Rapid evolution of repetitive DNA: Chromosome evolution and speciation

Pat Heslop-Harrison phh4@le.ac.uk www.molcyt.com pw/user: 'visitor'

Social media: #ICC18 and Pathh1 on Twitter Reports: AoBBlog.com and Storify.com/pathh1

CHROMOSOME RESEARCH The Biology of Chromatin and Chromasame

3N 4N Aegilops ventricosa 4N 5N 45S rDNA 7D 2NdpTa1 7N 7N 3D 7D 6D 5D 6N 6N 6N 2D 5N 2D 6D 5D D 2N 3N Ν 3D Þ Bardsley & HH

Genome evolution

Arachis hypogaea – 2n=4x=40 In situ hybridization of two BACs including repeats Contrasting distribution of their major repeat familie Arachis in situ 6 Slide 2 Meta 7 Arachis in situ 6 Slide 2 Meta 7 ADH167F07 red ADH129F24 green

Darwin 1859 The only figure in "The origin of species"

Chromosome and genome engineering

Cell fusion hybrid of two tetraploid tobacco species

Patel, Badakshi, HH, Davey et al 2011 Annals of Botany in press

Resistance to *Peronospora* inherited in cell fusion hybrid (right) from one parent *Nicotiana* hybrid 4x + 4x cell fusions

Each of 4 chromosome sets has distinctive repetitive DNA when probed with genomic DNA

Patel et al Ann Bot 2011

The Brassica genus is monophyletic, from single common ancestor. What has changed in the DNA sequences?

Genome Specificity of a CACTA Transposon

B. napus (AACC, 2n=4x=38) – hybridized with C-genome CACTA element red B. oleracea (CC, 2n=2x=18) B. rapa (AA, 2n=2x=20)

Alix et al. The CACTA transposon Bot1 played a major role in *Brassica* genome divergence and gene proliferation. Plant Journal

Genome Specificity of a CACTA (En/Spm) Transposon

	500	1000	1500	20'00	2500	30,00	3500	40'00	4500	5000	5500	6000	6500	70'00	7500	8000							
110								ui -	(d)		lin de la com					n ha							
AJ 2	454	79							1														
	500	1000	1500	2000	2500	30'00	3500	4000	45'00	5000	5500	6000	6500	7000	7500								
1.11				- - - - - -		4 4. 4.		N ' 7 7 1''	, Mallaka	PP MP .	10.110	ריייי	ويدولكم ويتر	(Y'''''')	d India de la								
AC	1894	196														_							
	εóo	1000	1500	20'00	2500	30,00	35'00	40'00	45'00	50'00	55'00	60'00	65'00	70'00	7500	_							
					1 10 1			1.		er tel Are	-aller of	A	Log column										
AC :	1894	46)														
	500	1000	1500	20'00	2500	30,00	35'00	4000	45'00	50'00	55'00	60'00	6500										
4 JA						- 1 - 1 - 1			1 <u>Mul</u>		a dharasa		MINI I										
AC 189655																							
1 1 1 1	100	1000	1500	2000	2300	3000	3300	4000	4000		3300		0000	7000	7500	0000	0000	3000	-				
											alls, at					[]]							
AC	894	180																					
	500	1000	1500	20'00	2500	30,00	35'00	40'00	45'00	500	5501	60'00	6500	70'00	7500	80'00	85'00	90'00					
P P P					4		•					I. all and	United and		- 11 1	(University)	A.d. and		<i></i>				
Bot.	1-1			sp	large becifi	inse c of	ertion Bot1	-1	2														
	500\	1000	1500	2000	2500	30,00	3500	4 ¹ 00	4500	5 00	5500	6000	6500	7000	7500	80,00	8500	9000	9500	10000	10500		
	1 Miles								1	1			1.6	r di chi si a			ad population	والمراجعة والمراجع	المتعلي	يدبير كأربوره	1.44	<u> </u>	
Det	1 7												₹ 	arge	inse I	ertio Bot 1	n in '-2 a	com nd <i>E</i>	mor Bot1-	n bet .3	wee	n	
BOL	1-2 500	4000	1500	2000	2500	20/22	2500	4 00	4500	6 00	5500	80/20	V	7000	7500	0000	0500	- Outro-	0000	40000	10200	44.000	11200
	000	1000	1500	2000	2500	3000	3500	4 UU	4500	5 00	5500	ьоци	65UU	/000	/500	8000	8500	יי ז'ייריי <u>)</u>	90 00 -	ייז אייר יין. איז אייר יין	<u>10500</u>	11000	11500
11										45											_		a and a
Bot	1-3							вс 1	010b	п5 р											F	Rearr Decifi	ange c of l

Dotplot comparisons at scale of 10,000s bp Two *Musa* chromosomes are >95% homologous with gaps Faisal Nouroz 2012

