example, however, demonstrates very clearly
that this is not a necessary condition.

Suppose the sampling distribution of the estimator f% is described
as:
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Redllr —Bl<d) = ~UT
Pr(|ft - T|< &) =T

where 6 is an arbitrarily small number. Clearly, such an estimator
would be consistent since 1/T tends to zero as T tends to infinity.
The asymptotic mean and variance, however, can be calculated as:

H__lﬁ E(BY) = w.ﬂ [B(1 - 1/T) + TQ/T)]
=f+1
and
q_mw Ell6r — N_,_lﬁ E(BHI*}
= qma EIF(1 - D) + T2(T) ¢ {8/ T) B 1)°]

Thus, the asymptotic mean is not equal to the true value of the
parameter and, moreover, its asymptotic variance is infinite. Never-
theless, it is still a consistent estimator.

,-.m The general linear model

‘In this section we begin to develop the core of econometrics — the
general linear model. Starting from a well-defined set of assumptions
we can develop the basic econometric estimator — the ordinary least
Mjuares estimator. Much of standard econometric theory can be
viewed as adapting this estimator to deal with circumstances in which
¢ or more of these so-called classical assumptions break down. In
rder to keep the discussion as general as possible, much of the
Iscussion in the remainder of this chapter is in matrix notation.

e classical assumptions, the OLS estimator and the Gauss—Markov

¢ starting point in our review of standard econometric theory is the
neral linear regression model. At its most basic, this asserts that the
ta generating process for an observed variable y, is a linear com-
nation of K known explanatory variables, x;, k=1, ..., K, plus a
ochastic disturbance term u,:

Y = Bixy + Baxa + Baxa + .. + BrXie + (1.21)
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where the B;s are unknown. A basic objective of econometrics is to
provide ‘optimal’ estimates of the unknown parameters in relation-
ships such as (1.21). If we have available T observations on y, and
the x;,, we can write them all in matrix notation as

Y=XB+u 1.22)
where

Y=0Uw:. - y1)

X11 X21 X31 e XK1
L X
D WSN WSN nxﬁ us
X1T X2 X3r cee X kT
B= (BB --- B

u= (uu,...ur)
Thus, Y is a (T X 1) vector of observations on the dependent vari-

able (the ‘regressand’), X is a (T x K) matrix of observations on the

explanatory variables (‘regressors’), B is a (K X 1) vector of unknown
parameters and u is a (T X 1) vector of unobservable stochastic

9

disturbances. X is sometimes termed the ‘design matrix’.
The classical linear regression model makes certain assumptions in
order to establish various properties of econometric estimators. These

are:
1. The disturbances are uncorrelated with one another and each has
mean zero and finite variance o°:
E(u) = 0, Var(u) = o*I

2. The explanatory variables are non-stochastic and are thus inde-
pendent of the disturbances:

E(X'u) =0
3. The explanatory variables are linearly independent:
rank (X'X) = rank (X)
=K

and hence (X' X) ™! exists.

Note that we have not yet made any assertions concerning
the statistical distribution of the disturbances. Nor have we assumed
that the disturbances are independently distributed (i.e. that their
joint density function is just the product of their individual density
functions), although this property follows from the zero correlation
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- property under normality. Under assumptions 1-3, the best (i.e.

minimum sampling distribution variance) linear unbiased estimator of
B, m say, is given by minimising the sum of squared estimated
disturbances, or residuals:

:ma = (Y - XB)'(Y - XB) (1.23)
The first order conditions for equation (1.23) are:
M

—=-2X'(Y - XB)=0

op
which can be expressed as the ‘normal equations’:

aY=X'x0 (1.24)
and since we know by assumption 3 that (X'X) is non-singular, we
have the ordinary least squares (oLs) estimator:

B=x'x)"' XY 1.25)
That equation (1.25) solves (1.23) is clear since the second order
gonditions are satisfied:

%S
3B3p’
‘which is positive definite.

Since the elements of X are fixed, (X'X) !X’ can be interpreted
#8 o linear function which maps (‘projects’) any vector in T-dimen-
Monal space (Y) into a vector in K-dimensional space (f):

(X'X)'x': RT - RX
hus the matrix (X'X) !X’ is often referred to as the projection
ix Py, with the useful result that PxX = I and wn PyY. Since

I8 a linear function of Y, it is a linear estimator. It is also unbiased
| the sense that the expected value of f is the true parameter vector

=2X'X

K}

E[(X'X)"1X'Y]

E[(X X)™' X'(XB + w)]

B+ (X'X) 1 E(X'u)

ol (1.26)

lhere we have used Py X =1 and assumption 2 (non-stochastic
ppressors). It is clear from equation (1.26) that B is also a linear
ction of the errors u.

E(B)
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~

The variance—covariance matrix for f is easily established using,
w = m + P xXu:

Var (8) = E[(B — B)(B — B)']
= E[Pxuu'Px]
= (XX Xl XX’ X) !
= ol X)) 1.27)

where assumptions 1 and 3 have been used.

If B* is any other linear unbiased estimator of f, it is straightfor-
ward to show that the variance of B* exceeds that of B in the sense
that [Var (§*) — Var(f)] is a positive semidefinite matrix (the Gauss
—Markov theorem). Since * is a linear estimator, we can write it as:

p* = AY

where A is a K X T matrix of constants. If we define
CeA~A{X X)X

then clearly

u*

(X'X)'Xx' + ClY
[(X'X)'X' + CI(XB + u)
B+ CXB+[(X'X) X'+ Clu

Thus
E(f*) =B+ CXB
Hence, if B* is to be unbiased, CX = 0. Thus,
Var(g*) = E(8* — B)(B* — B)
E[(X'X)'X' + Clu'[(X' X)X’ + C]
= o[(X'X)! + CC']
where the property CX = 0 has been used. Hence,
Var (8*) — Var(B) = o*CC’

So Var(B*) exceeds Var(B) by a positive semidefinite matrix. In
particular, note that the diagonal elements of 0%CC’ must be non-
negative, so that

Var(B}) - Var(B)) >0,i=1,..., K.

Thus, under assumptions 1-3, the oLs estimator B is the best (mi-
nimum variance) linear unbiased estimator (BLUE).
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Goodness of fit: coefficient of determination and error variance

CGiiven w. we can divide the Y vector into the sum of an ‘explained’
part ¥ and an unexplained part &:
Y=XB+a=Y+a (1.28)

One way of determining how well an estimated model fits is to
calculate the proportion of the variation in Y which is ‘explained’ by
variation in ¥, and how much is unexplained, due to variation in &.
One measure of variability is the sum of squared y,'s, Y'Y. Using

equation (1.28):
Y'Y = BX'XB+ a0+ 2B X'a 1.29)

n

The oLs estimator constructs the residual vector # so that it is
orthogonal to the regressors:

X'a=X'(Y - XB)
X~ X(X' Xy X'
=0

%0 that the last term in equation (1.29) is zero. Hence, Y'Y is
partitioned into two components, one due to the explanatory vari-
ables and one unexplained by the model:

Y'Y=BXXB+aa
=v?+an (1.30)

is, however, more usual to measure variation in a variable around
mean. If we denote the total sum of squares (Tss):

