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ABSTRACT 

 

Issues related to classification, interpretation and estimation of inflationary uncertainties 

are addressed in the context of their application for constructing probability forecasts of 

inflation. It is shown that confusions in defining uncertainties lead to potential 

misunderstandings of such forecasts. The principal source of such confusion is in ignoring 

the effect of feedback from the policy action undertaken on the basis of forecasts of 

inflation onto uncertainties. In order to resolve this problem a new class of skew normal 

distributions (weighted skew normal, WSN) have been proposed and its properties 

derived. It is shown that parameters of WSN distribution can be interpreted in relation to 

the monetary policy strength and symmetry. It has been fitted to empirical distributions of 

inflation multi-step forecast errors of inflation for 34 countries, alongside others 

distributions already existing in the literature. The estimation method applied is using the 

minimum distance criteria between the empirical and theoretical distributions. Results 

lead to some constructive conclusions regarding the strength and asymmetry of monetary 

policy and confirm the applicability of WSN to producing probabilistic forecasts of 

inflation.  

 

 

 

 



1. INTRODUCTION  

Assessing uncertainties related to future inflation is a long established element of monetary 

policy and indeed of most micro- and macroeconomic decisions. Without going into wide and 

well covered review of the problem, let us limit the exposition to stating that inflation 

uncertainty is one of the main elements of inflation costs. This statement is well supported in 

the literature, starting from the seminal Fisher (1981) paper up to more recent development by 

Chiu and Molico (2010). In particular, as monetary policy decisions are undertaken on the 

basis of evaluation of future inflation which is understood as a random variable rather than a 

deterministic scalar, central bankers in inflation targeting countries spend a lot of time trying 

to assess the probability that future inflation will be within the pre-imposed bands. The need 

for practical assessment of such uncertainties is obvious. 

In this paper we enquire about the operational concepts of inflation uncertainties in the 

context of probability forecasts of inflation that is usually undertaken in central banks with an 

aim of providing a convenient tool for monetary policy. Such forecasts are often produced in 

a form of the so-called fan-charts (or ‘rivers of blood’) depicting the uncertainties related to 

forecasts for subsequent horizons. We argue that misunderstanding related to the nature and 

definitions of uncertainties results in confusions in interpretation of the fan-charts and 

possibly errors in its construction, which in turn might affect the monetary decision. Further 

on we propose a simple stochastic model describing the inflation uncertainties. This model is 

grounded within a new type of skew normal distribution introduced further in this paper, 

which parameters can be directly interpreted in the context of monetary policy. 

In the empirical part we estimate our model using forecast errors of monthly inflation 

obtained for 38 countries for the period from January 1998 to November 2012. In order to 

compare the effect of forecast quality, we have used two sets of forecast errors: obtained by 

the simplest possible, naïve forecasting method and by a reasonably sophisticated one, 

seasonal autoregressive moving average method. To these data sets we fit developed in this 

paper weighted skew normal distribution and compared the results with that obtained by 

fitting already known types of skew normal distributions. Our approach enabled us to assess 

impact of monetary policy on the uncertainties for each country, in terms of its strengths and 

likely asymmetry. 

2. DEFINITIONS, ASSUMPTIONS AND MISUNDERSTANDINGS  

It is tempting to start by adopting one of the universal definitions of uncertainty for its use for 

empirical modelling of inflation. However, it seems that it isn’t any. Some attempts to 

generalize the notion of uncertainty can be found e.g. in Walker et al., 2003; (for discussion 

and adaptation for inferring about inflation see Kowalczyk, 2012). However, this have been 

criticised for incompleteness and tautology (Norton et al., 2006; this paper also gives a review 

of other concepts). Other definitions are frequently used, without much harm, in different 

sciences. We have decided to follow this trend referring, however, to Walker et al. (2003) 

classification, where relevant.  

Even on the grounds of economics, theoretical and practical approaches used so far in this 

context are not much unified. The plethora of methods and techniques can, somewhat 

arbitrarily, be divided into assessing inflation uncertainties ex-post and ex-ante. The ex-post 

methods define uncertainty as the stochastic components of estimated time series models, 

usually the generalized autoregressive conditional heteroscedasticity, GARCH, (see e.g. Elder, 

2004, Kontonikas, 2004, Daal et al., 2005, Fountas et al., 2006, Henry et al., 2007, Fountas, 

2010, Neandis and Savva, 2011), stochastic volatility (Berument et al., 2009) and RiskMetrix 

(Hartmann and Herwartz, 2012). The ex-post approach, although popular among the 
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academics, with numerous papers published worldwide, has not been widely adopted by the 

practitioners, who are interested in undertaking economic decisions with their consequences 

in the future and hence prefer forward-looking methods. Also, defining uncertainty as a 

stationary, past-dependent, phenomenon seems to be too narrow for practical purposes. 

Among the ex-ante, or forward-looking, ways of defining and assessing inflation uncertainty, 

it is possible to identify two, not mutually exclusive, clusters. The first cluster consists of 

methods which aim at deriving probabilistic characteristics of the process forecasted from a 

dynamic model, either univariate (see e.g. Kemp, 1991, 1999) or vector autoregressive (e.g. 

Lütkepohl, 2006a,b), Bayesian (Cogley et. al, 2005) and others. In this cluster inflation 

uncertainty is identified by the shape (and, in particular, dispersion) of the predictive density 

of inflation. The approach here is to estimate, from historical data, the joint density of 

inflation for all periods of the forecasting horizon, usually under assumption of the perfect 

knowledge. Most notably, it estimates jointly the location (or the most likely outcome of 

inflation, which is not related directly to the uncertainty of future inflation) and other 

characteristics of the predicted density, which describes such uncertainty (dispersion, 

skewness, etc.). This approach of assessing uncertainties, called in this paper uncertainty by 

the model, is not however, popular among inflation modellers as well, due to its numerically 

complicated nature and heavy dependence on the assumption of normality. 

Difficulties with methods of the first cluster lead to the development of another cluster of ex-

ante methods, where the distributional characteristics of inflation uncertainty are derived 

separately from the way the point forecast is made that is, to a large extent, extraneously to 

the model which has been used for forecasting the mean of the expected inflation. This 

approach really took off with the practitioners. According to Tay and Wallis (2000), first 

multi-stage density forecasts of inflation derived in that way was published in USA in 1968. 

Bank of England published its first density forecast of inflation in 1996. From 2000 most 

central banks, and a lot of research institutes and professional forecasting establishments, 

started to produce their forecasts in this way.  

All these practitioners face obvious problems of imposing an operational definition of 

inflation uncertainties and deciding on their distribution. There are essentially three ways to 

measure such uncertainties: 

(i) By using the concept of uncertainty by disagreement. Uncertainty here results from 

differences between surveys of expectations or individually made forecasts, usually without 

paying much attention to the way these individual forecasts, point or probabilistic, were made. 

The intuition is simple here: if the forecasters don’t agree, they are uncertain. This 

methodology has been pioneered by Bomberger (1996) and continued, in particular, by 

Diebold et al. (1999), Giordani and Söderlind (2003), Lahiri and Liu, (2006), and Pesaran and 

Weale (2006). Referring to the classification of Walker et al. (2003), in its pure form (that is 

where each individual forecaster formulates point forecasts), this is epistemic uncertainty, that 

is resulted from incomplete knowledge of the system by the experts. In its more 

comprehensive form, where the forecasters formulate their statements about uncertainty 

related to non-predictability due to the randomness, it also contains an element of inherent 

variability uncertainty, that is of an unpredictable randomness. 

(ii) By using the concept of uncertainty by error, that is, assuming that uncertainty is a 

stochastic variable. Parameters of its distribution are obtained through the analysis of past 

point forecast errors. In this case it is usually assumed implicitly that point forecasts are 

efficient, from the point of view of the optimal use of all information available at time of 

producing the forecast, and non-zero forecast errors appears only because of the presence of 

unforecastable (in mean) innovations. If this is the case, then, in Walker’s classification, this 
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is called variability uncertainty. In practice, however, and also in case considered in this 

paper, forecasts are often made from imperfect models. It is practically impossible to include 

no-statistical information, experts’ judgements, inside information etc. in an econometric 

model. Therefore we are assuming that uncertainties by error, understood as the differences 

between observed inflation and its past-dependent (econometric) forecast contain both 

epistemic and variability elements.  

(iii) By imposing some arbitrary parameters on the distribution of uncertainty (uncertainty by 

assumption). 

The practical problem, common to all these ways of assertion (albeit more difficult to tackle 

in some than in the others), is the effect of feedback to forecast on the distribution of the 

uncertainties. Existence of such feedback has been acknowledged for a long time, but not 

often analysed. If the forecast of inflation is taken seriously by the monetary authorities and 

happens to be unfavourable (that is, inflation is to be too high or too low, according to the 

inflation targeters), they would impose an anti-inflationary or pro-inflationary action, as the 

result of which inflation would miss the level originally forecasted and the forecast would 

prove to be inaccurate (see Clements, 2004). Such feedback creates an obvious problem of 

measuring point forecasts accuracy (see Granger and Pesaran, 2000) and, in further on, 

uncertainties. For the uncertainties by disagreement, the open question is: has the panel of 

forecasters imposed some guesses about the possible action of the monetary authorities or 

not? For the uncertainties by error, one can wonder: has the forecasting model implicitly 

considered some anti-inflationary action of the central bank? For the uncertainty by 

assumption, what are the assumptions regarding the forecasts recipients’ action and, whatever 

they are, are they sincere?  

