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Abstract

We describe procedures for Bayesian estimation and testing in both cross sectional and lon-
gitudinal data smooth coefficient models (with and without endogeneity problems). The smooth
coefficient model is a generalization of the partially linear or additive model wherein coefficients
on linear explanatory variables are treated as unknown functions of an observable covariate. In
the approach we describe, points on the regression lines are regarded as unknown parameters and
priors are placed on differences between adjacent points to introduce the potential for smoothing
the curves. The algorithms we describe are quite simple to implement - estimation, testing and
smoothing parameter selection can be carried out analytically in the cross-sectional smooth coef-
ficient model, and estimation in the hierarchical models only involves simulation from standard
distributions.

We apply our methods by fitting several hierarchical models using data from the National Longi-
tudinal Survey of Youth (NLSY). We explore the relationship between ability and log wages and
flexibly model how returns to schooling vary with measured cognitive ability. In a generalization of
this model, we also permit endogeneity of schooling and describe simulation-based methods for in-
ference in the presence of the endogeneity problem. We find returns to schooling are approximately
constant throughout the ability support and that simpler (and often used) parametric specifications
provide an adequate description of these relationships.



1 Introduction

Perhaps the single most important limitation to the use of fully nonparametric regression techniques
in practice is the well known curse of dimensionality problem, wherein the rate of convergence of the
nonparametric estimator slows with the number of variables treated in a nonparametric fashion. In
light of these dimensionality considerations, and given the need to control for many variables in most
empirical studies in economics, many researchers have made use of the partially linear or semilinear
regression model (e.g., Robinson (1988), Yatchew (1998) and DiNardo and Tobias (2001)). This model
mitigates the dimensionality problem by treating one (or a few) key variables nonparametrically while
maintaining parametric assumptions regarding the remaining set of explanatory variables.

An important variant of the partially linear model which has received decidedly less attention in
empirical work is the smooth coefficient model (e.g. Li, Huang, Li and Fu (2002)). In addition
to simply treating one or a few explanatory variables nonparametrically (as a partial linear model
would), the smooth coefficient model lets the marginal effect of a given variable be represented as an
unknown function of an observable covariate. That is, instead of restricting the marginal effect of y

with respect to xj to be constant and equal to a parameter βj , the smooth coefficient model writes
this marginal effect as an unknown function of some explanatory variable, say zj . This specification
nests the traditional linear model as a special case when the marginal effect is found to be constant
over the support of z.

In this paper we continue to motivate the use of the smooth coefficient model in applied work and
introduce and employ Bayesian methods for estimating various models which have a smooth coefficient
form. We begin by showing how Bayesian methods can be used to fit a cross-sectional model as
described in Li et al (2002). We then develop a generalized set of tools for estimating smooth coefficient
models in a hierarchical (longitudinal) context, and finally, in a longitudinal data context with an
endogeneity problem.

The types of models we describe in this paper are of general interest, and the methods we apply to
estimate them are intuitive and can easily be applied by practitioners. In our view, the particular
approaches described in this paper also offer some advantages over existing methods, and we highlight
the following benefits:

1. Estimation of the various models is relatively simple and only requires simulation from standard
distributions. In the cross-sectional model, posterior distributions can be obtained analytically.

2. Testing of the cross-sectional smooth coefficient model against parametric alternatives is straight-
forward, as marginal likelihoods and Bayes factors can also be calculated analytically.

3. The appropriate amount of smoothing of the regression functions is determined by the data via
an empirical Bayes approach. This data-based selection rule helps to mitigate concerns regarding
subjectivity in the choice of smoothing parameters.
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4. If the data-based selection rule is not used, then prior elicitation only requires that the researcher
express beliefs about the degree of “smoothness” of the nonparametric regression function rather
than beliefs regarding the values of the functions themselves.

5. Techniques are described for extending the standard cross-sectional smooth coefficient model to
a panel data model, and a panel model with an endogeneity problem.

6. Finally, our approach provides exact finite sample results based on the given data, and thus avoids
the use of complicated asymptotics (which are potentially inappropriate in modest samples) for
inference.