T
TSS = MH (e —¥)°
=

\ere

T
gy - ik M Ve

i=1
188 = Y'Y - Ty
8, subtracting 772 from (1.30):

s = (PP - T5%) + 0'a (1.31)

the model contains an intercept, then x, = 1 for all ¢ (see Note 1)
d 8o the first row of the normal equations, (1.24), is:
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XY = x{XB
=T
where ,
x1 = (X115 X125 - - 5 X¥17)’
Sl
Thus,
> y=T"xiXB
T
=T! M Ve
t=1

Thus, the first bracketed term in equation (1.31) measures the vari-
ation in the ‘explained’ part of Y, that is Y, around its mean, or the
explained sum of squares (Ess). It is trivial to demonstrate that the
oLs residuals have mean zero, hence the second term in (1.31)
measures the unexplained (or residual) sum of squares (Uss):

TSS = ESS + USS (1.32)
The coefficient of determination, or R?, measures Ess as a proportion
of Tss:

=2 = (1.33)
TSS TSS £

Clearly, 0 < R? <1. The closer R’ is to unity, the better the fit of
the regression. Since the R? cannot fall, and will usually rise, as the
number of regressors is expanded, an allowance is sometimes made

for the degrees of freedom lost in constructing the R?. K degrees of -

freedom are used up in constructing Ess (corresponding to the K
estimated parameters) and 1 in constructing Tss (corresponding to ¥).
Hence, the degrees-of-freedom corrected R?, R?, is

. 2'a/(T - K)

Y- o - L

=
¥
I

or

L=Hr= AT K0~ &)

=
)
]

Error variance

2

An unbiased estimator of the error variance o is often written as s°

given by:
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s?= @'a/(T - K)
We can demonstrate that s? is an unbiased estimator of o as follows.
Note that if we define M = I — X(X'X) ! X", then

A=Y -XB=(XB+u)—(XB+ XPxu)=( — XPx)u
So i = Mu.

It is easily seen that M is symmetric (M = M’) and idempotent
(M'M = MM' = M) hence using & = Mu:

s? = u'[M'Mu/(T — K) (1.35)
Since s2 is a scalar, it is trivially equal to its own trace. The proper-
ties of trace can be exploited usefully on the right-hand side of

equation (1.35), however, in determining the expected value of 5*
(see Notes 2 and 3):

E[trace[u'(I — X(X'X)' X")u]AT — K)]

trace [[I — X(X'X)" ' X'|E(uu")J(T - K)

trace[[I — X(X'X) '{o*I(T - K)

o’ (T — K)AT - K)

= o? (1.36)

E(s?)

hence s° is an unbiased estimator of o”.

It can be shown that, given two regression models, one of which is
umed to be true, the expected value of s2 for the true model is
than or equal to the expected value for the alternative model. To

this, let
Y=XB+u
the true model and
| Y=2Zy+u

o the alternative, where X and Z are T X K, and T X K, matrices
X contains at least one variable not included in Z. Then we can
te the s for the two models using:

A=Y -XB=Y - X(P,Y)=( - XPy)Y = M,Y
$2=Y'MYAT - K,) s2=Y'M,YAT - K,)

e My=1-X(X'X)'X'; My=1-2(Z'Z)'Z'. It follows
t
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E(Y'M.Y)

E[(XB + u) M, (XB + u)]
=B X' M, XB+ E(u'M,u)
=B X'M,XB + (T — K,)o?
> (T — K)o?

(T - K)E(s)

Thus E(s2) > o? or, using the unbiasedness result (1.36) for the ‘true
model’ s2, we then have

E(s%) > E(s%) .37

Relation (1.37) is sometimes used to justify specification search strat-
egies which maximise the R?, since, from (1.33):

R?2 =1—- (T - K)s*’/T - 1)s} (1.38)

where uw is the sample variance of y,. Hence, loosely speaking,

searching over alternative variables to minimise s? also maximises
R2.

Imposing linear restrictions

Suppose that we wished to impose a set of linear restrictions on our
estimate of the parameter vector f3, in accordance with some under-
lying economic theory for example. Linear restrictions can always be

written in the form

RB=r (1.39) -

where R is a (¢ X K) matrix, g being the number of restrictions, and
ris a K X 1 vector. Suppose, for example, that the vector of para-
meter estimates was 3 X 1:

B = (B1B2Bs)’
and we wished to impose the restrictions

Bi= LBk B 5,1 (1.40)

To write the restrictions (1.40) in the form of (1.39) let

1 o o
.z|F 1 L
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and
g1y

The method of obtaining the restricted least squares estimator should
be familiar to an economist: constrained optimisation. We minimise
the sum of squared residuals subject to the restrictions. One way of
doing this is by unconstrained minimisation of a Lagrangean:

Bm: £=(Y -XB)'(Y — XB)+2)(RB— 1) (1.41)
where 2A is a g X I vector of Lagrange multipliers, scaled by 2 in
order to simplify some of the following algebra. The first-order condi-
tions for expression (1.41) are:

of

55 = “2X'Y +2X'Xp + 2R =0 (1.42)
of

—_— = w i =

iy B—-r=0 (1.43)

Premultiply (1.42) by R(X'X) ™"
[R(X'X)"'R']A= R(X'X)"'X'Y - RB
= wm =T

ng (1.43). Thus:
B - (R XO)RTVRB - 1) (1.44)
here
B=XXx)'XY (1.45)

w is the unconstrained oLs estimator. Substituting (1.44) back
 (1.42), premultiplying by (X’X)~! and using (1.45), we derive
restricted least squares (RLs) estimator:

L B=B-(X'X)'R[R(X'X)'RI"Y(RB-7) (1.46)

restrictions were true and all the other classical assumptions
satisfied, then the vector (R — r) should be small — the oLs
ntes should be close to satisfying the restrictions. From equation
), the rLs estimates will then be close to the oLs estimates.
over, the bigger the difference between the orLs and RLs esti-
. the less faith we might have in the restrictions. In order to
alise this intuition, however, we need to make some further

mptions.
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The distribution of the OLS estimator and linear hypothesis testing

In an earlier section we stated the three classical assumptions which
have been used up until now to establish certain properties of the oLs
estimator. The first of these assumptions was that the disturbance
vector has a zero mean [E(u)=0] and a scalar covariance matrix
[Var (u) = 0%I]. In order to go further, for example to establish the
distribution of the oLs estimator and discuss hypothesis testing, we
now need to make some assumptions concerning the statistical dis-
tribution of the disturbances.