On the basis of above classifications, we have identified two elements in the observed 

inflation. One element is equal to the forecast made on the grounds of all information 

available in the past, at the time the forecast has been produced. This is usually an 

econometric forecast, made on the grounds of past economic performance. As this forecast is 

based on information common to everybody, we are assuming that there is no disagreement in 

relation to this forecast. As mentioned above, even the best econometric forecast is inefficient 

in the sense that they are based only on the set of measurable and collectable information 

available in statistical data sets. Consequently, forecast errors contain some epistemic 

uncertainty, due to the fact that such forecasts ignore such information which is neither 

systematic nor directly measurable. This is why we introduce the second non-econometric 

forecast component, which does not reflect the past performance, but is derived on the basis 

of the assessment of current economic and political climate and on information of non-

systematic and non-statistical nature. In practice it is often called fine tuning or constant-

adjustment and its presence is often not widely advertised. Contrary to econometric forecasts, 

these non-econometric adds-on are usually subject to disagreement, as experts often differ in 

their assessments of quantitative effects of not directly measurable phenomena. Hence, 

differences among them constitute uncertainty by disagreement and might also contain a 

substantive epistemic element.  

It is also assumed here, somewhat strongly, that econometric forecasts are produced without 

taking into account their possible feedback to inflation (they are feedback-free). In another 

words, these forecasts do not contain second guesses about the inflationary consequences of 

possible decisions undertaken by monetary authorities which might be based on these 

forecasts. In fact, this assumption is to some extent stretchy. In practice, forecasters and 

modellers might, often subconsciously, account for the perspective actions of monetary 

authorities, as their main priority is to have forecast as accurate as possible. This is ignored 
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here. However, at least in theory, majority of professionally made point econometric forecasts 

published by central banks and commercial forecasting institutions claim to be feedback-free.  

Let’s now consider a possible feedback effect to uncertainties. On the logic, if distributions of 

past econometric forecast errors (that is, uncertainties by error) are used for constructing fan 

charts and econometric forecasts are feedback-free, uncertainties contain monetary policy 

feedback. In another words, if current inflation has been, to an extent, affected by past 

monetary decisions and forecast is policy-free, the effect of the monetary policy has to be in 

the errors. Uncertainties by assumption are usually claim to be feedback free, that is made 

under assumption that the forecasters do not assume any change in current monetary policy. 

However, are the forecasters sincere? After all, they are judged upon the accuracy of their 

forecasts and the excuse that their forecast was so good that the authorities took it seriously 

and changed the policy so that it becomes wrong, might not sound serious.  

In the light of this ‘uncertainty about uncertainty’ this paper is primarily concerned with 

telling the monetary policy related elements of inflationary uncertainties apart from these not 

related. Confusing these two elements might lead to misunderstandings. Good example here 

could be the critique of the Bank of England forecasts by Dowd (2007) who discovered that 

the Bank of England overestimated the inflation uncertainty in the sense that in the period 

1997-1999 the observed inflation was within an interval which has a low probability 

according to the Bank of England fan chart assumptions. We will refer to this observation as 

Dowd Puzzle later in the text.  

It is almost universally agreed that distributions of inflation uncertainties might be skewed. 

Type of skew distribution usually applied in central banks forecasts is two-piece skew normal 

distribution (see e.g. Wallis, 2004). This distribution is mostly applied for modelling 

uncertainties by error used in most central banks and uncertainties by assumption used by the 

Bank of England. In the literature the subject of explanation or interpretation of such 

skewness is usually not tackled in details. Skewness is sometimes positive, sometimes 

negative and the fact of its existence is not much commented on. It seems that there is a 

consensus regarding the statement by Wallis that: ‘the degree of skewness shows their 

collective assessment of the balance of risks on the upside and downside of the forecast’ 

(Wallis, 2004). 

While not disputing the fact that risk assessment is an essential factor in explaining skewness 

in the distribution of inflation uncertainties, this paper concentrates on another possible reason 

of skewness, namely in explaining how the feedback free uncertainties differ, in terms of 

distribution, from feedback related uncertainties in the light of a strengths and asymmetry of 

monetary policy. We argue that, for countries with sound monetary policy, the differences 

between these distributions result from the effectiveness of the monetary policy, sensitivity of 

the monetary policy boards to forecast signals and the accuracy of such forecasts. We have 

shown that an uncomplicated and natural policy rule gives, under the assumption of normally 

distributed feedback free uncertainties, such feedback related uncertainties that can be 

explained by a fairly general skew normal distribution that is introduced in this paper. This 

distribution is called herein the weighted skew-normal distribution, WSN, and the well-known 

Azzalini skew normal (1985, 1986) is the special case. Parameters of WSN directly reflect the 

accuracy of fine tuning, efficiency of monetary policy and effective inflation bands, which are 

the limits of inflation outside which the authorities might be willing to undertake anti-

inflationary action. It can be shown that dispersion of the feedback related uncertainties is 

usually greater than the dispersion of the feedback free uncertainties that might explain the 

Dowd Puzzle. 
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3. MONETARY POLICY FEEDBACK INTO UNCERTAINITES 

On the basis of general reflections given in Section 2, we analyse the following simple model. 

Inflation observed in time t+h , t h  , is split into two parts: predictable from the past and 

nonpredictable from the past. However, inflation nonpredictable from the past can still be 

forecastable through non-econometric means (fine tuning, or experts’ corrections), especially 

if potential policy decisions can be foreseen. Let’s decompose t h   as: 

ˆ
t h t h t hZ        , 

where Zt+h contains both pure variability uncertainty and these elements of epistemic 

uncertainty which are not predictable econometrically. As discussed in Section 2, it is 

assumed (perhaps too strongly) that the predictable inflation from the past, ˆ
t h  , cannot be 

affected by the monetary policy. The epistemic elements of Zt+h are in fact predictable non-

econometrically, e.g. by experts who based their adjustment to the econometric forecast on 

the basis of non-quantified data, inside information, etc. Due to stochastic nature we call it 

imperfect knowledge in time t regarding inflation in time t+h and denote by Yt+h. We also 

allow this imperfect knowledge to create a feedback into uncertainties. Let us also denote the 

feedback-free uncertainties, possibly containing both variability and epistemic elements, by 

Xt+h. If imperfect knowledge contains some substantive information regarding Xt+h, this 

knowledge should be used in a non-econometric way for improving forecast of inflation. In 

this case, Yt+h should be positively correlated with Xt+h . Strictly speaking, such correlation is 

equal to zero only if Xt+h contain only variability (unpredictable in any sense) elements and no 

epistemic elements. It is equal to one, if Xt+h contains only epistemic elements. In an 

intermediate case, the correlation between two variables tells about the share of the epistemic 

element in feedback-free uncertainty. 

Further in the text we will concentrate on the distributions of Zt+h , Xt+h and Yt+h separately for 

each period of time, so that we can drop the subscripts h and t for the sake of clarity of 

notation. We will also assume that Xt+h and Yt+h have identical variances and zero means, that 

is Yt+h explains inflation relatively to the econometric forecast, which is regarded as a 

benchmark and does not contain any stochastic elements. With these assumptions we have 

arrived at the following model: 

 Y m Y k
Z X Y I Y I  
          ,       (1) 

2 2

2 2

0
( , ) ,

0
X Y N

 

 

   
    
    

   ; 

where 
1 if

0 otherwise
Y m

Y m
I 


 


   ,   
1 if

0 otherwise
Y k

Y k
I



 
 


   . 

In this model inflation uncertainties by error represented by Z are affected by the fact that 

monetary authorities act upon information derived from imperfect knowledge of inflation. We 

assume that, on the basis of this knowledge, they undertake an anti-inflationary action, which 

would eventually lead to a reduction in inflation around its forecasted value (and then to an 

increase in uncertainty by error), if the imperfect knowledge signal is outside certain 

thresholds.  

The thresholds m  and k  denote the levels of imperfect knowledge regarding respectively 

‘high’ and ‘low’ inflation deviations which, if breached, signal to the monetary authorities the 

necessity of undertaking an anti-inflationary decision (if m  is breached from below) of pro-
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inflationary (if k  is breached from above). Effectiveness of such decisions depends on the 

strength of the monetary policy towards inflation expressed by  for anti-inflationary policy 

and by β for pro-inflationary one.  

Although formally m , k  ,  ,    and 1 1   , rational behaviour of the 

policy makers and forecasters implies that 0m  , 0  , 0k   0   and 0 1  . The 

greater absolute values of  and β become, the greater would be the effect of the monetary 

policy on inflation. 