In addition to the theoretical contributions, we provide an application showing how the estimation
techniques can be used in practice. Specifically, we use the National Longitudinal Survey of Youth
(NLSY) panel to explore the relationship between measured cognitive ability and log wages, and
also to determine how returns to schooling vary with this measure of cognitive ability. While the
issue of nonlinearities in ability has been documented in several previous studies (e.g., Cawley et al
(1999), Heckman and Vytlacil (2001), DiNardo and Tobias (2001) and Tobias (2003)), fewer studies
have investigated how observed ability affects the return to education. Among those that have (e.g.,
Blackburn and Neumark (1993), Heckman and Vytlacil (2001) and Tobias (2003)), individuals have
either been classified into discrete educational groups to facilitate estimation within groups,1 particular
functional forms such as education-ability interactions have been assumed,2 or the panel structure of
the data has not been fully exploited.3 The smooth coefficient model described in this paper can fully
account for the panel structure of the NLSY, imposes virtually no structure on the way returns to
schooling vary with ability, and uses the workhorse Mincerian linear-in-schooling model as the point of
departure. We find that returns to education are essentially constant over the ability support, and also
find that simpler (and widely-used) parametric models perform adequately in capturing key features
of the NLSY data.

The outline of this paper is as follows. In the next section we introduce our class of smooth coefficient
models and briefly describe our posterior simulators for fitting them. In section 3 we describe the
NLSY data used in our empirical example, and section 4 provides generated data experiments and
results from this application. The paper concludes with a summary in section 5, and remaining details
regarding priors and the posterior simulators can be found in the appendix.

1Heckman and Vytlacil (2001) primarily consider three educational groups: high school dropouts, high school gradu-
ates and college graduates.

2Blackburn and Neumark (1995), for example, use ability-education-time interactions in their model. Heckman and
Vytlacil (2001) relax many of these restrictions by using a linear regression spline with knots placed at each ability
quartile.

3Tobias (2003), for example, primarily makes year-by-year comparisons, and categorizes individuals into two groups
- those with 12 or fewer years of schooling, and those with some college education.
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2 The Models

In this section we introduce three related smooth coefficient models and discuss Bayesian estimation and
testing strategies for each model. Though these particular models are introduced with an eye toward
our empirical example, the specifications we consider are quite general and can be used in a variety
of applications. We begin in section 2.1 with a discussion of the cross-sectional smooth coefficient
model. This is generalized in sections 2.2 and 2.3, where we take up the cases of a hierarchical smooth
coefficient model and a hierarchical model with an endogeneity problem, respectively.

2.1 A Cross-Sectional Smooth Coefficient Model

To begin we consider the simplest case of a cross-sectional smooth coefficient model as in Li et al
(2002) of the form

yi = wiθ + f1(Ai) + sif2(Ai) + εi, i = 1, 2, · · ·N (1)

where, in this cross-sectional case, yi is a scalar, wi is a kw vector of exogenous variables treated
parametrically, si is an explanatory variable and f1(·) and f2(·) are unknown functions which depend
on an exogenous variable Ai. We assume εi

iid∼ N(0, σ2
ε).
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This model is termed a “smooth coefficient model” since the function f2 acts as the “coefficient” on
si, and we model this function as depending in a smooth way on an observed covariate A. To provide
a concrete example of the potential usefulness of such a model, let us jump ahead to our empirical
application. In the application of section 4 yi will denote the log hourly wage received by individual i,
Ai will be a continuous measure of cognitive ability, si will denote years of schooling completed, and
wi will denote a remaining set of characteristics affecting wages. Thus, the smooth coefficient model
will enable us to investigate if there are possible nonlinearities in the ability-log wage relationships
through f1 (e.g., Cawley et al (1998), Heckman and Vytlacil (2001), DiNardo and Tobias (2001)) and
additionally will enable us to flexibly estimate how returns to schooling vary with ability through the
function f2.

In this paper we develop a semiparametric framework similar to that described in Koop and Poirier
(2003a,b) to model f1 (Ai) and f2 (Ai). Intuitively, we treat each point on the nonparametric regression
lines as an unknown parameter. Specifically, let γji = fj (Ai) for j = 1, 2 denote the N points on each
nonparametric regression line and stack them into matrices as γj = (γj1, .., γjN )′ , j = 1, 2. Letting
µi = wiθ + f1(Ai) + sif2(Ai) denote the value of the conditional mean function in (1), we can write

µ = Wθ + INγ1 + Sγ2 ≡ V λ, (2)
4Note that this assumption can be easily relaxed by replacing it with the assumption that ε follows a finite mixture of

Normals (e.g., McLachlan and Peel (2000)). To fix ideas on the estimation of f1 and f2 we do not describe in detail how
this mixture of Normals extension could be done. Essentially, the algorithm we describe would be used within a given
mixture component, and individuals can be ascribed to the various components of the mixture in a data augmentation
step (e.g. Tanner and Wong (1987)).
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where µ = (µ1, .., µN )′and W is an N × kw matrix constructed from wi in an analogous fashion.
Furthermore, IN is the N ×N identity matrix, S is a diagonal matrix with ith diagonal element given
by si, V = (W : I : S) and λ = (θ′, γ′

1, γ
′
2)

′.