It is usual to assume that u has a multivariate normal distribution
as well as being mean zero and having a scalar covariance matrix:

u ~ N(, o*I) (1.47)
that is u, is a Gaussian white noise process. Since, by classical

assumption 2, the elements of X are non-stochastic, we can also infer
the distribution of Y from (1.47):

Y ~ N(XB, o*I) (1.48)

Since the oLs estimator w is a linear function of Y, it too must be
normally distributed, with mean and variance as given by (1.26) and
(1.27):

B~ N[B, ¥ (X' X)7"] (1.49)

Hence, under the classical assumptions plus the assumption of norm-
ally distributed disturbances, the oLs estimator is normally distributed
with mean f, the true parameter vector, and covariance matrix
0(X'X)~!. Although the error variance o” will usually be unknown,
we derived above an unbiased estimator of this quantity, s? in equa-
tion (1.35), which can be used to construct an unbiased estimate of
the covariance matrix:

Var (B) = s2(X'X)7! (1.50)

We can now apply this framework to derive statistical tests of linear
restrictions of the kind considered above. In particular, suppose we
wished to test the null hypothesis

Hy:RB—r=0 (1.51)
where R is an g X K matrix, r is an g X 1 vector and O is an g X 1
null vector. As we suggested above, if the restrictions (1.51) are
correct, then we should expect the vector (RB — r) to be close to the
origin. Given the distribution of the oLs estimator, (1.49), we can
infer the distribution of Axw -r):

(RB - r) 7 N0, *R(X'X)"'R') (1.52)
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where .w.a ’ is to be read ‘is distributed under the null hypothesis as’. If
R w —r 18 close to the origin, then the following quadratic form
should be close to zero:

F' = (RB-r)[R(X'X)"'R]"Y(RB - r)o™? (1.53)

~ Now,

B=(X'X)'X'Y = Px(XB+u) =B+ Pxu
where we have used PyX =1 and Py =(X'X)'X'isa KXT
‘projection matrix’ of constants. Hence, under the null hypothesis,

RB - r=RPu
Since u is, by assumption, a vector of independent, normally dis-
ﬁgﬁma m.m:aoa variables, RP,u is a vector of g independent, norm-
flly distributed random variables and so, given (1.52) and (1.53), F’

I8 the sum of —q squared independent standard normal variates; it is
Aherefore a chi-square variate with g degrees of freedom:

F' & $(q) (1.54)

ce, however, we do not, in general, know the value of 02, express-
(1.53) is non-operational. Intuitively, one might be tempted to
i¢ an unbiased estimator of 0?2, such as 52 in (1.53). Since s? is itself
| estimator then (1.54) would no longer be true. However we can
n the distribution of s2 as follows. We have seen that

A=[Ir- X(X'X)'X'Ju= Mu

re M is symmetric and idempotent and the subscript in ‘I’ is to
clear the dimensions of this identity matrix. From expression
7), we know

uo™! ~ N, I

ndard result in statistics is that:
% = k%wl: ~ x*(rank M)

over, by the properties of idempotent matrices:
rank M = trace M

trace Iy — trace X(X'X) "1 X'

T - trace (X'X)™'X'X

= T - trace Ig

=T~ K
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Thus, given s? = #'@/(T — K) we have:
(@ K)o o 411 ~K)
From expressions (1.53), (1.54) and (1.55) we can therefore write:

(RB - 1) Eﬂwi:@ - n/q 7.F(a, T - K)

(1.55)

(1.56)

Expression (1.56) contains no unknown quantities; it can therefore be
used to test linear restrictions on the model under the relevant as-
sumptions. Although (1.56) may appear rather cumbersome, it can in
fact be computed in a relatively straightforward fashion, as the fol-
lowing demonstrates.

From the definition of the rLs estimator B, (1.46), we have:

X'X(B- P =R[RX'X)'R(RB - 1) 1.57)
Now, m must satisfy the restrictions, so that ww = r, hence:
(RB - r) = (RB - R)
=(B-Pr
So, premultiplying (1.57) by B-B:
B-BXxX@pB-P
= (RB - r)[R(X'X)'R']"'(RB ~ ) (1.58)

Now consider the restricted sum of squared residuals (eje,) and the
unrestricted sum of squared residuals (ege,): :

ele, = (Y - XB)'(Y — XB) (1.59)
eveu= (Y = XB)(Y - XP)
=(T - K)s? (1.60)
Developing equation (1.59):
ele,=(Y - XB+ XB— XB)(Y - XB+XB+ XP)
=(Y-Xp)(Y-XP+(B-PH'X'XB-B a6
where we have used the orthogonality property X'dl=

XY = X B) = 0 to eliminate some terms. From (1.60) and (1.61) we
then have:

ele, —ele,=(B-BXXPB-P

or, using (1.58):

The general linear model 23

ere, — eue, = (RB — r)[RAX'X)"'R''(RB - 1)
Hence, (1.56) may be expressed alternatively:

Amwmx o m:&:v\ﬁ W‘H.AQM T — NAV
&“.S\AN, < Kj)

The formulation (1.62) is quite intuitive. Since the unrestricted oLs
estimator minimises the sum of squared residuals, imposing the
restrictions must increase the sum of squares. The left-hand side of
(1.62) thus gives the increase in the sum of squares per restriction.
We would want to reject restrictions that led to a ‘large’ increase in
the sum of squares; exactly how large ‘large’ is can be determined
from the tables for the F distribution once we choose a specific
probability of making an error.

(1.62)

fidence intervals

gider expression (1.56) again. Under the null hypothesis, (1.51),
Rp (where B is the true parameter vector), so that (1.56) may be
essed alternatively:

(B~ By RIR(X N RIRE=P o kg, T~ K)

(1.63)

let F,(q, T — K) denote the critical value for the upper 100
tent of the distribution (or ‘test size’), i.e. it is the point on the
ntal axis such that the area under a graph of the central F(q,
K) distribution to the right of this point is a (or, since the total
under the graph must sum to unity, 100a per cent). This allows
gonstruct a 100(1 — &) per cent confidence ellipsoid:

Pr Aa FULE G ) W hal RS i

§

-]~ (1.64)
At is the interpretation of expression (1.64)? Suppose we were
repeated samples of the data - that is to say, given the true
(1.22), suppose that we generated many Y vectors using the
values for the design matrix, X, and the same coefficients, S,
a different disturbance vector, u, for every case. This would allow
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us to derive a sampling distribution for B, since there will generally
be a different B for each sample. The statements concerning the
unbiasedness and efficiency of the oLs estimator discussed earlier in
this chapter are in fact statements about the mean and variance of
this sampling distribution. Now suppose that, for each repeated sam-
ple we constructed the region in m-dimensional Euclidean space
described by the term inside the braces on the left-hand side of
(1.64). Expression (1.64) tells us that in 100(1 — a) per cent of
repeated samples the region considered will contain the true value of
RB.

A special case of interest is where R is a K X K identity matrix.
Expression (1.64) then becomes

WHAAW 5 EV\AN‘MMVAW o \WV\NA = N.D\ANAV T Nﬂvv e

S

(1.65)

This says that in 100(1 — ) per cent of repeated samples, the ellip-
soid in K-dimensional Euclidean space described by the term in
braces will contain the true parameter vector f.