Random variable Z defines a family of distributions which, for reasons described further in 

the text, is named the weighted skew-normal variables and abbreviated by 

WSN ( , , , , )m k    . For notational simplicity it is convenient to normalize WSN in such 

way that =1 and: 

 1~ WSN , , , ,
Z

Z m k  


    , 

where /m m   and /k k  . The probability density function (pdf) of Z   is given by: 

1 2 2

2 2

1 1
( )

(1 ) (1 )

( )
1 1

WSN

B t kAt B t mA t
f t

A A A AA A

m t k t
t

  

    

 
 

 


 

       
        

             

     
       

         

  ,  (2) 

where  and  denote respectively the density and cumulative distribution functions of the 

standard normal distribution, and: 

21 2A     ,   B       , 

21 2A     ,   B      . 

Moment generating function of 
1WSN ( , , , , )m k    is given by: 

  
2 2 2

1

2 2 2( ) ( ) ( ) ( ) ( )
u u u

A A

WSNR u e B u m e k B u e m u k u
 

                  . (3) 

If in (1) 2    and 0m    , the distribution of Z coincides with the Azzalini (1985, 

1986), skew-normal SN( )  distribution with pdf SN( ; ) 2 ( ) ( )f t t t    , where 
21










 . 

It can be shown that pdf for weighted skew-normal variable 
1WSN ( , , , , )m k    given in (2) 

can be interpreted as a weighted sum (hence – the name for the distribution) of pdf’s for two 

Azzalini-type skew normal densities with different  ’s and a pdf of conditional distribution of 

 X k Y m  . 

The expected value of Z   is: ( ) ( ) ( )E Z m k        . Variance of Z   can be computed 

from the usual moments decomposition 
*2 2( ) ( ) [ ( )]Var Z E Z E Z    where: 

 *2 2 2 2 2( ) 1 ( ) ( ) 1 ( ) ( )E Z A A m B m m A k B k k                            .  

Proofs of the above formulated properties of WSN1, generalisations and technique for 

derivation of moments are given in Appendix A. 
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As the moments can be interpreted in the context of uncertainties (especially variance), it is 

interesting to evaluate their dependence on the characteristics of the monetary policy: decision 

thresholds (k and m), strength of anti-inflationary () and output-stimulative (β) monetary 

policies, and the degree of predictability of X from imperfect knowledge, measured by .  

Variability uncertainty, that is non-predictable from Y, element in X, is given by: 

 ( | )U X E X Y X Y        , 

 

2 2

2

0 (1 ) 0
( , ) ,

0 0
U Y N

 



   
    
    

   . 

In another words, U is the feedback-free uncertainty net of epistemic element. Further on we 

can retrieve the epistemic element of X from Z as:  

( | )V Z E X Y Z Y       . 

Although V does not contain the epistemic element of X, it is contaminated by it through 

feedback, as 

( | ) Y m Y k
V Z E X Y Z Y U Y I Y I   
              , 

where the feedback element is equal to Y m Y k
Y I Y I  
     . Further in the text we refer to 

V, not very precisely, as net uncertainties. Distribution of V is also related to WSN, as  

1
2 2 2

1
WSN , , , ,0

1 1 1

m k
V

 

    

 
 
    

   . 

In order to evaluate the relationship between the parameters of WSN and main quantitative 

characteristics of uncertainty, let us at first consider a fully symmetric case, where the 

thresholds are fixed at, k m   and the anti-and pro-inflationary policy are of identical 

strength ( = β). In this case the skewness of the distribution of uncertainties is zero. Figure 1 

shows variances of uncertainties in cases where the policy reaction is reasonably infrequent 

(is undertaken if forecasted inflation exceed its one standard deviation, that is when 

1k m   , and when it happens every time, that is when 0k m   . The parameters  and 

β representing the monetary policy inflationary effect change from 0 to -0.99, and , 

representing the non-econometric predictability of feedback-free inflation, changes from 0 to 

0.90. 

 

Figure 1: Variance of uncertainties by error, symmetric case 

restrained reaction: 1k m    immediate reaction: 0k m    

 
 



 8 

 

Figure 1 reveals the nonlinear nature of the influence of the parameters of the uncertainties 

distribution on its variance. In both cases variance reaches minimum when the predictability 

is about 0.25. The maximum is for the strongest policy and no predictability. For the 

restrained reaction 1k m    the speed of increase in variance of uncertainty with the 

increase of strength of monetary policy is visibly smaller than in the case of immediate 

reaction 0k m   . 

On the first sight, this result is counterintuitive; why should uncertainty regarding inflation 

increase in case when predictability is high and monetary policy strong? In fact this is a direct 

consequence of our assumption that point forecast of inflation are feedback-free and the 

uncertainties are measured by error, that by past econometric forecast errors. Point forecasts 

are therefore, by implication, less accurate in relation to observed inflation than they are in 

relation to forecast-free inflation, as monetary policy actions result in the increase in forecast 

errors. This in turn results in an increased average uncertainty, measured by variance.  

The result above sheds a new light on the Dowd Puzzle, according to which variation of the 

Bank of England inflation uncertainties was too large (see Dowd, 2007). The published Bank 

of England forecasts claim to be feedback-free and are made under the assumption of the 

monetary policy being unchanged. Although the Bank of England uncertainties are by 

assumption rather than by error, it is likely that they reflect, to an extent, variation of the past 

forecast errors. If this is the case and (a) accuracy of fine-tuning, that is non-econometric 

adjustments to the forecast is good, that is,  is high, and (b) monetary policy is reasonably 

efficient, that is  and β are markedly negative, there is no surprise that the Bank of England 

uncertainties are high and, at the same time, inflation is close to its target. 

Figure 2 shows the case of an extreme asymmetric policy where only anti-inflationary policy 

is undertaken (or is effective) and 1m  , β = 0. In this case, evidently, the distribution of the 

uncertainties becomes skewed.  

Figure 2: Variance and skewness of uncertainties by error, asymmetric case, 1m  , β = 0 

Variance Skewness 

  
 

As for the symmetric case, Figure 2 shows that dispersion of the uncertainties falls with the 

increase of the policy and, separately, predictability. For skewness there is also a nonlinearity. 

The general pattern is similar to that of dispersion; increase in negative skewness with the 

increase in non-econometric predictability and strength of the monetary policy (please note 

the change of axis, here, for a better view). With the increase in monetary policy strength, 

skewness remains negligible until the non-econometric predictability reaches 0.45. After this 

point, it raises sharply. We might conjecture therefore that the smallest degree of skewness in 

the distribution of the uncertainties is for the moderately effective fine tuning forecast.  
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4. FOUR SIMULATED FAN CHARTS 

Formula (1) suggests a convenient way of generating random numbers from

1WSN ( , , , , )m k    distribution. A straightforward algorithm is: 

Step 1: generate a pair of random numbers (x, y) from a bivariate normal distribution with 

zero means, unitary variance and covariance equal to . 

Step 2: (a) if y ≤ m and y ≥ k: return z = x , 

(b) if y > m: return z x y   , 

(c) if y < k: return z x y   . 

Simple simulation illustrates the differences between the econometric and feedback-free 

uncertainties by constructing fan charts. Suppose that inflation is a pseudo-martingale process, 

that is the best ‘econometric’ (based on the history of inflation) predictor of inflation in time t 

+ 1 is inflation observed in time t. The process of generating inflation data is: 

1. Feedback-free uncertainties and imperfect knowledge:  

1
( , ) 0,

1
xt yt N


 



  
  

  
   , t = -H+1,…,H   , 

where H (H>0) denotes the maximum forecast horizon. 

2. Uncertainties by error: 

, for 0

, for 0

yt ytxt yt m yt k

zt

xt

I I t

t

     




       
 


   , 

where 

1, if

0, otherwiseyt

yt

m

m
I





 


   ,    
1, if

0, otherwiseyt

yt

k

k
I





 


 . 

3. Net uncertainties: 

vt zt yt       . 

4. Inflation: 

1t t zt       ,  t = -H+1,…, H  .         (4) 

We have simulated fan charts with two types of uncertainties: uncertainties by error, that is 

directly from (4), and with net uncertainties, that is from: 

1t t vt   

     ,  t = -H+1,…, H  .    

In order to highlight the difference (in our set-up) in the roles of non-positive t’s (t = -

H+1,…,0) which correspond to ‘observed’ time periods and positive t’s (t = 1,…,H) which 

correspond to forecasts periods (up to the period H) we will use notation h for time moments 

between 1 and H. In all simulations H = 12, that is, forecasts are made for 1,2,..,12 steps 

ahead. Let’s also note that we normalise the series such that 0 0 0    . 

We simulate 25,000 of ‘realisations’ of inflation 
( )i

h  and 
( )i

h


,   i = 1, 2,…, 25000, h=1, 2, ..., 

12. Figure 3 presents fan-charts for uncertainties by error and net uncertainties for a 

moderately asymmetric case, where the asymmetry is induced by the different strengths of the 
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anti-inflationary and output-stimulating policies the former being stronger. The parameters of 

the WSN distribution are: 0.75   , 1.00    1.00m k   , 0.25  . The coefficient of 

correlation is set at the level corresponding to the minimum variance of the uncertainties by 

error, as shown in Figure 2. The dotted lines represent respectively 0.14, 0.29, 0.43, 0.57, 0.71 

and 0.86 quantile of the simulated distribution. Solid line which goes from the beginning to 

the end of the scale represents a single simulated series of tz  which mimics realized inflation. 

