Affinity for Spontaneous Reaction; General Differential

A given closed system is prepared using \(n_i^0 \) moles of each chemical substance \(i \). At extent of chemical reaction \(\xi \) the ratio \((A/T) \) where \(A \) is the affinity for spontaneous chemical reaction is defined by independent variables, \(T \), \(p \) and \(\xi \).

\[
(A/T) = (A/T) [T, p, \xi] \quad (a)
\]

The general differential of this equation has the following form.[1]

\[
d(A/T) = \left[\frac{\partial (A/T)}{\partial T} \right]_{p, \xi} \cdot dT + \frac{1}{T} \left[\frac{\partial A}{\partial p} \right]_{T, \xi} \cdot dp + \frac{1}{T} \left[\frac{\partial A}{\partial \xi} \right]_{T, p} \cdot d\xi \quad (b)
\]

Footnote

[1] Equation (b) forms the basis of equations describing the dependence of \(A \) on \(T \) at fixed \(p \) and on \(p \) at fixed \(T \).