Another interesting case is where R is a K-dimensional row vector
with unity in the ith element and zeros elsewhere. Expression (1.64)
then becomes

B ) 4
E?Ezkyﬂ < F (1, T - i =1-a (1.66)

where ‘[ ];;7 denotes the (i, i)th (i.e. ith diagonal) element of the
matrix inside the brackets. Using the fact that the square root of an
F(1, T — K) variate is distributed as #(T — K), this can be written

Bty Vol 5“

Pel et - 10 = St

=l-a

or

Pr{B; — tup(T — K)se(B)) < B < B + tap(T — K)se(B;))
=l-« (1.67)

In moving from (1.66) to (1.67) we have used the notation ‘se(j;)’ to
denote the square root of the ith diagonal element of s?(X’'X)~!, the
estimated standard error of m ; and have moved to a two-sided confid-
ence region because the square root may be either positive or neg-
ative. Suppose, for example, that 7 — K =60; then since
to.025(60) = 2, equation (1.67) would mean that in 95% of repeated
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samples, a region consisting of the point estimate of f§; plus or minus
{wo estimated standard errors would contain the true value of §;.

Note that a distinction should be made between testing a number
of restrictions individually, and testing all of them jointly. Consider,
~ for example, the individual null hypotheses

H,:B; =0
Hy:B; =0
and the joint null hypothesis
H.:(B: Pv = (0, 0)

,.-evvog that the 100(1 — &) per cent confidence regions for B; and B;
gnch contain zero. Then we would not be able to reject either H, or
) At the 100a per cent significance level. It may be, however, that
{he two-dimensional 100(1 — a) per cent joint confidence ellipse for
fl, and fB; does not contain the origin, so that H. may be rejected at
@ 100 per cent level (i.e. although we cannot reject a hypothesis
ut one of these coefficients is zero, we can reject the joint hypothe-
that they are both zero).
In order to construct the joint confidence ellipse for §; and B, let
be a 2 X k matrix with unity in the (1, i)-th and (2, j)-th elements
| zeros elsewhere. Let the estimated covariance of B; and f;, the
J)th element of the (symmetric) matrix s>(X'X)~", be denoted
V(f;, B;) and let se( B,) and se(B ;) denote the positive square roots
the ith and jth diagonal elements of this matrix. Then, with R as
I defined, expression (1.64) becomes:

Pr {(1/2)(B; — B:)?se(B:)* + (1/2)(B; — B)se(B))?
+ (B: = B)(B; — B;) Cov(B;, B;)
=F,2, T-K)}=1-a (1.68)

| tegion described by the term in braces on the left-hand side of
1) is an ellipse with centre (B, B;). If we make the assumption
_ .iw: Pv =0, then the region defined by (1.68) would be a
ngle centred on (B, B j), with sides equal to the individual
= «) per cent confidence intervals for B; and B; derived from
msions analogous to (1.67). However, if we know that B; and B i
| positive covariance, then we know that an over-estimate (under-
te) of B; is likely to be accompanied by an over-estimate
sestimate) of ;. This allows us to rule out the corner areas of
tectangle and so we derive an ellipse which is appropriate in
Ming a joint 100(1 - a) per cent confidence region.
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It is also straightforward to construct a confidence region for o2,

the (constant) variance of the disturbance. From expression (1.55),
we know that (T — K)s?/o® has a x* distribution with (T — K)
degrees of freedom. Let y*(T — K, 1— &/2) and ¥*(T — K, «/2)
denote, respectively, the lower and upper 100a/2 per cent critical
values of the ¥*(T — K) distribution. Then

Pr[*(T - K,1- a/2) < (T — K)s?/o® < yX(T — K, a/2)]
=l-«a
which implies:
H (T — K)s?

S (T — K)s?
B PR T

T AT -K, ap)

V (1.69)

1.6  Departures from the classical assumptions

In this section we consider the consequences of and possible remedies
to various breakdowns in the classical assumptions.

Omitted variables

So far, our analysis has been conducted under the assumption that
the assumed model is correctly specified as in section 1.5. Suppose,
however, that we have omitted some important explanatory variables,
so that the true model is in fact as in equation (1.70):

Y=XB+Zy+u

where Z is a T X r matrix of observations and y is an r X 1 para-
meter vector. Thus, we have omitted r explanatory variables.

The residual vector obtained from the regression Y = X + o
that is excluding Z, may be written

= MxY
Substituting the true expression for Y
D=M(XB+ Zy + u)
= MxZy + Mxu

1.70)

where we have used
MxyX =(I - X(X'X)"'X')X =0 Thus,

E(d)= M,Zy (1.71)
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~

Expression (1.71) means that the residual vector #, where we have
omitted the variables Z will have an expected value equal to the
residual vector obtained by regressing Zy on to X. Thus, the res-
iduals © should be of use in checking for misspecification — this will
be developed further in Chapter 4.

Now consider the bias in the oLs estimator, Y = X + 7

B (X'X)'X'V=PY
Cliven that the true model is (1.70), and P,X = I, it is easy to show
that

E(By=B+ P.Zy+ P

and therefore ‘omitted variables’ will generally lead to biased esti-
mates. However there is no omitted variable bias when X and Z are

orthogonal, i.e.
X'Z =0

Von-scalar covariance matrix

first of the classical assumptions which we listed in section 1.5
& that the disturbance terms in the regression model were mean
10 and uncorrelated with one another and that each has a constant,

variance:
E(u) =0, Var(u) =

wiolation of the assumption of zero-mean disturbances causes no
I problems - this effect will simply be picked up by including an
gept term among the regressors. The violation of the assumption
the variance—covariance matrix is a diagonal matrix with a con-
term on the main diagonal (i.e. a ‘scalar matrix’) is, however,
Amportant.

ich element on the main diagonal of the variance-covariance
A gives the variance of the distribution from which that element
imed to be drawn. If the elements of the main diagonal of the
bance variance—covariance matrix differ from observation to
vition, then the series is said to be heteroscedastic — as opposed
cnse of homoscedastic disturbances, where the variance is
mt, This means that each element in the disturbance vector can
dught of as being drawn from a different distribution.

¢h off-diagonal element of the variance—covariance matrix gives
pvariance between the disturbances associated with two of the
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sample observations (for example, the element in the third row,
second column gives the covariance between the third observation
and the second observation). If all of the off-diagonal terms are zero,
the disturbances are said to be uncorrelated; otherwise they are
serially correlated.

If the disturbance vector is characterised by either heteroscedas-
ticity or serial correlation, or both, then the variance—covariance
matrix will no longer be a scalar matrix:

EGuu’) < @+ 0°F Lo (1.72)

Since the proof of unbiasedness of the oLs estimator relied only on
the first-moment properties of the model, the oLs estimator will still
be unbiased and consistent in this case. The distribution of the oLs
estimator will, however, be affected:

Var () = E[(B - BB - B)]
E(X'X) ' XuwX(x' X) ']
= (X'X) I X'QXX )} a1.73)

Thus, the standard formula for the variance—covariance matrix of the
estimator, s2(X'X)~! is incorrect and hence is biased and inconsist-
ent.

There are two possible ways of remedying this problem. One way
is to transform the model so that the disturbance variance—covariance
matrix is transformed to a scalar matrix and then to apply oLs to the
transformed equation. This is generalised least squares (GLs). Note
that this method assumes an exact knowledge of the changing covari-
ance structure of the model. Another method, which is becoming
increasingly popular, is to use the oLs point estimates for f§, since
they are unbiased and consistent, but to use a consistent estimate of
Q in equation (1.73) to obtain a consistent estimate of the variance
—covariance matrix of the oLs estimator. Since information with re-
spect to Q is not used in the latter approach, it will result in a less
efficient estimator than if the transformation approach is taken.
Recently, however, authors have developed methods of estimating €
consistently without specifying in detail the form of the heteroscedas-
ticity or serial correlation, so that the latter approach can be seen as
more general.