The horizontal line at the level of zero represents the ‘martingale’ prediction, that is the 

expected level of inflation in case of full symmetricity and when no information regarding 

expected inflation can be retrieved from its distribution. The fan charts are centred around 

mean, with median marked alongside. Table 1 gives the basic descriptive characteristics: 

means, medians, skewness coefficients excess kurtosis and the p-values for the Jarque-Bera 

normality statistics. 

Figure 3: Simulated fan charts, different policy strengths,      

Fan chart based on uncertainties by error 

1t t zt     

Fan chart based on net uncertainties 

1t t vt   

   

  
H H 

Table 1: Basic descriptive characteristics of uncertainties,     

h 
 

uncertainties by error net uncertainties 

mean med st.dev skew Ex.krt J-Bpv mean med st.dev Skew Ex.krt J-Bpv 

1 0.05 0.02 1.13 0.12 0.10 0.00 0.05 0.02 1.25 0.16 0.25 0.00 

2 0.11 0.10 1.60 0.07 0.01 0.00 0.11 0.08 1.77 0.11 0.06 0.00 

3 0.17 0.14 1.96 0.06 -0.03 0.00 0.17 0.14 2.17 0.08 0.02 0.00 

4 0.22 0.20 2.26 0.04 -0.01 0.05 0.23 0.21 2.50 0.06 0.04 0.00 

5 0.29 0.27 2.52 0.03 -0.01 0.08 0.29 0.25 2.78 0.06 0.03 0.00 

6 0.35 0.32 2.77 0.04 0.00 0.03 0.35 0.31 3.06 0.06 0.04 0.00 

7 0.40 0.36 2.99 0.05 0.00 0.00 0.40 0.36 3.31 0.08 0.04 0.00 

8 0.46 0.44 3.20 0.04 -0.03 0.02 0.46 0.42 3.53 0.07 0.00 0.00 

9 0.52 0.51 3.39 0.04 -0.01 0.04 0.53 0.49 3.75 0.06 0.02 0.00 

10 0.59 0.59 3.59 0.04 0.02 0.02 0.60 0.55 3.97 0.06 0.05 0.00 

11 0.66 0.66 3.77 0.04 0.03 0.05 0.67 0.63 4.17 0.05 0.05 0.00 

12 0.72 0.70 3.92 0.04 0.01 0.07 0.72 0.68 4.34 0.05 0.04 0.00 

 

Results given in Table 1 illustrate the difference between two types of the uncertainties. The 

uncertainties by error are usually marginally non-normal, with p-values of Jarque-Bera 

statistics being on the verge of significance. The net uncertainties are clearly non-normal, with 

all Jarque-Bera statistics being virtually zeros. As this is the case for martingale-type 
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processes, variance of the simulated series increases. However, variance of the net 

uncertainties is bigger than the variance of uncertainties by error. 

Figure 4 and Table 2 show analogous results for another asymmetric case, where the strengths 

of the anti-inflationary and output-stimulating policies are identical (  ), but the 

thresholds ( m k  ). We set 1.5    , 1m  , 0.5k   . 

Figure 4: simulated fan charts, different thresholds, m k   

Fan chart based on uncertainties by error 

1t t zt     

Fan chart based on net uncertainties 

1t t vt   

   

  
H H 

Table 2: Basic descriptive characteristics of uncertainties, m k   

For. 
hor 

uncertainties by error net uncertainties 

mean med st.dev skew Ex.krt J-Bpv mean med st.dev skew Ex.krt J-Bpv 

1 0.16 0.19 1.51 -0.15 0.31 0.00 0.17 0.19 1.70 -0.15 0.40 0.00 

2 0.33 0.35 2.15 -0.10 0.08 0.00 0.33 0.36 2.41 -0.09 0.12 0.00 

3 0.50 0.53 2.62 -0.10 0.09 0.00 0.50 0.54 2.95 -0.09 0.13 0.00 

4 0.65 0.69 3.03 -0.10 0.09 0.00 0.66 0.69 3.40 -0.09 0.13 0.00 

5 0.82 0.85 3.38 -0.08 0.06 0.00 0.83 0.87 3.79 -0.08 0.09 0.00 

6 0.99 1.02 3.72 -0.07 0.05 0.00 0.99 1.05 4.17 -0.07 0.07 0.00 

7 1.14 1.17 4.02 -0.04 0.05 0.01 1.14 1.17 4.51 -0.04 0.07 0.00 

8 1.30 1.33 4.28 -0.03 0.01 0.12 1.31 1.32 4.80 -0.03 0.03 0.11 

9 1.47 1.48 4.55 -0.04 0.01 0.05 1.47 1.48 5.10 -0.04 0.02 0.05 

10 1.65 1.66 4.82 -0.04 0.05 0.02 1.65 1.65 5.41 -0.03 0.06 0.01 

11 1.82 1.86 5.07 -0.04 0.06 0.00 1.83 1.86 5.69 -0.04 0.07 0.00 

12 1.98 2.03 5.27 -0.05 0.03 0.01 1.99 2.03 5.92 -0.05 0.03 0.01 

 

In this case means are also close to each other, non-normality, indicated by Jarque-Bera 

statistics, is evident, and standard deviations of the net uncertainties are visibly greater than 

that of the uncertainties by error. This once again illustrates the source of misunderstandings 

in the Dowd Puzzle. As the Bank of England uncertainties are net (or very close to, if the 

assertion that they are feedback free is to be taken seriously), there is no wonder that their 

dispersion is bigger than that given by the measurement of the accuracy of point forecasts. 

5. EMPIRICAL RESULTS: ESTIMATION OF UNCERTAINTIES 

Parameters of distributions of inflationary uncertainties by error have been estimated for 38 

countries: all OECD countries and Brazil, China, India, Indonesia, South Africa and the 
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Russian Federation. We have alternatively used not-deseasonalised monthly data on monthly 

inflation (that is on changes in CPI in relation to previous month, called further in the paper 

monthly inflation), and monthly data on annual inflation (changes in CPI in relation to the 

corresponding month of the previous year, called annual inflation). The data series are of 

various lengths and all ends at February 2013. He longest series starting at January 1949 is for 

Canada (770 observations) and the shortest are for Estonia (182 observations) and China (242 

observations). The raw CPI data can be downloaded from: http://stats.oecd.org/. Clearly in 

most of these countries inflation targeting in its revealed form has never been implemented. 

Some of them (e.g. the EU countries) do not have independent monetary policy since the 

creation of the Euro. Nevertheless, from the type of the best fitted distribution to forecast 

errors of a particular country, and possibly interpretation of the estimated parameters on this 

distribution, one might conclude about the predominant patterns of monetary policy effects on 

inflation. 

At the first step, econometric forecast errors have been computed separately for each series in 

the following way.  

1. Orders of seasonal and non-seasonal integration have been identified using the Taylor 

(2003) test which takes into account the possibility of the presence of unit roots at 

frequencies other than tested. 

2. Initial (starting) period for estimation has been defined as a maximum of the first 80 

observations and the 20% of the series length. 

3. Forecasts have been made recursively, by using the estimated seasonal autoregressive 

moving average model (SARMA) for the initial period and then by updating the 

estimation period by one observation at a time and re-estimating the model. The SARMA 

model of a series yt is defined as: 

 ( ) ( ) ( ) ( )s D s

t tB B y B B u         , 

where ut denotes not autocorrelated, possibly skew normal, residuals, B is the lag 

operator, (1 )B     is the regular difference operator,   is the order of integration of 

the regular part of yt, (1 )D s DB    is the seasonal difference operator for a seasonal 

I(D) process, 1( ) (1 )p

pB B B      is the polynomial of order p in the lag operator 

B and similarly, the seasonal AR operator is defined as 1( ) (1 )s s sP

PB B B     . 

Moving average polynomials,  and , are defined by their orders denoted by q and Q 

respectively. The orders p, P, q and Q have been obtained by the Gómez and Maravall 

(1998) procedure which is based on an automatic lag selection criterion that minimises 

the Bayesian Information Criteria (BIC). The algorithm applied here is equivalent to the 

well-known TRAMO-SEATS and X-11 adjustment methods. Forecasts have been made 

for up to 12 periods ahead. In this paper we present the results for the forecast horizons 

equal to 1 and 4. 

Next, on the basis of the observed and forecasted inflation, forecast errors have been 

computed and regarded further as the realisations of uncertainties by error. For each country 

three parameters of the WSN distribution: , β and  have been estimated. In order to reduce 

the computational burden we have assumed that the thresholds are identical for all countries 

as 1m k    and  = 0.25. 