Without imposing any additional structure to our model, we are plagued by the problem of insufficient
observations in that we have more than twice as many parameters as observations. The complications
caused by the high dimensionality of the resulting parameter space, however, can be resolved through
the use of prior information about the degrees of smoothness of the nonparametric regression lines.
The remainder of this section describes how we approach specifying this smoothing prior.

Without loss of generality, we assume the data are ordered so that A1 < A2 < · · · < AN . Define the
(N − 2) × N second-differencing matrix as:5

D =

⎡⎢⎢⎢⎢⎣
1 −2 1 . . . . 0
0 1 −2 1 0 . . 0
. . . . . . . .
. . . . . . . .
0 0 . . . 1 −2 1

⎤⎥⎥⎥⎥⎦ , (3)

so that Dγj is the vector of second differences of points on the jth nonparametric regression line,
denoted ∆2γji. For future reference, partition D as follows: D = [D∗ : D∗∗], where D∗ is (N − 2) × 2
and define the 2 × 1 vector of initial conditions in f1 and f2 as γ0

j for j = 1, 2. Let γ∗
j be γj with

these first two elements deleted. Rearranging the columns of V conformably into the matrix V ∗ and
defining λ∗ =

(
θ′, γ0′

1 , γ0′
2 , γ∗′

1 , γ∗′
2

)′ we can write (2) as

µ = V ∗λ∗. (4)

Prior information about the degrees of smoothness in the nonparametric regression lines can be ex-
pressed in terms of Rλ∗, where the 2 (N − 2) × (kw + 2N) matrix R is given as

R =
[

0 D∗ 0 D∗∗ 0
0 0 D∗ 0 D∗∗

]
. (5)

For future reference, partition R as R = [R1 : R2] where R1 is an 2 (N − 2)× (kw + 4) matrix and R2

is 2 (N − 2) × 2 (N − 2).

It will prove to be useful to transform (4) to work directly with the parameter vector of second
differences. Using standard transformations (see, e.g. Poirier (1995) pages 503-504), (4) can be
written as:

µ = X(1)β1 + X(2)β2 ≡ Xβ, (6)

where β = (β′
1, β

′
2)

′, β1 =
(
θ′, γ0′

1 , γ0′
2

)′, β2 =
[
(Dγ1)

′ , (Dγ2)
′]′, X(1) = V (1) − V (2)R−1

2 R1 and X(2) =
V (2)R−1

2 . In the previous expressions we have used the partition V ∗ =
[
V (1) : V (2)

]
where V (1) is

N × (kw + 4). Note that β2 is the vector of second differences of the points on the nonparametric
regression lines and it is on this parameter vector that we place our smoothness prior.

5Note that other degrees of differencing can be handled by re-defining (3) as appropriate (see, e.g., Yatchew (1998)
pages 695-698 or Koop and Poirier (2003a)).
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To complete our Bayesian analysis of the cross-sectional smooth coefficient model, we specify a natural
conjugate prior. Using the standard notation (e.g. Poirier (1995, p. 526)) for the Normal-Gamma
(NG) prior, we write

β, σ−2
ε ∼ NG(β, V β , s−2, ν). (7)

Note that this prior implies β|σ−2
ε ∼ N

(
β, σ2

εV β

)
and marginally, σ−2

ε has a Gamma distribution with
mean s−2 and variance 2/[νs4] .

Of course, any values for the prior hyperparameters ν, s−2, β and V β can be chosen, yet it is of
interest to consider the use of suitably “diffuse” priors so that data information is predominant. In
our empirical work we use a noninformative prior for the error variance (i.e. ν = 0 and, with this
choice, s−2 is irrelevant) and add prior information on β to control the degree of smoothness of the
nonparametric regression lines. To this end we set β = 0kw+2N so that the second differences of the
regression functions (and coefficients on w) are centered over a prior mean of zero. Below we focus on
the selection of the prior covariance matrix V β which will govern the smoothness of the nonparametric
regression curves.