Generalised least squares
The ‘generalised’ linear regression model is
Y=XB+u (1.74)
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E(u) =0, E(uu') = o?Q

where we assume that B and o are unknown and Q is known. We
have scaled the covariance matrix by the unknown o? in order to
teinforce the idea that GLs requires that the form of the covariance
matrix need only be known up to a scalar multiple.

Since Q is a positive definite matrix, it can be shown that there
exists a non-singular matrix P which has the property that

PQP =1
from which it follows that
PP=Q"
Premultiplying (1.74) by P, we have:
PY = PXB + Pu

Y* = X*B + u* 1.75)

here Y* = PY, X* = PX, u* = Pu. The covariance matrix of u* is

E(u*u*") =E(Puu'P’)
= g’PQP’
= o?]

_w-.wvn_ﬁamormaQ.qmviEEoESocomr:nmmbcb_&»moa
pator of B

WQS = (X* X*) "L x*y*
= (X'P'PX)'X'P'PY
marn'Yy'xo'y (1.76)

tion (1.76) gives the GLs estimator. Intuitively, the GLs estimator
4 because it weights the data — for example, in the case of
oscedasticity, an observation associated with a disturbance
variance is thought to be especially large would receive less
it than one whose disturbance variance was thought to be small.

ole that, as it stands, the cLs estimator is non-operational
lse it requires that Q be known. In general, researchers have to
jnte €2 in advance before substituting it in to an equation such as
§). This results in the feasible generalised least squares estimator.
B way in which it is estimated will depend on whether or not the
mrcher is assuming heteroscedasticity, or autocorrelation, or both.
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Heteroscedasticity

Consider again the simple Keynesian consumption function where
consumption, y,, is assumed to depend on current income, x,:

ye = P1 + Pox; + & @a.77)
It may well be the case that the variance of the disturbance term
varies as income rises, since the bigger one’s income, the more room
there is for acts of caprice in consumption, rather than sticking fairly
closely to a basic consumption bundle. Suppose, for example, that the
variance of the disturbance was assumed to vary with the square of
income:

Var(e,) = 0 = ax? 1.78)
Deflating (1.77) by x, yields:
yt= Bzt + By + € (1.79)

where y*= y,/x;, z¥=1/x,, €f= &,/x,. The variance of the tth trans-
formed disturbance is

Var(e%) = Var(e,)/x; = axi/x:= o
which demonstrates that it is homoscedastic, so that oLs can be

applied to the transformed equation (1.79) to yield an optimal estima-

tor.
In terms of the more general discussion of the previous sub-

section, we can write, in matrix notation:

Y*=X*B + &* (1.80)
I.Nm =
x3 0
x3
Q= o (1.81)
0 :
L x7
IH\RH =
“_.\HN 0
P = H\ku
0 4
g x|

It is easily seen that PQP’' = al - a scalar matrix - hence the GLs
estimator (i.e. oLs applied to (1.79)) will have the desired properties.
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A more general method, suggested by White (1980) is to obtain
unbiased point estimates of § using oLs and then to estimate € as a
 diagonal matrix with the ith squared oLs residual as the (i,i)th ele-

ment in Q:

a2 1
23 0
22
= o (1.81a)
0 !
L &% |
White then shows that
w_ma@%v-_kdﬁk,é = (X'X)'x'ex(x'Xx)™!

that the formula
Var (Bors) = (X' X) 1 X'QX(X'X)!

be used as a consistent estimator of the variance—covariance
trix of the oLs estimator — regardless of the precise form of the
roscedasticity. Many regression packages will now calculate
roscedasticity-consistent, or ‘robust’ estimated standard errors us-
this formula or some variant of it. They have also been widely
in estimating equations containing expectations terms (see

pter 6).

correlation

icularly simple case of serially correlated disturbances is where
disturbance is assumed to follow a first-order autoregressive, or
) process. For example:
Vi =P+ Box. + &
BE™ pe, + vy

v, is assumed to be a white noise process and, in order to
the stationarity of ¢, |p| < 1:

(1.82)
(1.83)

1 N.AS_V o O. Ah.gv
E(V}) = a3, (1.84b)
(v,v;-)) =0, for all j# 0 (1.84c¢)

lag (1.82) once, multiply it by p and subtract the result from
), we have:
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yi= Bl — p) + Boxt + v, (1.85)

where y¥= (y;— py;-1), ¥¥=(x, — px,-1). Since v, is white noise,
oLs applied to (1.85) will be optimal. (See Note 4.)

To see that this is equivalent to the general form for the GLs
estimator discussed above, we need to derive the variance—covariance
matrix of the autoregressive disturbance term.

We have already discussed the AR(1) model. In particular, equation
(1.83) can be written as:

Ep =iV pvly PPViy + P s Hiptveg il
=2 PV
i=0
By substituting (1.85) into (1.82) we can see that y, is influenced by
past error terms — with geometrically declining weights. Thus, the
data-generating process for y is dynamic; a fact which is not obvious
in (1.82). ;
From (1.83) we have

E(e) = Mo P'E(Vi-1) =0

which follows from the assumption that v is a white noise process
(1.84a). Thus, the assumption of zero-mean disturbances is unaffec-
ted.

Now construct the variance—covariance matrix for € = (&;£,€3 .
€r)’. Using (1.84b):

E(e}) = E(V; + p°Via + p'Via + p%Vis + ...

+ PV Vi1 + PPVVep L)

E(WV) + PP E(vi-) + p*E(Vi) + p°E(Vi3) + . ..
=d:[1+p*+p*+p0%+..]

=031 = p?) (1.86)

Note that the cross-product terms in (1.86) disappear because v is an
uncorrelated process (1.84c).

By a similar procedure used to derive (1.86), the covariance be-
tween two disturbances j periods apart is given by:

E(Vvs-j) = E(ViVes)) = p 031 = %) (1.87)

Thus, the variance-covariance matrix can be written:
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(1 P 0? i bMHMJ
2 . ; . i
i Oy P P 1 i P i
L.QHL \.cﬂum .b?u ; H
(1.88)

We now need to find a matrix P such that P'P=Q7!. It can be
shown that this matrix is given by:

V(1 - p?) 0 ' ALY S
=0 1 0 i 0
a0 —-p 1 i 0
LD T gt i
0 i sl
(1.82) is written in matrix form as
Y=XB+¢ :
premultiplying by P yields :
Y*=X*B + ¢t
V(1 - p*)y;
Y* = MN ~ PY1 . (1.90a)
Yr = PY:i-1
W= Py V(U= Ry
Xt=|1"° A (1.90b)
1-p X1 = PX7T-1
V(1 - p)e
V2
g =| v (1.90¢)
vr

aightforward to show that V/(1 — p?)e; has variance o and is
elated with v, for ¢ = 2, so:

E(e*e"') = ol
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Thus, applying oLs to the transformed data, i.e. cLs, will yield the
optimal GLs estimator. This method only differs from the intuitive
procedure for correcting for AR(1) disturbances in the treatment of
the first observation.

