The Banana

Are we going bananas, or where are bananas going? The domestication and future of our most-loved fruit

Pat Heslop-Harrison www.biobanana.com

Zingiberales Order Bed, National Botanic Garden of Wales, 2006

What is a banana? Monocotyledon - giant herb not a tree!

What are bananas? What is in banana DNA? What is the future for banana? What is the future for diet and farmers?

Guinness Book of Records 2007

sapientum) is the most

ansumed fruit in the world It is the 4th most important stiple

ford werd wele

and the fifth

agricultury Droduct of

Qical Shop

office and

lecon Th

Brits cat

140 million

DEMENAR

e very

 "The banana is the most consumed fruit in the world. It is the 4th most important staple food worldwide and the fifth most important agricultural product after cereals, sugar, coffee and cocoa. The Brits eat 140 million bananas every week!"

Uganda

400 kg/person/year annual consumption

Matoke of steamed bananas then mashed

Banana Evolution

 Center of origin: Southeast Asia

 Grown throughout the humid tropics: Asia, Americas, Africa

Cultivated banana

- Origin from two species:
- Musa acuminata (the A genome) and Musa balbisiana (B genome)

Banana Plantains Musa

1-7 year plantation Vegetatively propagated (exclusively)

85% used as local staple

20-30kg fruit bunch >100Mt /yr

2n=3x=33

Banana Evolution

 Cultivars: sterile, parthenocarpic clones

• Very unusual for a fruit to be produced without a seed

 Only in last decade for oranges & grapefruit (coming now for lemons and limes)

- Subsistence agriculture
- Smallholder farms
- Cash crop
- Commercial
- Year-round production
- Eaten by all ages of people

banan

Highland banana AAA

Diversity

Cooking banana ABB

Michael Pilay IITA

Musa acuminata 'Calcutta 4' AA genomes, 2n=2x=22 One genome and 11 chromosomes from mother Other genome and 11 chromosomes from father

The banana genome - DNA and Chromosomes

- Haploid genome size:
- 500 to 600 Mbp DNA (Rice: 440 Mbp; Human: 3200 Mbp; Wheat: 17000 Mbp)

Variety Cavendish

- 15% of banana production worldwide
- The vast majority of export banana to temperate countries
- Controllable ripening but very sensitive to conditions
- First collected in China in 1826 (Telfair), Sold to Duke of Devonshire, Chatsworth
- Distributed worldwide from 1836
- Became dominant variety in 1960s
- Has various variants: Williams, Dwarf C, Giant C, Grand Naine, Robusta, Poyo ...

L to R: Red - AAA Palayam codan AAB (two bunch yellow, one green) Peyan ABB (green cooking banana), Njalipoovan AB (yellow) Robusta AAA (green ripe) Nendran AAB Poovan AAB (one yellow bunch) Red AAA

Peyan

Varkala, Kerala, India

Measuring diversity

musa genomics

Where does diversity come from?

The DNA

- Single nucleotide changes
 - Cellulose synthase
- Deletions/insertions in genes
- Duplications
 - Modifies expression
 - Important as gives something for evolution to work on
- Regulatory elements

What is a genome? In bananas and plantains, about 500 million base pairs of DNA

ta clone MuG9, genomic, 73268bp Cell2ASR aaatccaatcaatccagatcaatattgatcgg gacgaagcagtcaaactgatcactaaaattca gagtgctgatttcagaaacttaatcccttctg caacttacactaattagtcttaaaactcatta ataaatgtcatattacccttccaggtcataaa atgctgaagctattggcattacacttagtct1 tttaacgatatgacaatcaataatgagatagg aaatgacatttttttgaactctgcagaattac

Cellulose Synthase Single Nucleotide Polymorphism SNP

IRAP diversity in Musa

Teo, Tan, Ho, Faridah, Othman, HH, Kalendar, Schulman 2005 *J Plant Biol* Nair, Teo, Schwarzacher, HH 2006 Euphytica Desai, Maha..., HH et al. in prep.

Yellow AA; Green ABB; Blue BB; Pink AAB; Orange AAA16 51

AICRP(TF) Gollection.conservation and Evaluation of Banana Germplasm

No. OF ACCESSIONS - 256. No. OF PLANTS/ACCESSION - 5. SPACING - 2×2.5m. DATE OF PLANTING - 23.10.2006.

