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ABSTRACT 

The paper tackles the issue of possible misspecification in fitting skew normal 

distributions to empirical data. It is shown, through numerical experiments, that it is easy 

to choose a distribution which is different from this which actually generated the sample, 

if the minimum distance criterion is used. It is suggested that, in case of similar values of 

distance measures obtained for different distributions, the choice should be made on the 

grounds of parameters’ interpretation rather than the goodness of fit. This is supported by 

empirical evidence of fitting different skew normal distributions to the estimated monthly 

inflation uncertainties for Belarus, Poland, Russia and Ukraine.  

 

 

 

 



1. INTRODUCTION  

During the last decade a substantial development of the theory of skew normal distributions, 

that is distributions which contain normal distribution as the special symmetric case, can be 

observed. The first distribution of this kind was probably the so-called two-piece normal (or 

split normal) distribution, TPN, originated by John (1982) and developed further by Kimber 

(1985). It gained substantial popularity among the practitioners; in particular it has been 

widely used by economic forecasters for describing uncertainties of the probabilistic forecasts 

of inflation (for a current review see e.g. Kowalczyk, 2012). Further breakthrough was made 

by Azzalini (1985, 1986), who developed an elegant theory of univariate, and then 

multivariate, skew normal distributions. These distributions have been recently subject of 

substantial generalisations. Most notable, the Balakrishnan skew normal distribution has been 

proposed by Sharafi and Behboodian (2008), generalized Balakrishnan skew normal 

distribution, GBSN, by Yagedari, Gerami and Khaledi (2007), and developed further by 

Mameli and Musio (2011), Hasanalipour and Sharafi (2012), Fujisawa and Abe (2012) and 

others. 

These distributions, albeit fairly general and elegant, provide the potential user with three 

practical problems: (i) estimation, (ii) interpretation of the parameters and (iii) possible 

distributional misidentification. In this paper the problems (i) and (ii) are considered only 

indirectly. Regarding (i), the identification and numerical problems have been discussed in a 

number of papers, e.g. in Pewsey (2000), Monti (2003) and Castro, San Martín and Arellano-

Valle (2008). Problem (ii) can be tackled by developing skew normal distributions with 

parameters directly related to the particular theory or the phenomenon described. In particular, 

in Charemza, Díaz and Makarova (2013) we have proposed a skew normal distribution, called 

weighted skew normal distribution, WSN, which parameters are directly interpretable in the 

context of macroeconomic density forecasting under inflation targeting. The current paper 

deals predominantly with (iii), that is the possibility of distributional misspecification. After 

overcoming (or skipping) problems (i) and (ii), a practitioner faces a dilemma of choosing 

from a plethora of different skew normal specifications. It seems to be natural that the 

researcher would choose that one which fits the best to the data. And here the old problem 

arises: is the distribution which fits to the data in the best way really the true one?  

We tackle (iii) by putting three skew normal distributions mentioned above, that is TPN, 

GBSN and WSN, to the goodness of fit contest. In Section 2 we give brief description of the 

distributions we are considering. Section 3 explains general settings and estimation procedure. 

Section 4 presents the results of a Monte Carlo study evaluating the probabilities of choosing 

a wrongly specified skew normal distribution on the basis of its fit. Section 5 shows empirical 

results of estimation skew normal distributions, for the one-step ahead forecasts errors of 

monthly inflation in Belarus, Poland, Russia and Ukraine. Section 6 concludes. 

2. THREE SKEW NORMAL DISTRIBUTIONS  

There are three distributions which we consider in this paper: weighted skew normal, WSN 

(which we regard as the benchmark one), two-piece normal, TPN, and the Yagedari, Gerami 

and Khaledi (2007) generalized Balakrishnan skew normal distribution, GBSN.  

A random variable Z  with WSN distribution is defined by Charemza, Díaz and Makarova, 

(2013) as: 

up lowY YZ X Y I Y I             ,       (1) 

where: 
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It is suggested that the parameters  and β are, in the economic context, related to the strength 

of the ‘corrective’ monetary policy (it is sensible to restrict them as non-positive under some 

additional assumptions considered below). The density and moment-generating functions and 

the main moments of WSN are given in Charemza, Díaz and Makarova (2013).  