We have compared fit of WSN with that of another three-parameters skew normal 

distribution, which is popular among fan-chart modellers, namely the two-piece skew normal, 

TPN (see John, 1982 and Kimber, 1985; for its discussion and use in the context of fan-chart 

modelling see e.g. Tay and Wallis, 2000). The popular representation of its pdf is: 

https://securewebmail.le.ac.uk/owa/redir.aspx?C=_bJ3ztklZEK5an5mVbGAp_QcLEApANBINAAskoqFK7u7lprw35xwjYVoh1BAtblNK2WJEdLSDvs.&URL=http%3a%2f%2fstats.oecd.org%2f
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 

 

2 2

1

2 2

2

exp ( ) / 2 if
( )

exp ( ) / 2 if
TPN

A t t
f t

A t t

  

  

   
 

  

   , 

where  
1

1 22 ( ) / 2A   


  . Three parameters to be estimated are 
2

1  , 
2

2  and  .  

Maximum likelihood estimation of parameters of skew normal distributions, albeit formally 

straightforward, as the density functions are known, is usually numerically awkward, with 

possible bias and convergence problems (see e.g. Pewsey, 2000, Monti, 2003). For this reason 

we have decided to apply the minimum distance estimators (MDE’s) rather than maximum 

likelihood. Appropriately defined MDE’s are asymptotically efficient and asymptotically 

equivalent to the maximum likelihood estimators (see Basu et. al 2011). Additional advantage 

is ease of their interpretation, as the measures of fit of the theoretical to the empirical 

distribution, and the possibility of comparison across the model, in order to search for the one 

which gives the best fit.  

The minimum distance criteria can be defined in different ways. In this paper we have 

concentrated on the Cressie and Read (1984) family of power divergence disparities, defined 

as: 

 
1

1

1 ( )
( , ) ( ) 1

( 1) ( )

CRm
n

n n

iCR CR

d i
PD d f d i

f i



 

 





  
   

    
    ,    (5) 

where nd  is the empirical (frequency) distribution of data in m disjoint intervals and f  is the 

corresponding density function, where the density depends on the vector of parameters . For 

1CR   formula (5) gives the Pearson 
2  (PCS) measure, for 1/ 2CR    the Hellinger twice 

squared distance (HD) and for 2CR    the Neyman 
2  measure (NCS). For 0CR   and 

1CR   the continuous limits of the right-hand side expression in (5) are respectively the 

likelihood disparity (LD) and the Kullback-Leibler divergence (KLD) statistics. Cressie and 

Read (1984) advocate setting 3/ 2CR  . Although we have computed the minimum distance 

criteria for all CR’s listed above, for further inference we have decided to concentrate on the 

HD distance estimator. Its properties have been well researched in the context of skew normal 

distributions (see Greco, 2011), and it is known that it is reasonably robust to the presence of 

outliers, which might appear in a large sample of inflation forecast errors, especially for 

longer forecast horizons.  

Due to numerical problems related to computing the theoretical probabilities of intervals we 

made a deviation from the established tradition of computing the f  densities and obtained 

the estimates of the densities by simulation. Random number generators of the distributions 

considered here are straightforward (for WSN see Section 4 above and for TPN see 

Nakatsuma, 2003). We have simulated the densities over a wide parameters space and, by a 

grid search, we have located the minimum. Details of the method, called the simulated 

minimum distance estimator, SMDE, are given in Charemza et. al (2012); similar approach 

have been used by Dominicy and Veredas (2013). The version of SMDE applied here can be 

defined as: 

  , 1
ˆ argmin ( , )

RSMDE

n w n r r
d g f 



 




    , 
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where ,rf   is the approximation of the pdf , f , of a random variable obtained by generating  

r = 1,2,…,R replications (drawings) from a distribution with parameters   ( k ), ng  

denotes the density of empirical sample of size n, w  is an aggregation operator based on R 

replications, which deals with the problem of the ‘noisy’ criterion function (median, in this 

case), and ( , )d    is the distance measure. 

The Hellinger minimum distance measures obtained for all countries for WSN and TPN are 

given in Appendix B, Table B1. Tables B2 and B3 contain respectively the SMDE 

parameters’ estimates for monthly and annual inflation forecasts errors.  

Figure 5 illustrates the differences between the logarithms of Hellinger distances obtained for 

the estimated WSN and TPN distributions. Explanation of labels is given at the bottom of 

Appendix B. 

Figure 5: WSN and TPN logarithms of Hellinger distances 

monthly inflation 

5.a: fhor= 1 5.b: fhor = 4 

  

annual inflation 
5.c: fhor = 1 5.d: fhor = 4 

  

 

In each panel straight 45 degree line represents the points for which the Hellinger distances 

for the WSN and TPN distribution would be identical. If the dot representing particular a 

country is below this line, TPN distribution has a better fit than WSN distribution and vice 

versa.  

The choice of distribution on the grounds of its fit differs for the monthly and annual 

inflations. For annual inflation, WSN fits better than TPN in 22 cases out of 38 for the one-
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step ahead forecast horizon (58%), and for 27 cases for four-steps ahead forecast horizon 

(71%). For monthly inflation, TPN usually fits better: in 28 cases for one-step ahead forecast 

(74%) and in 27 cases for four-step ahead forecast (71%). Anyway, substantial differences 

between the distance measures for these two distributions are rare.  

Figure 6 depicts the comparison between estimated  and β parameters (multiplied by -1, for 

the clarity of graphs). On Figure 6 deviations from the 45 degree line downwards denotes the 

dominance of anti-inflationary policy and deviations upwards, of the pro-inflationary (output-

stimulative) policy.  

Figure 6: Estimated  and β parameters  

monthly inflation 

6a: fhor= 1 6b: fhor = 4 

  

annual inflation 
6c: fhor = 1 6d: fhor = 4 

  

Results differ markedly for different forecast horizons and for the types of inflation 

forecasted. Not surprisingly, for monthly inflation and short forecast horizon of one month, 

for a number of countries the estimated ’s are very close to zero, with β’s being of a non-

zero value. This is in line with the widespread assertion that anti-inflationary monetary policy 

is impotent in a very short run, while output-stimulating policy might have a quicker, albeit 

short-lived, effect, on inflation uncertainty due to asymmetric information nature of the 

dynamic budget constraint (see Greenwald and Stiglitz, 1990). Generally, the results seem to 

be smoother for the annual inflation, where there are fewer estimates close to the boundary of 

zero. Most interesting are the results for four-steps ahead forecast, which might reveal 

possible footprints of medium-term effects of monetary policy. In panel 6b, in the area of 

stronger anti-inflationary policy, are countries pursuing for a long time the ‘dirty float’ policy 

aiming at stabilizing of domestic currency under prolonged appreciation pressure such as 

China and Russia, Canada, which official monetary policy is anti-inflationary rather than 
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output-stimulating, Brazil, with its periodic drastic anti-inflationary measures and UK, where 

Bank of England seems to be more preoccupied with keeping inflation at bay rather than 

stimulation of output. This is, evidently, just a snapshot and data given at Figure 6 deserves 

more detailed analysis.  

6.  CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH 

It appears that forecast errors of inflation might tell us more than just by how much inflation 

experts err. But, in order to squeeze out more information out of them, the statistical 

distribution which describes these errors has to be identified and estimated. In this respect our 

results are promising, but by no means complete. More has to be done on the evaluation of 

forecast error uncertainties and relaxing assumptions regarding thresholds and imperfect 

knowledge effects on uncertainties. Nevertheless, it is already possible to learn more about the 

different types and nature of inflation uncertainty, and also on the effects of monetary policy 

actions onto it. 

In the light of current results, perspective for further work looks promising. It is possible to 

construct two complementary types of fan charts: one derived directly from the observed 

forecast errors interpreted as monetary policy restricted uncertainties, and the other one, 

derived indirectly (using computed parameters of the weighted skew normal distribution), 

from the net uncertainties which are free of the epistemic element, if only forecasters are not 

trying to second guess the policy makers. Both types of fan charts could be used for different 

practical purposes, and possibly by different users; the former one by central bankers and 

other policy decision makers and the latter one by ‘end users’, who do not have direct 

influence on monetary policy. It might also be worthwhile to compute feedback correction to 

forecasts and to find out to what extent forecasters might not be sincere in their claim that 

they have not tried to second guess possible policy outcomes which might be undertaken on 

the basis of information they provide.  
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Equation Chapter (Next) Section 1 

APPENDIX A 

Properties of weighted skew-normal distribution 

Definition 1. Let  

0 0

0 1
( , ) ,

0 1
X Y N





    
    
    

 with 1  ,        (A.1) 

and  

0 0

(1)

Y m Y kZ X Y I Y I            ,       (A.2) 

where Y mI   is an indicator of  0Y m  and is equal to 1 if 0Y m  and 0 otherwise. Similarly, 

0Y kI   is an indicator of  0Y k . We will call distribution of (1)Z  defined by(A.1)-(A.2) 

standard weighted skew normal and the family of standard weighted skew normal 

distributions will be denoted as 1WSN , and we will write (1)

1WSN ( , , , , )Z m k   . 

