Topic 3030

Volumes; Solutions; Neutral Solutes

A given solution is prepared using n_i moles of water and n_j moles of solute j at defined temperature and pressure. The solution is at equilibrium where the affinity for spontaneous change is zero and at a minimum in Gibbs energy. [In the following analysis the equilibrium condition is implicit.] The Gibbs energy $G(aq)$ is given by equation (a).

$$G(aq) = n_i \cdot \mu_i(aq) + n_j \cdot \mu_j(aq) \quad (a)$$

Ideal Solutions

We assume initially that the thermodynamic properties of the solution are ideal. Therefore the chemical potential of the solvent (water) is given by equation (b).

$$\mu_i(aq;id;T;p) = \mu_i^*(\ell;T;p^0) - R \cdot T \cdot M_i \cdot m_j + \int_{p^0}^p V_i^*(\ell;T;p) \cdot dp \quad (b)$$

But at fixed temperature, $V_i(aq) = \left(\frac{\partial \mu_i(aq)}{\partial p}\right)_T$. \hspace{1cm} (c)

Hence the partial molar volume of the solvent in the (ideal) solution equals the molar volume of the pure liquid solvent at the same T and p, $V_i^*(\ell)$.

The chemical potential of solute j is related to the molality m_j in an ideal solution using equation (d).

$$\mu_j(aq;id;T;p) = \mu_j^0(aq;T;p^0) + R \cdot T \cdot \ln(m_j/m_j^0) + \int_{p^0}^p V_j^*(aq;T;p) \cdot dp \quad (d)$$

But at fixed temperature $V_j(aq) = \left(\frac{\partial \mu_j(aq)}{\partial p}\right)_T$. \hspace{1cm} (e)

Then $V_j(aq;T;p) = V_j^*(aq;T;p)$. \hspace{1cm} (f)

Hence the volume of the ideal solution is given by equation (g).

$$V(aq;id;T;p) = n_i \cdot V_i^*(\ell;T;p) + n_j \cdot V_j^*(aq;T;p) \quad (g)$$
With reference to equation (g), we know n_j and $n_1 \cdot V_1^*(\ell; T; p)$.

Moreover the density of the solution $\rho(aq)$ can be measured. Hence we obtain $V_j^\infty(aq; T; p)$ [1,2]. This is utopia. The thermodynamic properties of a real solution are not ideal. In practice if the solution is dilute, we might assume that the properties of a given solution are ‘close to ideal’. Hence we would obtain an estimate of $V_j^\infty(aq; T; p)$ but this approach is not satisfactory.

Real Solutions

We take up the story using equations for the chemical potentials of both solvent and solute but recognising that their properties are not ideal. Then for the solvent,

$$\mu_1(aq; T; p) = \mu_1^*(\ell; T; p^0) - \phi \cdot R \cdot T \cdot M_1 \cdot m_j + \int_{p^0}^{p} V_1^*(\ell; T; p) \cdot dp \quad (h)$$

At all T and p, limit $(m_j \to 0)\phi = 1 \quad (i)$

Then $V_1(aq; T; p) = V_1^*(\ell; T; p) - R \cdot T \cdot M_1 \cdot m_j \left(\frac{\partial \phi}{\partial p} \right)_T \quad (j)$

Here limit $(m_j \to 0)\gamma_j = 1 \quad (k)$

In other words we have established a link between the volumetric properties of the solvent in real and ideal solutions.

The chemical potential of solute j is related to the molality m_j in a real solution using equation (l).

$$\mu_j(aq; T; p) = \mu_j^0(aq; T; p^0) + R \cdot T \cdot \ln(m_j \cdot \gamma_j / m^0) + \int_{p^0}^{p} V_j^\infty(aq; T; p) \cdot dp \quad (l)$$

At all T and p, limit $(m_j \to 0)\gamma_j = 1 \quad (m)$

Then, $V_j(aq; T; p) = V_j^\infty(aq; T; p) + R \cdot T \left(\frac{\partial \ln(\gamma_j)}{\partial p} \right)_T \quad (n)$

At all T and p, limit $(m_j \to 0)V_j(aq; T; p) = V_j^\infty(aq; T; p) \quad (o)$
In other words, the partial molar volume \(V_j(aq) \) in the limit of infinite dilution \(V_j^\infty(aq;T;p) \) equals the partial molar volume of solute \(j \) in an ideal solution [1,2].

Footnotes