We describe a particular strategy for selecting V β that requires a minimal amount of subjective prior
information. In particular, we assume

V β = V β(η1, η2) =

⎡⎣ V 1 0 0
0 V (η1) 0
0 0 V (η2)

⎤⎦ , (8)

where V 1 is the prior covariance matrix for the parameters on the linear variables w and the initial
conditions of our regression curves (i.e., the prior covariance matrix for β1). Setting V −1

1 = 0 yields the
noninformative choice. The (N −2)× (N −2) matrices V (ηj) are the prior covariance matrices placed
over the second differences of fj . Each of these depends on a scalar parameter ηj which will act as a
smoothing parameter, similar in spirit to a bandwidth parameter in classical kernel-based methods.

Several sensible forms for V (ηj) can be chosen, as discussed in Koop and Poirier (2003a). In this
section we set V (ηj) = ηjIN−2. This prior centers the second differences of the functions f1 and f2

around a mean of zero, and the scalar parameters η1 and η2 control the tightness around this mean
and thereby the degree of smoothness of these functions. Our prior information about the smoothness
of these curves is of the form: ∆2γji ∼ N

(
0, σ2

εηj

)
for i = 3, .., N , j = 1, 2.6 Intuitively, as η1 and

η2 → ∞, the prior becomes “diffuse,” and with no additional structure placed on the model the
resulting estimates will be undersmoothed. Conversely, as η1 and η2 → 0, prior information will
dominate, and will restrict the second differences to be identically zero (potentially oversmoothing).

6This approach to prior elicitation does not include any information in Ai other than order information (i.e. data is
ordered so that A1 < ... < AN ). If desired, the researcher could account for non-uniform spacing of the data by eliciting
a prior of the form ∆2γij ∼ N

�
0, ηj∆

2Ai

�
.
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2.1.1 Estimation and Testing in the Cross-Sectional Smooth Coefficient Model

The approach of treating values of the functions f1(Ai) and f2(Ai) as parameters to be estimated
proves to be quite convenient, since the resulting model fits into the framework of a linear regression
model with a natural conjugate prior. As such, we can borrow from existing results for the analysis
of such a model to address issues of estimation and testing in the cross-sectional smooth coefficient
model.

Using standard Bayesian results for the Normal linear regression model with natural conjugate prior
(e.g. Poirier (1995, p. 527)), it follows that the posterior for β and σ−2

ε is

β, σ−2
ε |Data ∼ NG(β, V β, s−2, ν)

where
β = V β

(
V −1

β β + X ′y
)

, (9)

V β =
(
V −1

β + X ′X
)−1

, (10)

ν = ν + N (11)

and
νs2 = νs2 +

(
y − Xβ

)′ (
y − Xβ

)
+

(
β − β

)′
V −1

β

(
β − β

)
. (12)

The properties of the Normal-Gamma distribution also imply that it is trivial to transform back from
the parameterization in (4) to the original parameterization given in (2).

Provided V −1
β is non-singular, it can be verified that this is a proper posterior despite the fact that the

number of explanatory variables exceeds the number of observations. In fact, we can go even further
than this and show that a proper posterior exists even if V −1

1 = 0, provided W ′W is nonsingular.
Using properties of the Normal Gamma distribution, it also follows that the marginal posterior for β

is multivariate-t (see, e.g., Poirier (1995), page 128) and thus analytical results for the Normal linear
regression model with a natural conjugate prior can be used to carry out estimation and inference in
the smooth coefficient model.

When testing the semiparametric smooth coefficient model against parametric alternatives or select-
ing values of the smoothing parameters, we calculate log marginal likelihoods for the models under
consideration. Marginal likelihoods are widely used in Bayesian testing and their use arises from the
observation that for any two competing models M1 and M2:

p(M1|y)
p(M2|y)

=
(

p(y|M1)
p(y|M2)

)
p(M1)
p(M2)

. (13)

The left-hand side of (13) gives the posterior odds of Model 1 in favor of Model 2, and the ratio
p(M1)/p(M2) is the prior odds ratio, typically taken to be unity. The expression in parentheses
following the equality in (13) is the Bayes factor or the ratio of marginal likelihoods, with p(y|Mi)
denoting the marginal likelihood for Model i. Thus, under equal prior odds, posterior odds ratios can
be obtained by exponentiating the difference between the log marginal likelihoods.
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The marginal likelihood associated with the linear regression model takes the form (Poirier (1995, p.
543)):

p (y) = c

(∣∣V β

∣∣∣∣V β

∣∣
) 1

2 (
νs2

)− ν
2 , (14)

where

c ≡ Γ
(

ν
2

) (
νs2

) ν
2

Γ
(ν

2

)
π

N
2

. (15)

Note that, formally, the marginal likelihood is not defined if we use a noninformative prior for the
error variance (i.e. when ν = 0) since the integrating constant is zero. However, insofar as we are
using Bayes factors comparing models with the same noninformative prior for the error variance, the
integrating constant cancels out and is irrelevant. Alternatively, setting ν = 0 and ignoring c can be
justified as being arbitrarily close to what would happen if you set ν = ε for arbitrarily small ε.