In practice, of course, p is not known a priori, and hence Q is not
(see Note 5). In practice, therefore, this parameter must be esti-
mated. There exists a number of techniques for doing this. This first,
the so called Hildreth—Liu technique, involves carrying out an ex-
haustive grid search for p over its admissible range, i.e. —1 to +1.
For each value of p, the GLs estimator is calculated and the sum of
squared residuals (Y* — X*p)'(Y* — X*B) is computed. The value
of p is then chosen which minimises this sum of squares.

The second algorithm is due to Cochrane and Orcutt (1949). The
Cochrane—Orcutt technique starts by exploiting the fact that oLs will
provide an unbiased and consistent estimate of the parameter vector
in the presence of autocorrelation (see Note 6), and thus of the
disturbance vector. The resulting estimates of & can then be sub-
stituted into (1.83) and ors applied to yield an estimate of p. This
then can be used to find a GLs estimate of B, which yields a more
efficient estimate of €. oLs is then applied to the new set of residuals
to find a more efficient estimate of p, which is again used to construct
the cLs estimate, and so on. The procedure stops when successive
estimated values of p are deemed to be sufficiently close — i.e. until
the algorithm converges.

Finally, we should sound a note of caution in ‘correcting’ for
autocorrelation in this fashion indiscriminately. In particular, it is
important to distinguish between autocorrelation in the ‘true’ errors
and autocorrelated regression residuals. The latter may be indicative
of the former, but they may also indicate dynamic misspecification.
One way of attempting to discriminate between the two is to apply a
common factor test. For example, consider the dynamic model

Y= a1+ apx; + azx,q + Py TV 1.91)
Using the lag operator, (1.91) can be written:

(1 = pL)y, = a; + a1 + (3/ax)L]x, + v, 1.92)
If the restriction —p = (&3/a) holds, or equivalently:

pay + a3 =0 (1.93)

then we can divide (1.92) through by the common factor (1 — pL) to
obtain the AR(1) disturbance model (1.82), (1.83). Thus, estimating a
static model with an AR(1) disturbance term is tantamount to impos-
ing the common factor restrictions (1.93) on the dynamic model with
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# white noise error, (1.92). If there is sign of serial correlation in the
satic regression residuals (such as from the Durbin—Watson statistic)
but the AR(1) common factor restrictions are rejected, then the
remedy is not to ‘correct’ for serially correlated residuals, but to
lmprove the dynamic specification of the model. Testing non-linear
festrictions of the kind (1.93) lies outside the scope of this introduc-
tory chapter but will be discussed in Chapter 2. The topic of dynamic
#pecification is discussed at length in Chapter 4.

hastic regressors

I'lie second classical assumption which we listed in section 1.5 was
hat the regressors are non-stochastic and are thus independent of the

E(X'u) =

iy assumption was required to derive the unbiasedness property of
@ OLs estimator. In general, however, the assumption that the
ressors are non-stochastic — or fixed in repeated samples — can be
B to be quite restrictive. For example, we may have a lagged
pendent variable, representing some degree of inertia in the beha-
ur of a variable. More generally, there seems to be little sense in
rling that some economic time series such as consumption are
shastic, while others such as income are not. Moreover, there may
.—.-naoB errors in the measurement of the regressors, i.e. ‘errors in
Eom or the equation we are considering may be part of a larger
ultaneous system involving stochastic feedback between variables.
the regressors are not considered to be non-stochastic, but it is
dered safe to assume that they are distributed independently of
disturbance, then most of the desirable characteristics of the oLs
tor can in fact be recovered, although the algebra becomes
derably more complicated. This is the conditional regression
I which is discussed briefly in Chapter 4. The small-sample
serties of the oLs estimator under the assumption of stochastic
swors cannot, however, be retrieved, although consistency holds
regressors are contemporaneously uncorrelated with the disturb-
, 1.e. the nth observation of the regressor is uncorrelated with
nth observation of the disturbance.
‘onsider the general linear model, where the design matrix is not
med to be non-stochastic:

Y= XB+u (1.94)
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The covariance matrix is assumed to be scalar. If the following
conditions hold:

pim7!1X'X =X (1.95a)
T—o©
pimT1X'u =0 (1.95b)
To®

where = is a non-singular matrix, then the oLs estimator B is consist-
ent:
_wzau = plim (X' X)'X'Y
—®© T—

= plim (X' X) ' X'(XB + u)

T—

=B+ plim(X'X) ' X'u

T—x

B + plim(T ' X'X) ! plim(T ' X"u)

T T

B+ 20
=8

Assumptions (1.95a) and (1.95b) thus replace the second classical
assumption. Assumption (1.95a) will hold if X consists of realisations
from a stationary multivariate stochastic process with a non-singular
contemporaneous variance—covariance matrix. It can also be shown
that the standard estimators of the disturbance variance and of the
variance—covariance matrix of the oLs parameters, 8, will also be
consistent.

Il

Errors in variables

Another reason that regressors may be stochastic is where there is
stochastic measurement error in one or more of the regressors. In this
case, however, the oLs estimator is no longer even consistent.

Say, for example, we believe Y and X are related by an exact
linear relationship:

¥-%p (1.96)

but instead of observing X and Y directly, we observe only measured
data X and Y which may be contaminated by measurement error:

X=X+ (1.97a)
Y=Y +u (1.97b)

where ¢ and p represent the measurement error. Often, there is no
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reason why measurement error should not be autocorrelated; for
example, where x represents a stock (such as money supply for
example), it may make sense to propose a first-order moving average
representation for the measurement error:

Er=v,— v, (1.98)

This would imply that a proportion 3 of measurement error tends to
be reversed in the following period. For our purposes, however, we
need only assume that the measurement errors are white noise sto-
chastic processes. :

Substituting from (1.97) and (1.96), we have:

Y=XB+o (1.992)
w=pu- B (1.99b)

If the measurement errors are assumed uncorrelated, then the covari-
ance matrix for w is:

E(ww') = 0iI + p*o}l = 031 (1.100)

where 0% and 0% denote the variance of u and  respectively. From
equation (1.100) it is clear that w has a scalar covariance matrix.

From equations (1.99a) and (1.99b), however, it is clear that the
disturbance term in (1.99a), o, is correlated with the regressor, X,
which violates one of the classical assumptions which we discussed in
section 1.5 and which was needed to derive the unbiasedness property
of the oLs estimator. Moreover, the oLs estimator is no longer even
consistent since, although condition (1.95a) may still be assumed to
hold, condition (1.95b) is violated:

pim7T!'X'X =X

T—»
pim T 'X'w = plim T~(X + £)'(u — BE)
T—x T—x
= —Bo} #0
Thus:
plim B = plim(X’'X)"'X'Y
T— T—x
= plim (X' X) ' X'(XB + o)
T—x
=B+ w_:: T(X'X) pimT ' X'w
-3 00 T—x
= p - potz~!