A random variable with TPN distribution is defined by its pdf: 
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where 
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1 22 / ( )A       . Three parameters to be estimated are 1 2,    and  . 

The third distribution considered here, the GBSN, is given by the following pdf: 
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of the standard normal distribution; n and m are non-negative integers and    are the 

parameters. The GSBN includes the Balakrishnan skew normal distribution for m = 0, and the 

original Azzalini skew normal distribution for n = 1 and m = 0. Azzalini distribution is also a 

special case of the WSN for 2   , 0up   , 1x y   and 0X Y   . All three 

distributions can be reduced to a standard normal: WSN for 0X      and 1X  ; TPN 

for 1 2 1    and 0  ; GBSN for 1n   and 0m    or 0n m  .  

3. ESTIMATION AND GENERAL SETTINGS 

As mentioned above, estimation of WSN, TPN and GBSN distributions by the maximum 

likelihood or the generalized method of moments is numerically awkward. This problem is 

particularly well discussed for the Azzalini distribution (see e.g. Azzalini and Capitanio, 

1999, Sartori, 2006), and is evident also for all three families of distributions considered here. 

However, it is straightforward to derive random number generators for all three distributions. 

For WSN given by (1) it is described in Charemza, Díaz and Makarova (2013), for TPN in 

Nakatsuma (2003) and for GBSN in Yagedari, Gerami and Khaledi (2007). With the use of 

these generators and inspired by Greco (2011) we have applied the simulated minimum 

distance estimators method (SMDE, see Charemza et al., 2012), which consists of fitting the 

approximated by simulation density function to empirical histograms of data and applying a 

minimum distance criterion. The algorithm requires conducting an iterative grid search over 

the pre-defined range of admissible parameters. 

The version of SMDE applied here can be defined as: 

  , 1
ˆ arg min ( , )
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d g f 
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where ,tf   is the approximation of the pdf , f , of a random variable obtained by generating  

t = 1,…,T replications (drawings) from a distribution with parameters   ( k ), ng  

denotes the density of empirical sample of size n, w  is an aggregation operator based on T 

replications, which deals with the problem of the ‘noisy’ criterion function (median, in this 

case), and ( , )d    is the distance measure. The distance measures, MD, applied here are that 

of the Cressie and Read (1984) power divergence disparities family given by: 

1

,

1 ,

( )1
( , ) ( ) 1

( 1) ( )

CR
m

n
n t n

iCR CR t

g i
d g f g i

f i





 





  
        

  ,    (2) 

where m denotes the number of cells in which data are organized. For 1CR   formula (2) 

gives the Pearson 
2  measure, for 1/ 2CR    the Hellinger twice squared distance (HD) and 

for 2CR    the Neyman 
2  measure. For 0CR   and 1CR   the continuous limits of 

the right-hand side expression in (2) are respectively the likelihood disparity (LD) and the 

Kullback-Leibler divergence statistics. Cressie and Read (1984) advocate optimal setting 

3/ 2CR  .
1
 

4. FIT OF TRUE AND FALSE MODELS 

As the main objective of this paper is to decide whether using the best fit criterion for 

selecting type of a skew normal model might lead to distributional misspecification, we have 

set up three data generating processes (DGP’s, or ‘true models’) and fitted all three models to 

data generated by each of them.   

The DGP’s are: 

DGP 1: WSN with 2.0   , 0.5   , 0X Y   , 1X Y      , 1up low     and 

0.75  . As in this paper we intend to compare three-parameter distributions only, 

we are keeping 0X Y    and 1up low     constant, so that we are hence left 

with three parameters to estimate: , β, and  .  

DGP 2:  TPN with 1 1.5   , 2 0.5   , 0.4  . 

DGP 3:  GBSN with n = 2, k = 1 and 0.3   . 