The probability density function (pdf) of (1)Z   is given by: 

1WSN
2 2

2 2

1 1
( )

(1 ) (1 )

( )
1 1

B t kAB t mAt t
f t

A A A AA A

m t k t
t

  

    

 
 

 


 

       
        

             

     
       

         

 (A.3)  

where  and  denote respectively the density and cumulative distribution functions of the 

standard normal distribution, and functions A  and B  are : 

21 2A     ,   B       ,     (A.4) 

Definition 1 can be straightforward generalised in the following way: 

Definition 2. Let  

2

2
( , ) ,

X X X Y

Y X Y Y

X Y N
   

   

   
    
    

 with 1  .      (A.5) 

The weighted skew-normal distribution  ,
WSN ( , , , , )X Y m k

 

     is defined as the 

distribution of random variable Z given by  

Y m Y kZ X Y I Y I            ,       (A.6) 

where Y mI   and Y kI   are corresponding indicators.  

When 0X Y    in (A.5), for Z  defined by (A.6) we will omit superscript and write: 

Z WSN ( , , , , )m k     in order to simplify notation. 

NOTE 1. A standard re-parameterisation of (A.5)-(A.6) shows that if 
 ,

WSN ( , , , , )X YZ m k
 

     then it can be represented as: 
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0 0

(1)

y y

Y Y

X X Y m k
Y Y

Z Z I I 

 

     
 

 
     
 
 

 ,     (A.7) 

where  0Y  and (1)Z  are jointly defined by (A.1)-(A.2) and, hence, 

(1)

1WSN , , , ,Y Y Y Y

X X Y Y

m k
Z

   
  
   

  
 
 

. 

PROPOSITION 1. The pdf  
1WSNf   for weighted skew-normal variable 

1WSN ( , , , , )m k    

can be represented as a weighted sum (hence – the name for the distribution) of pdf’s for two 

Azzalini-type skew normal densities with different  ’s and a pdf of conditional variable

 X k Y m  . 

PROOF.  

Let 
1WSN 1 1 2 2 3 3( ) ( ) ( ) ( )f t f t f t f t        , 

where: 

 1
2

1 1
( )

( ) (1 )

B t mAt
f t

m A A A

 

  




   
   

        

   ,  1 ( )m    

2
2

1 1
( )

( ) (1 )

B t kAt
f t

k A A A

 

  




    
   

      

   ,  2 ( )k   

3
2 2

1
( ) ( )

( ) ( ) 1 1

m t k t
f t t

m k

 


 

     
       

           

 , 3 ( ) ( )m k    

Note that  

1)  ( ) ( ) ( ) ( ) 1m k m k        ; 

2) 1if dt





 , 1,2,3i  ; 

3) functions 1f  and 2f  for 0m k   and 2    are pdf’s for Azzalini (1985, 

1986), skew-normal 
1SN( ) and 

2SN( )  with 
2

1 / 1      and 

2

2 / 1     correspondingly; 

4) function 3f  is a pdf of  X k Y m   where  ,X Y  is defined by (A.1). 

Q.E.D. 

PROPOSITION 2. Moment generating function for 
1WSN ( , , , , )m k    is given by : 

 
2 2 2

1

2 2 2
WSN ( ) ( ) ( ) ( ) ( )

u u u
A A

R u e B u m e k B u e m u k u
 

               ,  (A.8) 
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where   denotes cumulative distribution functions of the standard normal distribution, and 

A  and B  are given by (A.4). 

The PROOF consists of applying standard tools for integrating: 

 

   

1

1

2 2

2

2

2(1 )

2

( )

1

2 1

u Z

WSN

x xy yk m
u x y u x yux

k m

R u E e

dx e e e e dy



  

 



   
    

 



 
    

  
   

 

Q.E.D. 

PROPOSITION 3. 

Let 
1WSNR  be a moment generating function (MGF) given by(A.8), then 

1WSN' (0) ( ) ( )R m k       ; 

 
1

2 2 2 2

WSN'' (0) 1 ( ) ( ) 1 ( ) ( )R A A m B m m A k B k k                          ; 

    
    

1

(3) 2 2 2 2

WSN

2 2 2 2

(0) ( ) 3 1 3 1

( ) 3 1 3 1

R m B A B m m

k B A B k k

  

  

  

  

            
   

           
   

; 

        

      
1

(4) 2 2 2 4 4 2 2

WSN

2 2 4 4 2 2

3 ( ) 1 ( ) 3 6

3 ( ) 1 ( ) 3 6

R A m A m m m B A B

k A k k k B A B

    

   

  

  

               

             

. 

PROOF. 

Let 

2

2
, , ( ) ( )

au

a b cg u e bu c           (A.9) 

Taylor expanding: 

2
2 2 4

2 1 ...
2 8

au
au a u

e          (A.10) 

and 
2 3 2 4 2

2 3 4( 1) (3 )
( ) ( ) ( ) ( ) ( ) ( ) ...

2 3! 4!

b c b c b c c
bu c c b c u c u c u c u   

 
           

           (A.11) 

Substituting (A.10) and (A.11) to (A.9) yields: 

, ,

2 2 4 2 3 2 4 2
2 3 4

2 2 2 2 3

2 2 4 2

( )

( 1) (3 )
1 ... ( ) ( ) ( ) ( ) ( ) ...

2 8 2 3! 4!

1 1
( ) ( ) ( ) ( ) 3 ( 1) ( )

2 3!

1
3 ( ) 6 ( ) (3

4!

a b cg u

au a u b c b c b c c
c b c u c u c u c u

c b c u a c b c c u a b c b c u

a c ab c c b c c

   

  





    
                 
   

                  

     4) ( ) ...c u    

Therefore: 

'

, , (0) ( )a b cg b c          (A.12) 
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'' 2

, , (0) ( ) ( )a b cg a c b c c     (A.13) 

(3) 2 2

, , (0) 3 ( 1) ( )a b cg a b c b c      (A.14) 

(4) 2 2 4 2

, , (0) 3 ( ) 6 ( ) (3 ) ( )a b cg a c ab c c b c c c       (A.15) 

Bearing in mind that  

1WSN , ,( ) ,( ), 1,( ), 1,( ),( ) ( ) ( ) ( ) ( )A B m A B k m kR u g u g u g u g u
             .  (A.16) 

Taking derivative of the both sides of (A.16) and substituting (A.12)-(A.15) complete the 

proof. 

Q.E.D. 

COLORRARY. Calculation of moments for 1WSN  is based on the basic property of MGF, 

that is  
1

( )

WSN (0)j jR E Z  (
1WSN ( , , , , ),Z m k j    ), Proposition 3 and the usual 

formulae for central moments give: 

     
22

0 0 0Var Z E Z E Z     ; 

 
 

 

33 2

0 0 0 0

0 3/2

0

( ) 3 ( ) ( ) 2 ( )

( )

E Z E Z E Z E Z
Sk Z

Var Z

    
 ; 

   

 

2 44 3 2

0 0 0 0 0 0

0 2

0

( ) 4 ( ) ( ) 6 ( ) ( ) 3 ( )
( ) 3

( )

E Z E Z E Z E Z E Z E Z
ExKu Z

Var Z

      
  . 

PROPOSITION 4. Moment generating function WSNR  for  ,
WSN ( , , , , )X YZ m k

 

     

defined by (A.5)-(A.6) can be is given by  

   

 

2 2

2

2 2

WSN

2

( ) ( ) ( )

( ) ( )

X X

Y Y

X X

Y Y

X X

X

u u
A A

Y Y
X X

Y Y

u

Y Y
X X

Y Y

m k
R u e B u e B u

m k
e u u

 
 
 

 

 
 
 



 
 

 

 
   

 

 
      

  
      

 

, 

The PROOF consists of applying standard tools for integrating and (A.8) to 

 

 

2 2

2

WSN

2

2(1 )

2

( )

1

2 1

Y Y

Y YY Y
X X Y X X Y

X XX X

Y Y

Y Y

u Z

k m

x xy y
u x y u x y

u x

k m

R u E e

dx e e e e dy

 
          
   

 

 

 



 
                          

             

  

 

 
 

    
  

 

   

Q.E.D. 
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Appendix B: Estimates of the distributions of forecasts errors 

 

Table B1- Hellinger distances for SARMA forecasts errors 

 