# B
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Simultaneous equations and instrumental variables

Another standard case where some of the independent variables ina
regression are correlated with the errors is in a simultaneous equation
system. In such a system there is a contemporaneous feedback be-
tween the endogenous variables of the system. OLS on any single
equation therefore gives biased and inconsistent parameter estimates.
Although it is possible to estimate the full system ‘at one go’ (see
Chapter 2), frequently, applied economists only wish to estimate a
single structural equation. Nevertheless they are aware that the equa-
tion of interest may be part of a larger simultaneous system and
hence oLs is inappropriate. A consistent estimator is provided by the
method of instrumental variables (1v ) on a single equation although
it is not always obvious how one chooses a particular set of instru-
ments and whether they are independent of the error term. 1v is a
single equation estimation technique and does not consider all of the
information in the rest of the system of equations, (although it may
be generalised to a system estimator, three stage least squares, 3SLS,
is a limited information estimator which can be compared to a full
information estimator such as maximum likelihood (see Chapter 2).

The 1v approach is very general and there is a wide variety of
estimators within this general class. The approach is to take a set of
variables (‘instruments’) which satisfy the classical assumption and use
them to construct a ‘proxy’ for the variable which is endogenous. To
delineate members of the class, one’s choice of instrument set may
determine the name given to a particular v estimator. For example,
the two stage least squares (2SLS) estimator is a specific form of v
estimator. To complicate matters the 2SLS estimator may also be
interpreted as a two-step estimator; it is equivalent to doing two
(particular) oLs regressions. However there are some subtle differ-
ences between 2SLS viewed as a special form of 1v estimator and the
two-step procedure.

The v estimator is derived as follows. Suppose in the general
linear model we have a subset of variables X 1(1 X kq) that are
uncorrelated with the error term u in large samples. But the subset of
variables X,(1 X k) are correlated with u

Y=XB+u= (X1, X;)B+u (1.101)
where

plim 771(X{u) = 0 (1.102a)

plim T~1(X5u) # 0 (1.102b)

Without loss of generality assume u ~ N(0, 0?I). Suppose there ex-
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ists a set of k, variables denoted W; (the ‘instruments’) which have
the properties:

plim T Y{(Wiu) =0
T (1.103)
_wza T Y (WiX;) #0
Hence W, is uncorrelated in the limit with u and there is a non-zero
gorrelation between W, and X, (with a constant asymptotic moment
matrix, s\;y\mv.
The full matrix of instruments is

W = (Wi, Xy) (1.104)

where X, acts, in effect, as its own instrument and W has ‘replaced’
the variables X,. Now we premultiply (1.101) by W' and take prob-
ability limits:
lim WY = w_ma T Y (W'X)B + pim T~Y(W'u)

i o (1.105)
A.-w.mzm the sample moments as estimates of their population values
(which we assume throughout this section) and using equation (1.103)
nbove, it is easily seen that mE the instrumental variable estimator is

B = (W'X)"{(W'Y) (1.106)

lote that if all the X variables satisfy the classical assumptions then
W is the same as X and this is simply the oLs estimator. The
ymptotic covariance matrix of the 1v estimator (which we simply
note as Var (fBrv)) may be derived as follows. Substituting (1.101)
(1.106) produces

Biv — B=(W'X)" (W'u) (1.107)
nce
Var (B) = plim T(W' X)7 plim T2(W'uu'W)

% wza T(X'W)™1

= (W' X) '\ (WW)X'W)™! (1.108)

e m_< is consistent (to see this take ‘plims’ of (1.107)) and using
.102), (1.103) and (1.104) the residuals

Ay =Y - XBw (1.109)

1 be used to obtain a consistent estimator for o?:

sty = (Ayy'Q)/T (1.110)
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Note that X and not W is used in (1.109) and that (1.108) would
again be the oLs formula when X and W are identical.

We now turn to a simple two-equation simultaneous equation
system to demonstrate the relationship between v and 2SLS. (Because
of space constraints we do not discuss the identification problem in
simultaneous models, although we make the implicit assumption that
the systems we are discussing are identified. This means that the
order condition, that the number of predetermined variables excluded
from any equation must at least equal the number of endogenous
variables included on the right-hand side, and the rank condition, are
met. We also require that there are at least as many instruments as
endogenous variables.)

A simultaneous system

Our simple illustrative system is:

yi=ay,+ Bx;+ & (1.111a)
= Q& + €1
y2=yy1+ 6x2+ & (1.111b)

where &; ~ N(0, o?1)
and plim(x}¢;)/T =0 (i, j=1,2)

T—o
E(e1€2) = mﬁm:mﬁlb =0
and we define Q = (y2, x1), 6= (&, B)

Because we wish to isolate the issues that arise solely from simul-
taneity between the endogenous variables y;, and y, Wwe assume
white noise errors in each equation and no contemporaneous correla-
tion between the errors in different equations.

The reduced form equations of the system are:

(1.112a)
Y2 = X1, + X2Mp + Uy (1.112b)
m=(1—ay) =1 —ay) " ab,mn=(1—an)"vh,
ap=01-ay)10, v, =1 - ay) (e + @e2)
vp=(1- Qq\vlgmﬁ + Y€1)

In what follows, of crucial importance in (1.112a) and (1.112b) is that
y1, and y,, depend on a linear combination of the structural errors
£;,(i = 1, 2). This arises because of the simultaneity of the system and

Y1 = X111 + X2,T12 + Vyg

where
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§0 the classical assumptions outlined in section 1.5 do not hold, also
condition (1.95b) is violated and so by the proof given in section 1.6
oLs is neither unbiased nor consistent. An instrumental variable esti-
mator may be used to provide consistent parameter estimates of
gither a part of the system or the complete system.

In most of what follows we assume the econometrician is only
interested in estimating the structural equation (1.111a) but is aware
that this equation is embedded in a simultaneous system which could
consist of a number of additional equations. Also we could easily
extend the analysis to consider y, to be a vector of endogenous
variables, just as there could be many more than two x variables.
However, for pedagogic reasons we assume for the moment the
simple model outlined above.

The 1v estimator of (1.111a) is consistent. We require an instru-
ment for y,, that is both independent of &; in large samples and has
some non-zero correlation with y,. Call this variable w;. The instru-
ment matrix is then

Wi = (wy, x1)

where x; may be thought of as acting as its own instrument. The v
estimator is,

6= (WiQ)'Wiy, (1.113)

obvious question is how do we choose a particular variable to act
an instrument for y,,? An obvious candidate is x,, since by
umption this is independent of £;, and from (1.111b) is correlated
h y,,. But if we know the system we can do better than this.

-stage least squares (25LS)

4 alternative is to use a linear combination of all the predetermined
bles in the system. To obtain our linear combination we perform
OL§ regression

Y2 = xifty + x2fin + D, 1.114)

form 9, as the fitted values from this model, note that this is the
reduced form equation for y,. The instrument matrix is then

We A.@N. k_ﬁv

8*(25L8) = (W'Q) "L (W'y,) (1.115)
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When we use 9, as the instrument and apply 1v then §* is known as
the 2SLS estimator (a particular form of 1v). The name originates
because we obtain §, in the ‘first-stage’ regression and use this in the
v (second stage) formula. For the moment we assume that
plim 7~ (94¢;) = 0. Intuitively we might expect §, to be uncorrelated
with £, because it is a linear combination of x; and x, which are both
assumed to be independent of &;.