All three DGP’s have similar first three moments, as given in Table 1:
2
 

Table 1: Mean, st. deviation and skewness of DGP’s 

 mean st. dev. skewness 

DGP 1 -0.363 1.069 -0.628 

DGP 2 -0.398 1.113 -0.695 

DGP 3 -0.207 0.925 -0.687 

 

For each DGP, and for sample sizes of 100, 150, 200, 250, 300, 350, 400, 450 and 500, there 

have been generated Nrepl = 1,000 replications. For each simulated sample we have fitted all 

three distributions using the SMDE method outlined in Section 3. We apply TPN, GBSN and 

two variations of WSN. In the first variant, denoted by WSN(0) we keep the thresholds fixed 

                                                 
1
  For a complex discussion and alternatives see Basu, Shioya and Park (2011). 

2
  Computing moments of GBSN requires numerical integration over an infinite interval. The algorithms applied 

here are that of Sikorski and Stenger (1984), named inthp1and inthp2 in GAUSS 13. 
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as in the DGP 1, that is 1up low    . In the second variant, we made the thresholds 

dependent on  in such way that 1up low    . We denote this as WSN(1).  

As a simple, naïve, misspecification measure, we use the frequency of cases when 

0 1( ) ( )i id d  , where d0 denotes the minimum distance measure computed for the estimated 

properly specified distribution in the i
th

 replication 
i , and d1 denotes the minimum distance 

measure computed for the estimated misspecified distribution in the same sample. By the 

properly specified distribution we understand the distribution of the same type as used for 

generating the sample. The distance criterion used here is the Hellinger distance, HD (results 

for other criteria are available on request; they do not differ much from these presented in this 

paper).  

Another misspecification measure is based on the bootstrapping the ratios of two alternative 

distance measures obtained for the same sample. We have used methodologies developed 

originally for comparing variances: simple bootstrap and Efron bootstrap (see e.g. Sun, 

Chernick and LaBudde, 2011). 

The algorithm for simple bootstrap is the following: 

Step 1: Draw M pairs of 0( )kd   , 0( )jd   , k,j = 1,…Nrepl, k  j. M should be large, e.g. 

10,000; 

Step 2: Compute the ratio of distance measures 0
0

0

( )

( )

k
h

j

d
r

d




    ,   h = 1,2,…,M; 

Step 3: Compute the 95
th

 quantile of the distribution of 0

hr  denoted as 0.95q  ;  

Step 4: Check the simulated bootstrap criterion for the case where 0 1( ) ( )i id d   as: 

1
0.95

0

( )

( )

i

i

d
q

d




   .   

The frequency of cases where the above inequality is fulfilled tells about the probability of 

undertaking the right decisions regarding the distribution by rejecting the wrong one. It 

approximates the probability of rejecting the null hypothesis that the distance measures for the 

true and false distributions are identical with the implicit alternative that the distribution on 

which 1( )id   is based is false. Efron bootstrap is similar, except that in Step 1 drawing is 

made from the set of all 0( )kd  , 1( )kd   rather than from 0( )kd   alone. Results in this case 

are more robust, as the equality of the distance measures is explicit under the null. 

Tables 2, 3 and 4 present respectively the naïve misspecification measure and also these based 

on the simple and Efron bootstraps. Results for other criteria and for different sample sizes are 

available on request. 

Table 2 Frequency of cases where 0 1( ) ( )i id d   

Sample 
size 

DGP 1 (WSN) DGP 2: (TPN) DGP 3: (GBSN) 

TPN GBSN WSN (1) WSN (0) GBSN WSN (1) WSN (0) TPN 

100 0.380 0.479 0.504 0.507 0.396 0.314 0.287 0.269 

250 0.261 0.229 0.37 0.442 0.091 0.304 0.299 0.228 

500 0.258 0.06 0.186 0.341 0.005 0.377 0.353 0.233 
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Table 3 Simple simulated bootstrap power 

Sample 
size 

DGP 1 (WSN) DGP 2: (TPN) DGP 3: (GBSN) 

TPN GBSN WSN (1) WSN (0) GBSN WSN (1) WSN (0) TPN 

100 0.088 0.045 0.047 0.046 0.026 0.186 0.207 0.219 

250 0.135 0.099 0.073 0.046 0.049 0.201 0.191 0.267 

500 0.148 0.216 0.137 0.071 0.183 0.152 0.168 0.254 

Table 4 Efron simulated bootstrap power 

Sample 
size 

DGP 1 (WSN) DGP 2: (TPN) DGP 3: (GBSN) 