Monthly inflation Annual inflation 

WSN TPN WSN TPN 

fhor=1 fhor =4 fhor =1 fhor =4 fhor =1 fhor =4 fhor =1 fhor =4 

AUT 319.3 306.3 312 301.1 282.8 79.91 279.7 99.1 

BEL 145.9 162.9 226 199.6 108 313.8 117.8 16.36 

BRA 42.26 12.67 38.29 37.56 502 271.3 502 378.4 

CAN 193.8 135 164.9 124.9 175.9 25.33 267.3 103.7 

CHL 134.8 47.48 51.77 43.55 31.09 24.9 142.6 98.38 

CHN 4.057 27.35 2.476 3.453 10.78 6.802 8.538 1.69 

CZE 22.53 50.82 15.79 43.34 63.45 3.355 46.25 11.85 

DNK 71.38 71.01 69.68 92.2 424.2 98.47 339.5 170.1 

EST 3.929 9.235 2.718 6.12 9.501 8.334 7.817 9.662 

FIN 174.8 186.9 125.6 260.2 262.9 30.48 322.9 130.3 

FRA 65.15 38.43 58.67 37.27 134.4 64.13 64.09 35.91 

GER 336.4 398.8 282 308.6 198.6 9.921 196.9 129.1 

GRC 141.2 120.1 218.9 226.7 80.96 47.92 244.9 103.9 

HUN 60.85 60.52 95.86 99.31 72.34 32.48 183.8 126.2 

ICE 95.09 368 88.05 304 64.99 20.92 161.8 33.71 

IND 56.76 375.7 121.8 30.9 22.26 77.16 45 75.89 

IDS 125.7 89.77 187.9 150.2 133.2 463.7 386.4 272.6 

IRE 9.104 12.43 4.837 8.414 4.209 14.43 3.494 9.573 

ISR 438.8 35.97 79.21 51.53 563.4 552.8 417.9 57.81 

ITA 431.8 182.9 678.5 94.26 383.5 160.8 380.5 322.1 

JAP 110 59.31 160.2 114.7 125.1 41.43 143.5 105.2 

KOR 110.9 360.1 63.73 249.8 32.19 40.51 98.92 92.52 

LUX 325.1 337.2 358.6 292.8 304.9 42.69 265.9 97.58 

MEX 169.1 55.35 173.1 31.61 168.7 64.57 245.9 37.28 

NTL 370.9 313.1 354.9 306.9 300.8 141.8 297.6 135.2 

NOR 397.5 386.1 352.1 339.4 422.5 52.18 374.4 132.2 

POL 23.71 20.76 19.09 44.34 5.185 8.841 13.66 10.72 

PRT 17.19 12.56 72.83 39.88 24.74 227.9 48.59 92.44 

RUS 46.81 32.29 30.52 26.56 3.45 13.03 13.64 8.851 

SVK 82.42 67.05 71.16 50.51 52.22 7.652 27.6 20.9 

SLV 546.1 204 323.8 196.6 548.1 232 294.9 292.7 

SAF 60.93 77.6 55.72 46.74 106.6 22.47 127.4 28.17 

SPA 145.7 30.22 116.1 22.27 47.65 337 86.05 342 

SWD 292.5 382.8 271.2 277.8 368.8 29.27 421.3 73.9 

SWZ 450.7 308.8 360.2 219.6 381.2 37.14 346.8 105.1 

TUR 387 249.3 53.98 79.65 75.2 539.2 148.3 771.4 

UK 188.3 158.4 175.7 151.8 181.3 60.01 271.7 116.2 

US 383.3 401.5 356.1 379.7 313.2 29.23 318.5 90.31 
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Table B2:  Parameters’ estimates, Hellinger measures, monthly inflation 

country fhor    se() se() se(

AUT 1 -3.29100 -0.75630 2.32200 0.21870 0.36770 0.25900 

 
4 -0.80330 -0.82160 3.46600 1.25400 0.43760 0.83410 

BEL 1 -0.06816 -0.72740 0.01002 0.21550 0.73560 0.00007 

 
4 -3.83200 -2.15400 0.01002 0.53100 0.27250 0.00007 

BRA 1 -1.74900 -0.02128 0.24260 0.97730 0.06730 0.27390 

 
4 -3.22300 -0.00355 0.27630 0.32480 0.01123 0.16730 

CAN 1 -5.90500 -1.52200 3.61100 0.45820 0.50000 0.78830 

 
4 -3.33100 -1.04200 3.57500 0.85010 1.01800 0.33340 

CHL 1 -0.00781 -2.01700 0.01024 0.02469 0.45160 0.00075 

 
4 -0.00063 -1.53600 0.01005 0.00201 0.30350 0.00016 

CHN 1 -3.50200 -0.07345 3.52700 0.31060 0.23230 0.01894 

 
4 -2.97700 -1.57700 3.98000 0.30650 0.43250 0.06354 

CZE 1 -3.61300 -3.64700 3.14100 0.04222 0.14900 0.81540 

 
4 -1.22100 -3.18200 3.39700 0.69190 0.56270 0.39360 

DNK 1 -0.03154 -0.60660 0.01002 0.09975 0.40030 0.00006 

 
4 -0.03072 -0.70390 0.01001 0.09713 0.70790 0.00002 

EST 1 -4.95700 -0.14300 3.09800 1.78100 0.45240 0.32830 

 
4 -3.00400 -1.62600 3.97900 0.39100 0.42420 0.06620 

FIN 1 -0.01553 -1.13100 0.01001 0.04912 0.54000 0.00003 

 
4 -0.06448 -0.44790 0.01002 0.19340 0.09635 0.00006 

FRA 1 -0.93090 -2.33100 2.84400 1.61000 0.54020 0.88530 

 
4 -1.41600 -1.82400 3.74800 2.35300 1.97300 0.21260 

GER 1 -0.11000 -1.67100 3.55800 0.15810 1.23500 0.11580 

 
4 -0.16300 -0.64970 3.70800 0.48900 0.93100 0.87720 

GRC 1 -0.29880 -0.08624 0.01001 0.17630 0.46130 0.00002 

 
4 -0.30760 -0.28130 0.01001 0.20270 0.12400 0.00004 

HUN 1 -0.00887 -1.41400 0.01004 0.02803 0.08158 0.00012 

 
4 -0.01677 -1.42700 0.01024 0.05304 0.04078 0.00076 

ICE 1 -0.00784 -2.91700 0.01050 0.02478 0.11710 0.00158 

 
4 -0.17610 -0.34410 0.07698 0.20200 0.32930 0.79760 

IND 1 -0.00563 -1.48600 0.01047 0.01779 0.14490 0.00149 

 
4 -0.33060 -0.32330 0.07300 0.03362 0.49560 0.81020 

IDS 1 -1.87400 -0.76600 0.01001 0.14560 1.12000 0.00004 

 
4 -0.35570 -2.42700 0.01015 0.39310 1.60500 0.00047 

IRE 1 -3.37600 -0.03222 3.95600 0.04782 0.09665 0.13150 

 
4 -2.60300 -3.58900 3.70900 0.13700 0.21860 0.41480 

ISR 1 -0.06614 -0.48700 0.04443 0.29680 0.52810 0.90050 

 
4 -2.63500 -1.94600 0.01008 0.77620 0.67800 0.00027 

ITA 1 -0.02989 -1.03300 0.01000 0.09452 0.23160 0.00001 

 
4 -1.82800 -0.12980 3.45100 0.28950 0.41040 0.72530 

JAP 1 -0.13670 -0.34300 0.01001 0.06984 0.41090 0.00002 

 
4 -0.04683 -0.33460 0.01002 0.14050 0.28380 0.00006 
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country fhor    se() se() se(

KOR 1 -0.00514 -2.21400 0.01196 0.01624 0.08186 0.00621 

 
4 -0.29150 -0.11300 0.07792 0.16280 0.40160 0.79460 

LUX 1 -0.27750 -0.35050 0.01000 0.35260 0.38860 0.00000 

 
4 -0.42110 -2.66800 2.98300 0.69220 0.34180 0.69270 

MEX 1 -0.00405 -3.17600 0.01242 0.01280 0.58330 0.00766 

 
4 -3.57100 -3.18300 0.01322 0.66790 0.55900 0.01018 

NTL 1 -2.66700 -3.47500 2.37900 0.84440 0.36260 0.93130 

 
4 -1.13800 -0.55770 2.50100 0.44750 1.27200 1.20600 

NOR 1 -0.04477 -2.67400 3.55600 0.14160 0.14410 0.39440 

 
4 -0.36040 -0.31680 3.95800 0.36110 0.95040 0.83170 

POL 1 -3.21900 -3.22400 0.01486 0.44580 0.42960 0.01536 

 
4 -3.59400 -2.09500 0.88250 0.74100 0.20540 0.26910 

PRT 1 -0.00384 -1.95200 0.01004 0.01213 0.60650 0.00014 

 
4 -0.02383 -1.37100 0.01014 0.07534 0.21850 0.00043 

RUS 1 -2.21900 -2.06000 3.97900 0.57090 0.44170 0.06716 

 
4 -3.19100 -1.53500 3.29700 0.02902 0.30110 0.30030 

SVK 1 -3.99100 -0.15170 3.14100 0.02717 0.47970 0.19340 

 
4 -0.92130 -0.62760 3.97200 0.62820 0.03926 0.92240 

SLV 1 -0.02488 -0.39930 0.07361 0.42730 0.25080 0.80820 

 
4 -3.99100 -3.94900 0.01617 0.02636 0.14450 0.01745 

SAF 1 -0.04627 -0.49130 0.01001 0.14630 0.47010 0.00002 

 
4 -2.98500 -3.30800 3.35400 0.17480 1.35500 0.02267 

SPA 1 -2.54600 -2.23200 0.01007 0.96810 0.02470 0.00021 

 
4 -0.01906 -3.99000 0.01286 0.05390 0.02931 0.00809 

SWD 1 -0.02819 -0.76830 0.01002 0.08913 0.60610 0.00005 

 
4 -0.78850 -0.96560 3.74200 0.46960 1.03000 0.19290 

SWZ 1 -0.99560 -0.78080 2.39300 1.12500 0.06057 1.04300 

 
4 -0.10080 -0.52280 3.54300 0.18730 0.64140 0.06814 

TUR 1 -2.72700 -3.58600 0.01449 0.02263 0.80180 0.01420 

 
4 -0.00948 -0.45890 0.05800 0.47600 0.06673 0.85760 

UK 1 -1.06300 -3.33400 3.56300 0.32420 0.58910 0.37330 

 
4 -3.17600 -0.94740 2.38300 0.43030 0.54570 0.43940 

US 1 -0.18170 -3.88400 2.01300 0.06849 0.36740 1.23600 

 
4 -0.81940 -1.25100 2.68200 0.06138 0.92070 0.37420 
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Table B3: Parameters’ estimates, Hellinger measures, annual inflation 