4kb Insertion-gap pair: present in Cgenome

Microsatellite

Transposed (moved) sequence

		551-bp B ∉	ARTI TE		
Contrar Alignment		9-bp TSD (TA 6-bp TIR and 66-bp	ATCCTATT) imperfect su	ib-TIR TSD	
Boleracea: rapa:	GTCCCAACCTITTTTCAAGAAGGTACAGTGTCAGGATTTATATGGATATACACATATCCTAT CAACCTTTTTTCAAGAAGGTACAGTACGTGTCAGGATTTATATGGATATACACATATCCTAT 4 6	C642 ΤΑCCAC - ΤΤΟΤΤΤΟΤΙCΑΑΤΑCΤΤΤΤΤΑCΑΑΤΟΤΙΤΤΟΘΑΑΑΘΟΑCΑΤΟΤΙΤΟΤΙΑΤΑ ΟΘΟΟΑΝΤΤΟΤCΑΑΤΑΑΤΑΟCACTITITGAAOTTTATOTCTCAAAATAGCACTAGAAGGAGAA 7465 6543			
RevComp: rapa:	TGATAGAAGAACAICCTTTCCIAAACAITGTAAAAGTATTGAACAAAGGGGGGTGATA CAACCTTTTTTCAAGAAGGTACAGTACGTGTCAGGATTTATTGGATATACACATATCCTATT 4	LTAGGATATGTGTATATCCATATAAATCCTG&CACTGTCCTTCTGAAAAAAGGTTGGGAC SCGCAATTGTCAATAATAGCACTTTTTGAAGTTTATGTCTCAAAATAGCACTAGAAGGAGAA 7465	TGATAGAAGAAACATGTCCTTTCCAAAACATT GAGTGCTACTTTGGGAACAAAAACTTGGTTTG	STAAAAGTATTGAACAAAGAAGGGGGGGAAATAGGATATGTGTATATCCATATA STGCTATCCTAGTCTTTTTCTCTATCCTATTTACCACCCTTCTTTGTTCAATACT 48007	AATCCTGACACTGTACCTTCTTGAAAAAGGTTGGGAC TTTTACAGTTTTTGGAAAGGACATGTTTCTTCTATCAT

Brassica rapa with inserted 542bp sequence not present in *B. oleracea*. 9bp TSD (red letters and arrow and TIR (blue). Flanking primers used in PCR (next slide) as blue arrows on sequence Faisal Nouroz 2011

HP1 1 2 3 4 5 6 7 8 9 10 11 12 13 1 4 15 16 HP1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 HP1 33 34 35 36 37 38 39 40

HP1 1 2 3 4 5 6 7 8 9 10 11 12 13 1 4 15 16 HP1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 HP1 33 34 35 36 37 38 39 40

Schematic representation of insertion in Brassica rapa and other Brassica genomes. Green, red, blue and black boxes showing DNA motifs.

3N 4N Aegilops ventricosa 4N 5N 45S rDNA 7D 2NdpTa1 7N 7N 3D 7D 6D 5D 6N 6N 6N 2D 5N 2D 6D 5D D 2N 3N Ν 3D Þ Bardsley & HH

High copy spp: homogenized, amplification from a limited number of master copies Low copy spp: much variation

Triticum aestivum 2n=6x=42

Correlation between genetic relationships and similarity of dpTa1 hybridization

D. serido

Chromosomal location of **DBC-150** repeats Micro- or dot chromosomes

D. koepferae

D. seriema

CHROMOSOME ESE The Biology of Chromatin and Chrom

Kuhn (Belo Horizonte, Brazil) et al. Chromosome Research

Interspersion of pBuM and DBC-150

D. gouveai

D. antoneita

High interspersion

D. seriema

Low interspersion

Non-homologous repeats

1.688 tandem repeats in Drosophila melanogaster

Large arrays n heterochromatin of chromosomes 2, 3 and X Short arrays are found in the euchromatin

Kuhn et al. 2011 in press Mol Biol Evol

Homogenization of arrays: differential for hetero- and eu-chromatin

Proportion of 1.688 arrays in three genomic landscape classes euchromatic arrays are close to, genes or within introns Array size could be selectively constrained by a role as gene Regulators

Network reduction

Circadian Clock regulation after Leloup & Goldbeter cf Andrew Millar in Arabidopsis

Kim, HH, Cho et al. 2011 Science Signaling

rapid evolution in copy number, location and sequence, with diverse turnover mechanisms

often mark the major differences between closely related species

it is hard to analyse by next generation or whole-genome sequencing methods

Many of the repetitive sequences are retrotransposons and DNA transposons Some are microsatellite motifs Some are satellites – including the most rapidly evolving sequences

Th. intermedium Anti^{*} **5meC**

Th. intermedium DNA Anti 5meC

Niaz Ali, Trude Schwarzacher – Poster 59

Rep 3 N02Y5075 N02Y5106 Tomahawk KS03HW N02Y5003 Pronghorn 12-1 Wsm-1: only highly effective source of resistance to WSMV

Greybosch et al. 2009

50 years of plant breeding progress

Rapid evolution of repetitive DNA: Chromosome evolution and speciation

Pat Heslop-Harrison phh4@le.ac.uk www.molcyt.com pw/user: 'visitor'

Social media: #ICC18 and Pathh1 on Twitter Reports: AoBBlog.com and Storify.com/pathh1

CHROMOSOME RESEARCH

(오) Springer

Nothing in biology makes sense except in the light of evolution

Theodosius Dobzhansky 1973