GERMPLASM

The Genepool

• Why do we need it?

Plant breeding Keeping up with changes

- Biotic stress
 - New disease races are continuously appearing and spreading
 - Fungi, viruses, bacteria
 - Insects, nematodes, weeds ...
- Abiotic stresses
 - Drought/flooding/salt, cold ...
- Socio-economic changes
 - More people to feed on less land
 - Urbanization of population

4.4 Future – Pollution and land use

Daily Telegraph 23 May 2006

No 1 banana could face extinction By Roger Highfield, Science Editor

The most popular type of banana, the Cavendish, is under threat from disease. In the 1950s, Britons ate a different banana, the Gros Michel but it was wiped out by Panama disease.

- Now the Cavendish could follow suit as a new strain of the fungus to which it was supposed to be immune has begun to attack the plants. So far, the new, more aggressive variant of Panama disease - TR4 - has not reached the main exporting countries in Latin America or Africa but it is spreading widely through Cavendish plantations in Asia - Indonesia, Taiwan, southern provinces of China and Malaysia.
- In the humid conditions of traditional banana plantations in Central America, the black Sigatoka fungus which attacks leaves, also thrives and the plants must be protected by weekly sprays of fungicides. Although the Cavendish could disappear, experts are confident that a bunch of alternative bananas could fill the void. The caveat is that the taste and texture will be changed forever and there is likely to be a rise in price.

RECOGNITION AND RESPONSE IN THE PLANT IMMUNE SYSTEM Zachary et al.; Annu. Rev. Genet. 2003. 37:579-609 LRR repeat NBS domain \bigcirc Kinase domain **TIR domain** 田 _

Coiled Coil domain

0.000

Cf-2,-4,-5,-9

Xa21

1912102-

Pto

Z WRKY domain

RPS2, RPM1, RPS5,RPP8, HRT, Dm3, Mi, Mla, Rp1, Bs2, Xa1, Rx, Gpa2 PRF

N L, M RPP5 RPP1 RPP2 RPS4 Bs4

RRS1 RPW8

LRGFLWFVVVLNPLVRVLANMEGDALHNLKTNLNDPNNVLQSWDPTLVNPCTWFHVTCNNDNSVIRVDLGNAQL LKLWGLLAVVLAVAVAVKGNSEGDALYALRRSLSDPGNVLQSWDPNLVNPCTWFHVTCNGDNQVTRVDLGNSKL

LRRs in Musa compared to reference Rice

Table 9 Response of some banana cultivars to *Fusarium oxysporum* f. sp. *cubense* (FOC)

MT1 MT2 AW KW	
---------------	--

1000 bp 800 bp

600 bp

Cultivoro	Conomo	Disease Reaction		
Cultivars	Genome	FOC Race 1	FOC Race 4	
Pisang Mas	AA	Т	S	
Pisang <u>Lemak Manis</u>	AA	Т	Т	
Pisang Jari Buaya	AA	R	R	
Pisang Berangan	AAA	S	VS	
Pisang <u>Embun</u>	AAA	VS	VS	
Pisang <u>Udang</u>	AAA	S	S	
Grand Naine	AAA	R	S	
GCTCV215-1	AAA	R	Τ(?)	
Pisang <u>Serendah</u>	AAA	R	Т	
Pisang <u>Rastali</u>	AAB	VS	VS	
Mutiara (selected P. <u>Rastali</u>)	AAB	Т	Т	
Pisang <u>Seribu</u>	AAB	S	S	
Pisang Raja	AAB	S	S	
Pisang <u>Relong</u>	AAB	S	S	
Pisang <u>Nangka</u>	AAB	S	S	
Pisang Awak	ABB	Т	S	
Pisang <u>Tanduk</u>	ABB	S	S	
Pisang Abu <mark>Keling</mark>	ABB	Т	Т	
Pisang Abu <u>Nipah</u>	ABBB	S	S	
Gold Finger	AAAB	R	Т	

R, resistant; T, tolerant; S, susceptible; VS, very susceptible.