TPN GBSN WSN (1) WSN (0) GBSN WSN (1) WSN (0) TPN 

100 0.085 0.069 0.045 0.038 0.074 0.071 0.093 0.086 

250 0.117 0.112 0.086 0.061 0.156 0.09 0.081 0.116 

500 0.131 0.161 0.124 0.103 0.174 0.076 0.082 0.113 

Tables 2-4 show that results of fitting WSN and TPN to data generated from GBSN behave 

differently to that fitted to data generated from WSN or TPN distributions. Let us first 

concentrate on evaluating the misspecification in case when data are generated by WSN and 

TPN; it is clearly difficult to distinguish between these two distributions. For the small sample 

size it is practically haphazard to find out which statistic is smaller regardless of the data 

generating process. In particular, if data are generated from TPN, there is a virtually equal 

chance that WSN would fit better than the true TPN distribution. However, with the increase 

in sample size the frequencies of cases where the MD statistics for the ‘true’ distribution is 

smaller than for the ‘false’ one increase, suggesting the consistency of choice based on the 

MD criterion. This is confirmed by the bootstrap results. In Tables 3a, 3b and 4a, 4b 

frequencies of the rejection of the null that the MD statistics are identical increase with the 

increase in sample size. Nevertheless, the empirical power of the tests based on the MD 

statistics is, in absolute terms, not high. Even for samples of size 500 it is not reaching 20%. 

In another words, it is in practice problematic to distinguish between the WSN and TPN 

distributions.  

Nevertheless, some differences between the fits given by WSN and TPN can be observed 

here. Generally TPN is more often falsely well approximated by WSN, particularly WSN(1), 

than WSN by TPN. Also, for middle-sized samples (150-350 observations) chances for proper 

identification of WSN against TPN by rejecting the null of identical MD statistics are visibly 

higher than otherwise, albeit still small in absolute terms. It is also worth noting that the 

differences between particular MD criteria, in terms of power, and frequencies of the false 

choice based on the minimum of competing statistics, are meaningless.  

For data generated by WSN and TPN, the danger of misspecification by falsely fitting GBSN 

is visibly smaller. Except for small samples of data generated by WSN, MD statistics for 

GBSN are usually bigger than for two remaining distributions in this case than the 

corresponding WSN and TPN statistics, reducing the chance of distributional 

misspecification. Also the empirical power of the MD ratio test rises relatively quickly with 

the increase in sample size exceeding, in some cases, 20% for large samples. 

In contrast to WSN and TPN, data generated by GBSN exhibit different patterns. In terms of 

power of the bootstrap tests, they are also be easily confused with two other distributions, as 

the power of the MD ratio test is low. However, the power of the test is not visibly increasing 

with the increase of sample size, causing doubts regarding the consistency. On the positive 

side, the naïve misspecfication benchmark based on the differences between the MD statistics 
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for the true and false distributions is less often false than in the case of data generated from 

WSN and TPN.   

5. EMPIRICAL RESULTS: ASSESSING INFLATION UNCERTAINTY IN BELARUS, 

POLAND, RUSSIA AND UKRAINE 

The distributions discussed above have been used for modelling short-run inflation variability 

uncertainties, approximated by one-step ahead forecast error. As it is discussed in Charemza, 

Díaz and Makarova (2013), possible skewness of such uncertainties is caused by monetary 

policy asymmetries, characterised by the thresholds in the short-run (past-independent) 

inflation forecast and effectiveness of the anti-inflationary and output-stimulating policies. In 

the context of WSN, the thresholds are represented by up  and low , and monetary policy 

effectiveness respectively by  (for the anti-inflationary policy) and β (for the output-

stimulating policy). 