There are several useful contexts in which one would be interested in calculating marginal likelihoods
as in (14). First, posterior odds ratios can be used to provide an attractive and objective method for
determining the appropriate degree of smoothing in our model. That is, M1 and M2 could both be
smooth coefficient models, differing only in the values used for η1 and η2. If we calculate marginal
likelihoods (using equation 14) for a variety of (η1, η2) combinations over a two dimensional grid, then
we can find values of the smoothing parameters that are most supported by the data. Techniques such
as this, which select prior hyperparameters which maximize the marginal likelihood, are referred to as
empirical Bayes methods.7

Second, posterior odds ratios can be used to test the semiparametric smooth coefficient model against
various parametric or semiparametric (e.g. the partial linear model) alternatives. As an example, let
M1 denote the smooth coefficient model with optimally chosen values of the smoothing parameters
and let us consider a particular competitor, denoted M2, which imposes the parametric restrictions
f1(A) = λ0 + λ1A and f2(A) = λ2. In the context of our application, M2 would denote the widely-
estimated log wage equation with a linear ability term and a constant return to education.8 To
calculate the marginal likelihood associated with M2, retain the specification µ = Xβ as in (6) where
X and β are now defined as follows:

X = [W ιN A S] and β = [θ′ λ0 λ1 λ2],′

with ιN denoting a N × 1 vector of ones. If we employ a natural conjugate prior, then the marginal
likelihood for M2 will be as in (14) (except with the new definition of X and the prior hyperparameters
used in M2 plugged in).

7As an aside, it is worth noting that the use of empirical Bayesian methods requires a small additional amount of prior
information (relative to simply estimating the smooth coefficient model for a given choice of prior hyperparameters). As
discussed in Koop and Poirier (2003b) use of noninformative priors over all the parameters other than β2 is not possible
since an improper posterior for η1 and η2 results. A proper prior is needed for either the error variance or the initial
conditions. This motivates our choice of a proper (albeit virtually noninformative) prior for the initial conditions in the
empirical section below. Note that we could be improper over these initial conditions as well if we were only interested
in estimating the model for given values for η1 and η2.

8Note that this particular example is without loss of generality - one can impose any parametric restrictions, and
conduct the model comparison in an identical manner.
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Thus, testing the smooth coefficient model against a parametric or semiparametric alternative can also
be done in a straightforward manner. Prediction, the other primary activity of the econometrician,
can also be carried out rather simply using textbook results from the Normal linear regression model
with natural conjugate prior (see, e.g., Poirier (1995), pages 551-558).

2.2 A Longitudinal (Hierarchical) Smooth Coefficient Model

In this section we generalize the cross-sectional model of Section 2.1 and show how such techniques
can be used in a longitudinal or hierarchical data setting. We write

yit = αi + z′itδ + εit, i = 1, 2, · · ·N, t = 1, 2, · · ·Ti, (16)

where yit is the dependent variable (in our application, it is the log of the hourly wage of individual
i at time t), zit is a vector of length kz containing observations on exogenous explanatory variables
which are time varying and εit

iid∼ N
(
0, σ2

ε

)
. The individual effects αi are assumed to be independent

of one another with
αi ∼ N

(
µi, σ

2
α

)
. (17)

From a Bayesian point of view, (17) is a hierarchical prior for αi, although a non-Bayesian may wish
to interpret it as part of the likelihood function.

We assume that the conditional mean µi in (17) is of the same form as (2) and thus write

µi = wiθ + f1(Ai) + sif2(Ai),

which can be re-parameterized as µi = xiβ as in (6) to work directly with second differences of the
regression functions. Thus, we consider a specific hierarchical specification where the cross-sectional
smooth coefficient model of section 2.1 applies to the mean function of the (time-invariant) second
stage of our hierarchy.