Primers : MLRR1-F and MLRR2-R

MT1 and MT2 - Mutiara tolerance to FOC AW - Pisang Awak KW - Klutuk Wulung

Azhar Mohamad & HH 2007

Banana Streak ParaRetrovirus (BSV)

- Double stranded DNA is infective
- Insect vector
- Unexpected epidemiology
 - Appearance after cold or tissue culture

- Glyn Harper, Roger Hull, IITA,
- Ben Lockhart, Andrew Geering
- Trude Schwarzacher & HH Leicester

Nuclear Copies of BSV in Banana

Drought Responsive Genes

 Differential display of genes being expressed from droughted and watered Musa lines

Drought Responsive Genes

P7/T3 D1 C2D2L L

Differential Display

14 DD-PCR reactions using different arbitrary and Oligo dT primer combinations, a total of 22 differentially expressed bands (MDRG)

Preliminary data; Dhairyasheel Desai, HH et al. in prep 2007

Strategy for the Global Musa Genomics Consortium

Report of a meeting held in Arlington, USA 17-20 July 2001 The Global Musa Genomics Consortium

The Global Musa Genomics Consortium

 To assure the sustainability of banana as a staple food crop by developing an integrated genetic and genomic understanding, allowing targeted breeding, transformation and more efficient use of Musa biodiversity

Super-domestication: The future of banana crops

- Biotic stresses
- Abiotic stresses
- Socioeconomic factors

 ... all mean current cultivars do not meet future needs

Super-domestication: The future of banana crops

- The genepool has the diversity there which can meet these challenges
- Breeders need to get better and faster
- Banana, has extra challenges
 - Staple food
 - Major income source in many communities
 - Sterile plant

How farmers make money

Stop farming

- Sell something else
- Sell the same for more money
- Sell more quantity
- Reduce costs

What have farmers done?

- Over the 100 years 1906-2006,
- 1.5% reduction in production costs per year
- similar across cereals, fruits, milk, meat, coal, iron
- With increased quality and security, supporting a longer-lived (3 months/year later that they were born in UK), larger population
- Remarkable total of 10-fold reduction in costs

What have farmers done?

 Increased quality and security, supporting a longer-lived, larger population

Life Expectancy at Birth

Women — Men

A Century of Change: Trends in UK statistics since 1900 UK House of Commons

How farmers make money

- (stop farming)
- Sell something else
- Sell the same for more money
- Sell more quantity for the same amount
- Reduce costs

Are there many candidates?

- 250,000 plants
- 4,629 mammals
- 9,200 birds
- 10,000,000 insects
- But only 200 plants, 15 mammals, 5 birds and 2 insects are domesticated!

🖾 OPEN BBC News in video and audio

Last Updated: Tuesday, 15 August 2006, 09:06 GMT 10:06 UK

🔤 E-mail this to a friend

🖶 Printable version

Overweight 'top world's hungry'

There are now more overweight people across the world than hungry ones, according to experts.

US professor Barry Popkin said all countries - both rich and poor - had failed to address the obesity boom.

He told the International

The number of people overweight has topped 1bn across the world

Association of Agricultural Economists the number of overweight people had topped 1bn, compared with 800m undernourished.

Speaking at an Australian conference, he said changing diets and people doing less physical exercise was the cause.

Professor Popkin, from the University of North Carolina, said that the change had happened quickly as obesity was rapidly spreading, while hunger was slowly declining among the world's 6.5bn population.

Meat Production

	year (millions)
item	2007
People	6,602
Maize	785
Rice, paddy	652
Wheat	607
Potatoes	322
Sugar beet	248
Cassava	228
Soybeans	216
Oil palm fruit	192
Barley	136
Sweet potatoes	126
Tomatoes	126
Watermelons	93
Bananas	81
Seed cotton	73
Cabbages and other bra	69
Grapes	66
Sorghum	65
Onions, dry	64
Apples	64
Oranges	64
Coconuts	55
Yams	52
Rapeseed	49
Cucumbers and gherkin	45
Groundnuts, with shell	35
Plantains	34
Mangoes, mangosteens	33
Eggplants (aubergines)	32
Millet	32

FAO Statistics 2007

All plant crops with >30M tons annual production

excluding sugar cane and 'other vegetables'

People: WHO

Calories are pretty important -'let them eat micronutrients' is not the message!