Other v estimators

More often than not applied economists are interested only in esti-
mating one structural equation although they are aware that this
equation may form part of a larger simultaneous system. If we are
interested only in (1.111a) we will still obtain biased parameter esti-
mates because of the existence of (1.111b) even if we do not explicitly
formulate this second equation. So whenever the possibility of simul-
taneity (or the failure of weak exogeneity, see Chapter 4) exists we
must be prepared to consider an 1v estimation strategy. However we
may have only a hazy idea of the form of the rest of the model and of
the set of weakly endogenous variables in the complete system. We
may therefore try a number of alternative instruments sets for y,,.
We could choose any one x; variable from the potentially large set of
X (X =(x1,.-.,%t)). Alternatively we can choose one of many
essentially arbitrary sub-sets of X, X JC X and perform the oLs
regression of y, on X’. We could then form

$L = X1 (1.116)
where 9} may be used as an instrument for y,. Clearly many such
instruments may be constructed depending on the choice of X J and
they will all differ and give somewhat different parameter estimates in
finite samples. By assumption, however, all of these 1v estimators are
consistent. This is a practical problem with 1v estimation: results are
not invariant to the choice of instrument set. Ideally one should
report a sensitivity analysis with respect to alternative instrument sets.
As a general guideline in small samples there is also a trade-off
between efficiency and consistency. Choosing a very small set of
instruments will ensure consistency but may yield very inefficient
estimates but, in a small sample, as the number of instruments grows
the 1v parameter estimate will converge on the oLs estimator and will
be inconsistent. One way of checking the validity of the instrument
set is to use a test due to Sargan which tests for the orthogonality of
the instrument set and the structural residual; this test is discussed in
Chapter 4.
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Two-step and two-stage least squares

We will now consider the 2SLS estimator from a slightly different
angle, namely as two applications of oLs. Suppose we have a fixed set
of instruments X = {x;, x,} where x; are the k* predetermined
variables in the structural equation of interest and x, are the k**
predetermined variables excluded from the equation. The oLs regres-
son of y, on X is the first stage regression and we may construct the

instrument:
$2 = x1fy + x,8, = XTI 1.117)

Now let us replace the endogenous variable y, with $, in (1.111a)
and then estimate the resulting equation by oLs

y1= 092 + fx; + o (1.118)
i) @% + w1
Then the 2-step least squares estimator’ (oLs done twice) is
6, =(0'0)""(0'y1) (1.119)

.,Hro oLs formula for the covariance matrix Var (8 ») and the variance

the equation mw produced by standard regression packages on
1,118) will be:

Var (8,) = 53(0'0) (1.120)
st=(y1—-08,)(y1- 08, )T - K) 1.121)

W do these formulae compare with the ones given for the 2SLS
mator? For 2SLS the instrument matrix is:

Wi (95, 1) =0 (1.122)

lich is the same as that used above in the second stage of the

.-Emw _estimation. So (1.115) reduces to &* (25LS)=
'Q) '(Q'y1). However, it may be shown that
(0'0)=0'0) (1.123)

therefore the 2SLS estimator gives exactly the same numerical
as the two-step ommamﬂma for the estimated parameters. Also,
(Q'Q)=(0'Q), W = Q, and noting that X = Q then (1.108)

Var (65) = humm_%m\wvi (1.124)

difference in the two formulae (1.120) and (1.124) lies in the
ate & s%. Equation A_._wéonczm:cna s? from the IV/2SLS res-
.-_n defined by wuy,, = yy = Q0y,, Where Q = (y,, x;) while .,.w. is
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constructed using the residuals defined in (1.121) using Q = (¥2, *1);
these are not the same. Thus the two-step procedure constructs the
residuals using §, while the 2SLS procedure uses y», the m.nE& value
of y,. Hence, while the two-step procedure provides 8=.m_m85 para-
meter estimates it does not calculate correctly the variance of the
equation or the covariance matrix of the parameters; for these the

v/2sLs formulae must be used.

Consistency of the two-step estimator S5 &

We have already implicitly established the consistency of 5.@ two-step
procedure by appealing to its numerical equivalence with the v
estimator but given the use we will make of the two-step u_.oom&:d in
Chapter 6 on rational expectations it is useful to establish this result
and outline a complication. If we take (1.111a) and add and subtract

a9, from it we may restate it as

y1= a9 + Bxi + o (1.125)
where

w =&+ Ay — §2) (1.126)
Consistency of the two-step estimator then requires:

plim T ' (xjwy) = w:B T '(psw) =0

T—® —>00
We have:

plimT~}(xje;) = 0 by assumption

T—o

plim T (xi(y, — 92)) = %:B T '(xip,) =0 . byors

T—>0 —

plim 7 '(94¢;) =0 by equation (1.117)

T—

plim T~ (5, (y2 — 92)) = %:B T~ '(930,) =0  byors

T—® '—> 0

which establishes the consistency of the estimator. Note that a com-
plication is that this proof rests on the assumption that x; and y, are
uncorrelated with ,; this is correct by construction given our .mvmo;._-
cation of (1.117), but if we had omitted x; from the specification this
would no longer be valid. So if we define $3 from oLs on:

9% = x,7* (1.127)
then

(2 = 9 # 0
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if x; has any influence on y,. In this case the two-step estimator
using y% is inconsistent. This arises in expectations models (see
Chapter 6). However if 97 is used as an instrument for y,,

W A.@,mﬁ RHV

then the 1v formulae yield consistent estimates of 8, s> and Var(a),

Var (B).

1.7 Conclusion

In this chapter we have given an account of the standard econometric
results which underlie single equation estimation by ors, we have
shown that under a fairly stringent set of assumptions oLs is an

optimal estimator and we have outlined how the failure of these

awmcaﬁcc:mﬂmmmwfﬁmvmgvommwmmmnwn_on..?n,;.wm:Om.,mmmw,.mmmr-
nique. So far we have said little about systems estimation and ways in
which we can deal with the problems which arise when the classical
nssumptions are violated. Much of the rest of the book is aimed at
dealing with these problems. Chapter 2 introduces the notion of
maximum likelihood and this allows systems of equations to be
Ireated effectively. The failure of the assumption of stationarity is the
central issue of Chapter 5 on cointegration and correct conditioning
and testing of the underlying dynamic specification is the heart of
dynamic modelling, treated in Chapter 4.

otes

Of course, the intercept need not be placed first in the regression. If it
were placed in the ith position, then we would examine the ith row of the
normal equations.

The trace of a matrix is defined as the sum of the elements on the leading
diagonal.

An idempotent matrix, M, has the property that MM = M. If M is
non-singular (i.e. if its inverse exists), then it follows immediately that M
18 the identity matrix. In general, an idempotent matrix is singular.

Note that we have not stated explicitly what should be done with the first
observation - yj is defined only for ¢ =2. One option is simply to drop
this observation. A more satisfactory alternative will become clear below.
The variance of v, need not be known because, as we noted above, the
variance-covariance matrix of the disturbance need be known only up to
~ A sealar multiple.

Provided there are no lagged dependent variables. If there were, this
would in any case violate the assumption of non-stochastic regressors,
which we consider below,