The four East and Central European countries studied here for the period from January 1995 

to December 2012, Belarus, Poland, Russia and Ukraine, represent different types and 

practices of monetary policy. Poland, for the period under investigation, conducted inflation 

targeting policy. For Belarus and Russia the targets have been less clear. For Belarus it was 

predominantly the currency stability, although recently a policy of inflation stabilisation has 

been announced. For Russia the target was, formally, inflation, for most of the period under 

study, but practically stabilisation of the exchange rate. For both Belarus and Russia which 

relies on exporting (in case of Belarus, re-exporting) natural resources, it lead to appreciation 

pressures and ‘dirty float’ inflationary effects. In Ukraine the targets and instruments have 

been usually multiple and loosely defined, with the emphasis on controlling bank liquidities, 

periods of nominal anchoring the currency to the US dollar, direct commercial banking 

supervision, etc. Russia and Ukraine and, to a lesser extent, Belarus, have been affected by the 

Russian currency crisis in 1998. 

The data used here are on monthly inflation, not de-seasonalised, with 223 observations per 

country.
3
  After checking for the order of seasonal and non-seasonal integration by the Taylor 

(2003) test which takes into account the possibility of the presence of unit roots at frequencies 

other than tested, we have identified the variability uncertainty as ut in the seasonal ARMA 

(SARMA) model: 

 ( ) ( ) ( ) ( )s D s

t tB B y B B u         , 

where B is the lag operator, (1 )B     is the regular difference operator,   is the order of 

integration of the regular part of yt, (1 )D s DB    is the seasonal difference operator for a 

seasonal I(D) process, 1( ) (1 )p

pB B B      is the polynomial of order p in the lag 

operator B and similarly, the seasonal AR operator is defined as 

1( ) (1 )s s sP

PB B B     . Regular, ( )B , and seasonal, ( )sB , moving average 

polynomials are defined similarly with their orders denoted by q and Q respectively. The 

orders p, P, q and Q have been are obtained using the Gómez and Maravall (1998) procedure 

which is based on an automatic lag selection criterion that minimises the Bayesian 

Information Criteria (BIC) of the residuals. The algorithm applied here is equivalent to the 

well-known TRAMO-SEATS and X-11 adjustment methods. 

                                                 
3
 Data used for computations are from: http://belstat.gov.by/homep/en/specst/price3.htm; 

http://www.stat.gov.pl/gus/5840_1638_ENG_HTML.htm ; http://stats.oecd.org/ ; 

http://ukrstat.org/en/operativ/operativ2006/ct/cn_rik/isc/isc_e/isc_m_e.htm 

https://securewebmail.le.ac.uk/owa/redir.aspx?C=dXp41GnBH0-Sqm4ZDMNHJU2pjhBB_M9IcBnz1-QTU56THSUqKxPiEU_w8dTbrRVH8XEh7TkN1n8.&URL=http%3a%2f%2fbelstat.gov.by%2fhomep%2fen%2fspecst%2fprice3.htm
http://www.stat.gov.pl/gus/5840_1638_ENG_HTML.htm
https://securewebmail.le.ac.uk/owa/redir.aspx?C=dXp41GnBH0-Sqm4ZDMNHJU2pjhBB_M9IcBnz1-QTU56THSUqKxPiEU_w8dTbrRVH8XEh7TkN1n8.&URL=http%3a%2f%2fstats.oecd.org%2f
https://securewebmail.le.ac.uk/owa/redir.aspx?C=dXp41GnBH0-Sqm4ZDMNHJU2pjhBB_M9IcBnz1-QTU56THSUqKxPiEU_w8dTbrRVH8XEh7TkN1n8.&URL=http%3a%2f%2fukrstat.org%2fen%2foperativ%2foperativ2006%2fct%2fcn_rik%2fisc%2fisc_e%2fisc_m_e.htm
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Basic characteristics of the estimates of uncertainties: standard deviations, coefficients of 

skewness and p-values of Box-Pierce (BP) portmanteau autocorrelation statistics are given in 

Table 5. 