	year (millions)		
item	1961	2007	
People	3,090	6,602	
Maize	205	785	
Rice, paddy	216	652	
Wheat	222	607	
Potatoes	271	322	
Sugar beet	161	248	
Cassava	71	228	
Soybeans	27	216	
Oil palm fruit	14	192	
Barley	72	136	
Sweet potatoes	98	126	
Tomatoes	28	126	
Watermelons	18	93	
Bananas	21	81	
Seed cotton	27	73	
Cabbages and other bra	23	69	
Grapes	43	66	
Sorghum	41	65	
Onions, dry	14	64	
Apples	17	64	
Oranges	16	64	
Coconuts	24	55	
Yams	8	52	
Rapeseed	4	49	
Cucumbers and gherkin	10	45	
Groundnuts, with shell	14	35	
Plantain s	13	34	
Mangoes, mangosteens	11	33	
Eggplants (aubergines)	7	32	
Millet	26	32	

	year (millions)			
item	1961	2007	2007/1961	
People	3,090	6,602	2.1	
Maize	205	785	3.8	
Rice, paddy	216	652	3.0	
Wheat	222	607	2.7	
Potatoes	271	322	1.2	
Sugar beet	161	248	1.5	
Cassava	71	228	3.2	
Soybeans	27	216	8.0	
Oil palm fruit	14	192	13.7	
Barley	72	136	1.9	
Sweet potatoes	98	126	1.3	
Tomatoes	28	126	4.5	
Watermelons	18	93	5.2	
Bananas	21	81	3.9	
Seed cotton	27	73	2.7	
Cabbages and other bra	23	69	3.0	
Grapes	43	66	1.5	
Sorghum	41	65	1.6	
Onions, dry	14	64	4.6	
Apples	17	64	3.8	
Oranges	16	64	4.0	
Coconuts	24	55	2.3	
Yams	8	52	6.5	
Rapeseed	4	49	12.3	
Cucumbers and gherkin	10	45	4.5	
Groundnuts, with shell	14	35	2.5	
Plantains	13	34	2.6	
Mangoes, mangosteens	11	33	3.0	
Eggplants (aubergines)	7	32	4.6	
Millet	26	32	1.2	

	year (millions)				
item	1961	2007	2007/1961		
Oil palm fruit	14	192	13.7		
Rapeseed	4	49	12.3		
Soybeans	27	216	8.0		
Yams	8	52	6.5		
Watermelons	18	93	5.2		
Onions, dry	14	64	4.6		
Eggplants (aubergines)	7	32	4.6		
Tomatoes	28	126	4.5		
Cucumbers and gherkin	10	45	4.5		
Oranges	16	64	4.0		
Bananas	21	81	3.9		
Maize	205	785	3.8		
Apples	17	64	3.8		
Cassava	71	228	3.2		
Rice, paddy	216	652	3.0		
Cabbages and other bra	23	69	3.0		
Mangoes, mangosteens	11	33	3.0		
Wheat	222	607	2.7		
Seed cotton	27	73	2.7		
Plantains	13	34	2.6		
Groundnuts, with shell	14	35	2.5		
Coconuts	24	55	2.3		
People	3,090	6,602	2.1		
Barley	72	136	1.9		
Sorghum	41	65	1.6		
Sugar beet	161	248	1.5		
Grapes	43	66	1.5		
Sweet potatoes	98	126	1.3		
Millet	26	32	1.2		
Potatoes	271	322	1.2		

 What are bananas? What is in banana DNA? What is the future for banana? What is the future for diet and farmers?

L to R: Red - AAA Palayam codan AAB (two bunch yellow, one green) Peyan ABB (green cooking banana), Njalipoovan AB (yellow) Robusta AAA (green ripe) Nendran AAB Poovan AAB (one yellow bunch) Red AAA Peyan

Varkala, Kerala, India, 2007

United Nations Millennium Development Goals

- Goal 1 Eradicate extreme poverty and hunger
- Goal 2 Achieve universal primary education
- Goal 3 Promote gender equity and empower women
- Goal 4 Reduce child mortality
- Goal 5 Improve maternal health
- Goal 6- Combat HIV/AIDS, malaria and other diseases
- Goal 7 Ensure environmental sustainability
- Goal 8 Develop a global partnership for development

Convention on Biodiversity ("Rio Convention"): inventory the worlds diversity

The Banana

Pat Heslop-Harrison www.biobanana.com

phh4@le.ac.uk