Topic 2040

Gibbs - Helmholtz Equation

The Gibbs energy and enthalpy of a closed system are related:

\[G = H - T \cdot S \]

(a)

The two properties \(G \) and \(H \) are also related by the Gibbs - Helmholtz equation through the dependence of \(G \) on temperature at fixed pressure. We envisage a situation in which a closed system at equilibrium having Gibbs energy \(G \) is displaced to a neighbouring equilibrium state by a change in temperature at constant pressure.

We are interested in the partial derivative, \[\left[\frac{\partial (G / T)}{\partial T} \right] _{p,A=0} \]. In general terms we consider the isobaric differential dependence of \((G/T) \) on temperature.

\[\frac{d}{dT} \left(\frac{G}{T} \right) = \frac{1}{T} \cdot \left(\frac{\partial G}{\partial T} \right) _p - \frac{G}{T^2} \]

(b)

\[T^2 \cdot \frac{d}{dT} \left(\frac{G}{T} \right) = T \cdot \left(\frac{\partial G}{\partial T} \right) _p - G \]

(c)

But \(S = - \left(\frac{\partial G}{\partial T} \right) _p \)

(d)

For an equilibrium change, equations (b) and (c) yield equation (e).

\[T^2 \cdot \frac{d}{dT} \left(\frac{G}{T} \right) _p = -(G + T \cdot S) \]

(e)

But \(H = G + T \cdot S \). Then, \(H = -T^2 \cdot \frac{d}{dT} \left(\frac{G}{T} \right) _p \)

(f)

For an equilibrium change,

\[\Delta H(A = 0) = -T^2 \cdot \frac{d}{dT} \left(\frac{\Delta G}{T} \right) _{p,A=0} \]

(g)

or, \(\Delta H(A = 0) = \frac{d}{dT^{-1}} \left(\frac{\Delta G}{T} \right) _{p,A=0} \)

(h)

In a similar manner we obtain the Gibbs-Helmholtz equation for a system perturbed at constant composition [1].

\[\Delta H(\text{fixed } \xi) = \frac{d}{dT^{-1}} \left(\frac{\Delta G}{T} \right) _{p,A=0} \]

(i)
Equation (f) is the starting point for the development of another important equation.

Thus, \[H = -T^2 \cdot \left[-\frac{G}{T^2} + \frac{1}{T} \cdot \frac{dG}{dT} \right] \] \hspace{1cm} (j)

Hence, \[H = G - T \cdot \left[\frac{dG}{dT} \right] \] \hspace{1cm} (k)

Equation (k) is differentiated with respect to temperature at constant pressure and at \(\text{'}A=0\text{'} \).

\[\left(\frac{\partial H}{\partial T} \right)_{p,A=0} = \left(\frac{\partial G}{\partial T} \right)_{p,A=0} - T \cdot \left(\frac{\partial^2 G}{\partial T^2} \right)_{p,A=0} - \left(\frac{\partial G}{\partial T} \right)_{p,A=0} \] \hspace{1cm} (l)

Hence, \[\left(\frac{\partial H}{\partial T} \right)_{p,A=0} = -T \cdot \left(\frac{\partial^2 G}{\partial T^2} \right)_{p,A=0} \] \hspace{1cm} (m)

But \[\left(\frac{\partial^2 G}{\partial T^2} \right)_{p,A=0} = \frac{\partial}{\partial T} \left(\frac{\partial G}{\partial T} \right) = \frac{\partial S}{\partial T} \left(\frac{\partial G}{\partial T} \right)_{p,A=0} \] \hspace{1cm} (n)

Also the equilibrium isobaric heat capacity,

\[C_p(A = 0) = \left(\frac{\partial H}{\partial T} \right)_{p,A=0} \] \hspace{1cm} (o)

Equations (m), (n) and (o) yield equation (p).

\[\left(\frac{\partial S}{\partial T} \right)_{p,A=0} = \frac{C_p(A = 0)}{T} \] \hspace{1cm} (p)

Equation (p) relates the isobaric equilibrium dependence of entropy of a closed system on temperature to the isobaric heat capacity.

Also starting from, \(H = G + T \cdot S \),

then \(\left(\frac{\partial H}{\partial p} \right)_T = \left(\frac{\partial G}{\partial p} \right)_T + T \cdot \left(\frac{\partial S}{\partial p} \right)_T \) \hspace{1cm} (q)

Using a Maxwell Equation, \(\left(\frac{\partial H}{\partial p} \right)_T = V - T \cdot \left(\frac{\partial V}{\partial T} \right)_p \) \hspace{1cm} (r)

Similarly, \(\left(\frac{\partial U}{\partial T} \right)_V = C_v = T \cdot \left(\frac{\partial S}{\partial T} \right)_V \) \hspace{1cm} (s)

And \(\left(\frac{\partial U}{\partial V} \right)_T = -p - T \cdot \left(\frac{\partial V}{\partial T} \right)_p \cdot \left(\frac{\partial p}{\partial V} \right)_T \) \hspace{1cm} (t)

Footnote

[1] There are many thermodynamic equations which are of the Gibbs-Helmholtz type. As a common feature they conform to the following calculus property.

Given \(f = f(x, y) \)
Then
\[\left(\frac{\partial (f / x)}{\partial (1 / x)} \right)_y = -x^2 \cdot \left(\frac{\partial (f / x)}{\partial x} \right)_y = f - x \cdot \left(\frac{\partial f}{\partial x} \right)_y \]

Similarly,
\[\left(\frac{\partial (f / y)}{\partial (1 / y)} \right)_x = -y^2 \cdot \left(\frac{\partial (f / y)}{\partial y} \right)_x = f - y \cdot \left(\frac{\partial f}{\partial y} \right)_x \]

Normally f stands for a thermodynamic potential and x and y for its natural variables. Thus a total of 8 equations of the Gibbs-Helmholtz type holding for closed systems can be constructed from

\[U = U(S, V), F = F(T, V), H = H(S, P) \text{ and } G = G(T, P). \]