Table 5: basic characteristics of empirical distributions of uncertainties 

 
Belarus Poland Russia Ukraine 

std. dev. 0.0184 0.0035 0.0209 0.0098 

skewness 0.2033 0.0479 6.1632 0.4141 

BP (p-val) 1.000 0.7869 0.9932 0.2800 
 

Table 6 presents the empirical results. As in the previous section, for each distribution three 

parameters have been estimated by the SMDE. In case of WSN, the range of selection of other 

parameters: up  , 
low  and  has ben sparse, with only few values searched. For this reason, 

we do not report standard errors for these parameters. For other, non-integer, parameters, 

standard errors are given in brackets below the estimates. 

Table 6: Results of empirical estimation of skew normal distributions  

  Belarus Poland Russia Ukraine 

 parameters     

 

 

 

WSN(0) 

 -0.8169 
(0.4526) 

-3.997 
(0.00854) 

-3.624 
(0.6491) 

-3.729 
(0.3502) 

β -0.7226 
(0.7507) 

-3.713 
(0.09892) 

-3.548 
(0.397) 

-1.765 
(1.532) 

 0.03355 
(0.4028) 

0.001027 
(0.000798) 

1.875 
(0.3758) 

0.009011 
(0.4804) 

up  0 0 0 1 

low  0 0 0 -1 

 0.9 0.5 0.9 0.9 

MD 46.47 8.693 55.35 4.611 
 

TPN 
1 0.0712 

(0.3098) 

0.0117 
(0.0053) 

0.3550 
(0.0840) 

0.0652 
(0.1656) 

2 0.1520 
(0.3060) 

0.0149 
(0.0154) 

0.1492 
(0.3148) 

0.0944 
(0.2243) 

 0.2408 
(1.5152) 

-1.1874 
(0.9721) 

1.3737 
(0.9685) 

-1.9402 
(0.1795) 

MD 14.7413 9.1105 52.2228 17.7917 

 

GBSN 

n 20.00 16.00 19.00 19.00 

m 4.00 5.000 4.000 4.00 

  -2.586 
(0.03822) 

1.908 
(0.8716) 

-2.558 
(0.1176) 

-2.558 
(0.1176) 

MD 18.76 27.90 15.56 15.56 

The distance measure criterion suggests the choice of different distributions for particular 

countries. For Belarus, the best fit is that of TPN, closely followed by GBSN, for Poland and 

Ukraine the best is WSN, albeit for Poland the difference with respect to TPN is slight. For 

Russia, the best fitted distribution is that of GBSN. These differences can be explained by 

different types of monetary policy in each country. It is worthwhile to note that there is no 

systematic relationship between the absolute level of inflation uncertainties, measured by 

standard deviations, and the type of best-fitted distribution.  
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For the countries where WSN fits best, that is Poland and Ukraine, differences in the 

parameters estimated reflects the changes in monetary policy. For Poland, where there are 

inflation target bands, the thresholds are non-existing and the estimates of  and β are very 

low and close to each other, reflecting the near symmetricity of the uncertainties, which are, 

in turn, related to the balance between anti-inflationary and output-stimulating policies 

imposed by the inflation target bands of the inflationary targeting. For Ukraine, the distance 

between the estimated thresholds is substantial and the estimated  is markedly lower than the 

estimated β. This indicates the preference (or better effectiveness) of the anti-inflationary 

policy over the output-stimulating one.  

6. CONCLUSIONS 

The general message from this paper is somewhat pessimistic. It might be difficult to tell one 

skew normal distribution from another on the basis of the best fit, especially if the sample size 

is not very large. As the number of potential skew normal candidates for fitting to data is 

substantial (especially in the light of the fact that there are other propositions in the literature 

not considered in this paper) it seems to be sensible to decide on the type of distribution not 

on the basis of the best fit but rather on the basis of interpretation of its parameters. In the 

context of inflation uncertainties in countries conducting consistent and reasonably tight 

monetary policy, the weighted skew normal distribution seems to be a sensible choice. For 

modelling other phenomena, different distributions can be of a better use. 

The difficulty in deciding on the type of skew normal distribution are deepened by the fact 

that there are no operational statistics developed for testing the degree of disparities between 

distance measures (or other characteristics) of these distributions. The bootstrap procedure 

used in this paper offers some hope in this respect. However, further studies are needed here. 
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