 

country fhor    se() se() se(

AUT 1 -3.20700 -3.07400 3.17600 0.52960 0.90410 0.58750 

 
4 -0.25780 -0.20640 0.01001 0.18670 0.13910 0.00002 

BEL 1 -3.97600 -3.98400 0.01000 0.06821 0.04437 0.00000 

 
4 -1.34700 -2.26900 3.92800 0.29560 0.91920 0.22680 

BRA 1 -3.85100 -2.12200 0.19090 0.46980 1.65100 0.43740 

 
4 -1.66000 -3.38900 1.55100 0.69710 0.59620 0.67960 

CAN 1 -0.52750 -1.31900 0.01001 0.35570 0.62880 0.00004 

 
4 -0.96800 -0.53040 0.01000 0.02522 0.66540 0.00001 

CHL 1 -0.37440 -0.18530 0.01000 0.31670 0.07595 0.00001 

 
4 -3.61500 -3.07900 0.01127 0.20580 0.89000 0.00403 

CHN 1 -3.28600 -3.34200 3.44200 0.23320 0.44920 0.25410 

 
4 -2.42400 -1.40500 0.01108 1.44300 0.11100 0.00341 

CZE 1 -3.70700 -2.33400 3.82200 0.59280 0.71580 0.56340 

 
4 -1.43400 -0.55940 0.01001 0.02023 0.25500 0.00002 

DNK 1 -3.01300 -3.20900 3.78800 1.09600 1.04100 0.16610 

 
4 -0.16790 -2.91900 0.01007 0.48100 0.63060 0.00022 

EST 1 -3.93100 -2.05400 3.36500 0.21720 1.43700 0.51630 

 
4 -2.87200 -1.62400 0.01008 0.53220 0.43000 0.00024 

FIN 1 -0.26570 -0.25830 0.01000 0.31720 0.29500 0.00001 

 
4 -1.07500 -1.06200 0.01000 0.36300 0.32130 0.00001 

FRA 1 -3.33300 -0.00603 0.01004 0.07977 0.01808 0.00013 

 
4 -1.81300 -0.65340 3.62200 0.16850 0.04232 1.19700 

GER 1 -0.19730 -0.31170 0.01002 0.36800 0.02482 0.00006 

 
4 -2.28000 -1.75800 0.01002 0.12680 0.00729 0.00006 

GRC 1 -0.36450 -0.18400 0.01000 0.34660 0.07189 0.00001 

 
4 -1.71800 -2.58200 0.01013 0.13300 0.06914 0.00042 

HUN 1 -0.48750 -0.01581 0.01001 0.48240 0.45600 0.00004 

 
4 -2.69300 -3.71200 0.01398 1.09800 0.10090 0.01258 

ICE 1 -2.17100 -2.36300 0.01001 0.21680 0.62230 0.00002 

 
4 -2.84400 -2.30000 0.01165 0.39180 0.18980 0.00523 

IND 1 -2.33200 -2.37100 0.01147 0.28950 0.59780 0.00464 

 
4 -0.28740 -0.18330 0.06580 0.40270 0.43240 0.83290 

IDS 1 -2.43100 -2.05500 0.01004 0.40790 0.42670 0.00013 

 
4 -0.29820 -0.23990 0.07408 0.06895 0.25260 0.80680 

IRE 1 -2.17200 -2.91800 3.93300 0.72160 0.62610 0.21260 

 
4 -3.92000 -0.75550 0.01004 0.75990 0.36520 0.00012 

ISR 1 -0.40480 -0.27310 0.13420 0.26820 0.65430 0.61660 

 
4 -3.01100 -0.30580 0.44380 0.41470 0.55070 0.64700 

ITA 1 -0.24040 -0.25090 0.01000 0.23890 0.20730 0.00001 

 
4 -2.15500 -2.66900 0.01000 0.26770 0.66830 0.00000 

JAP 1 -0.18690 -0.20580 0.01002 0.08075 0.13730 0.00006 

 
4 -1.25800 -1.35400 0.01002 0.57610 0.73910 0.00005 
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country fhor    se() se() se(

KOR 1 -1.76200 -1.87300 0.01002 0.00757 0.35590 0.00007 

 
4 -3.42600 -2.57600 0.01365 0.20910 0.45400 0.01154 

LUX 1 -0.30510 -0.30920 0.01000 0.04471 0.03254 0.00001 

 
4 -0.25220 -0.26950 0.01002 0.27670 0.32860 0.00005 

MEX 1 -3.97500 -3.88700 0.01000 0.07006 0.31960 0.00000 

 
4 -2.42700 -3.89200 0.01319 1.43100 0.34090 0.01009 

NTL 1 -3.26600 -0.53010 3.15700 0.80230 0.66440 0.36100 

 
4 -0.32330 -0.21020 0.01001 0.00986 0.15050 0.00002 

NOR 1 -0.23260 -0.22620 0.01000 0.26210 0.28140 0.00000 

 
4 -0.95590 -0.13660 0.01008 0.01293 0.57980 0.00027 

POL 1 -1.93100 -2.15300 0.01073 0.03571 0.27500 0.00232 

 
4 -0.40660 -0.39230 0.12520 0.27400 0.22860 0.64510 

PRT 1 -2.63100 -2.63800 0.01115 0.22330 0.24800 0.00364 

 
4 -0.28080 -1.05200 0.30100 0.38190 0.79660 0.08920 

RUS 1 -1.66000 -1.33500 0.01001 0.31760 0.68030 0.00003 

 
4 -1.95200 -1.96400 0.01182 0.40570 0.36770 0.00576 

SVK 1 -1.56300 -3.02500 3.98000 1.63500 1.47200 0.44230 

 
4 -1.97900 -1.75400 0.01000 0.18580 0.02054 0.00002 

SLV 1 -0.38790 -0.12440 0.05135 0.29120 0.11240 0.87860 

 
4 -0.64600 -0.22750 0.22640 0.48690 0.21360 0.32500 

SAF 1 -0.30570 -0.21160 0.01002 0.04292 0.15490 0.00007 

 
4 -1.67400 -1.49700 0.01034 0.27340 0.18160 0.00106 

SPA 1 -0.10670 -0.08300 0.01002 0.32000 0.23100 0.00007 

 
4 -0.30420 -0.24920 0.03749 0.04981 0.28200 0.92250 

SWD 1 -0.27470 -0.24600 0.01000 0.13590 0.22190 0.00001 

 
4 -1.08600 -1.27600 0.01000 0.39750 0.51710 0.00000 

SWZ 1 -0.12930 -1.20100 3.60400 0.60310 0.75600 0.26170 

 
4 -0.46210 -0.27500 0.01000 0.42640 0.34500 0.00001 

TUR 1 -2.79100 -3.27700 0.01295 0.78850 0.76760 0.00933 

 
4 -0.29660 -0.34900 0.28330 0.43210 0.09166 0.14500 

UK 1 -0.23170 -0.16170 0.01000 0.21520 0.00523 0.00001 

 
4 -1.86800 -1.22200 0.01000 0.34010 0.68890 0.00001 

US 1 -3.44500 -2.28300 3.65900 0.23590 0.37090 0.93970 

 
4 -0.23430 -0.29630 0.01003 0.25710 0.55120 0.00010 
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Country symbols 

AUT Austria FRA France JAP Japan SLV Slovenia 

BEL Belgium GER Germany KOR Korea SAF South Africa 

BRA Brazil GRC Greece LUX Luxembourg SPA Spain 

CAN Canada HUN Hungary MEX Mexico SWD Sweden 

CHL Chile ICE Iceland NTL Netherlands SWZ Switzerland 

CHN China IND India NOR Norway TUR Turkey 

CZE Czech Rep IDS Indonesia POL Poland UK United Kingd 

DNK Denmark IRE Ireland PRT Portugal US United States 

EST Estonia ISR Israel RUS Russia  

 FIN Finland ITA Italy SVK Slovak Rep  
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