The restriction that all of the nonparametric components enter through the second stage of the model
is imposed with an eye toward our application. In this application we will want to treat our time-
invariant measure of cognitive ability nonparametrically and allow for flexible interactions between
ability and a linear schooling term (which is also time-invariant). In terms of estimation, however, this
focus is essentially without loss of generality - similar methods to those described here can be used to
fit this model when some (or all) of the nonparametric components appear at the first (time-varying)
stage of the model.

Finally, to implement a Bayesian analysis we require priors for δ, σ−2
ε , σ−2

α and β. For the first three
of these we make standard choices:

δ ∼ N(δ, V δ), (18)

σ−2
ε ∼ G(s−2

ε , νε), (19)

σ−2
α ∼ G(s−2

α , να). (20)

8



Noninformative priors for these parameters are the limiting cases νε = να = V −1
δ = 0.

As in the cross-sectional case, the prior for β is what governs the smoothing of the model, and we
retain the same prior for this key parameter vector. Thus, we specify:

β|σ2
α ∼ N(β, σ2

αV β), (21)

with prior hyperparameters selected as in Section 2.1 (i.e., the prior largely reflects the degree of
smoothness in the nonparametric regression lines).9

2.2.1 Estimation and Testing in the Hierarchical Smooth Coefficient Model

Unlike the cross-sectional model of section 2.1, posterior distributions cannot be derived analytically in
the hierarchical smooth coefficient model. However, posterior computation can be implemented using
the Gibbs sampler - a widely used simulation-based algorithm which involves iteratively sampling
from the posterior conditionals of the model. To facilitate convergence of the sampler, we employ a
blocking or grouping step where the individual effects α and first-stage regression coefficients δ are
drawn in a single block. We implement this blocking step by first sampling from the δ conditional
marginalized over the individual effects, and then draw independently from the complete conditionals
for the individual effects. Formally, this blocking step is completed by first sampling from

δ|Data, σ2
α, σ2

ε , µi ∼ N(Dδdδ, Dδ), (22)

where
Dδ = (

∑
i

Z ′
iC

−1
i Zi + V −1

δ )−1, dδ =
∑

i

Z ′
iC

−1
i (yi − ιTiµi) + V −1

δ δ.

In the previous equation, ιTi is a vector of ones, yi and Zi are Ti×1 and Ti ×kz matrices, respectively,
containing observations for the ith individual and Ci ≡ ιTiσ

2
αι′Ti

+ σ2
εIT i. To complete the blocking

step we then sample independently from the complete conditionals for the individual effects:

αi|Data, σ2
α, σ2

ε , δ, µi
ind∼ N(Dαidαi , Dαi) i = 1, 2, · · · , N, (23)

where

Dαi ≡ (
Ti

σ2
ε

+
1
σ2

α

)−1, dαi ≡
∑Ti

t=1 (yit − z′itδ)
σ2

ε

+
µi

σ2
α

.

For the remaining parameters of the model (i.e., σ−2
ε , β and σ2

α) we sample from their complete
posterior conditionals. For the first-stage error precision we obtain:

σ−2
ε |Data, α, δ ∼ G

(
s−2
ε , νε

)
(24)

where
νε =

∑
i

Ti + νε,

9Note that in the cross-sectional case, the prior analogous to the one in (7) was natural conjugate, here it is natural
conjugate conditional upon α = (α1, .., αN ).
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s2
ε =

∑
i(yi − αi − Ziδ)′(yi − αi − Ziδ) + νεs

2
ε

νε
,

and α = (α1, .., αN )′.

The posterior conditional for β is given by:

β|Data, α, σ2
α ∼ N(β, σ2

αDβ), (25)

where
β = Dβdβ , Dβ =

[
X ′X + V −1

β

]−1
, dβ = X ′α + V −1

β β.

Finally, we sample the second-stage error precision σ−2
α from

σ−2
α |Data, α ∼ G

(
s−2
α , να

)
(26)

where
να = N + να

and

s2
α =

(
α − Xβ

)′ (
α − Xβ

)
+

(
β − β

)′
V −1

β

(
β − β

)
+ ναs2

α

να
.

Thus, posterior analysis can be carried out using a Gibbs sampler which sequentially draws from (22),
(23), (24), (25) and (26), and all of these densities are of standard forms.

Model comparison (e.g., testing the smooth coefficient model against a parametric alternative) or
empirical Bayesian selection of η1 and η2 can be done using the same strategy involving marginal
likelihoods as in Section 2.1. Unlike the cross-sectional smooth coefficient model of the previous
section, however, marginal likelihoods for the hierarchical smooth coefficient model are not available
in closed form, which poses a set of computational challenges. In particular, to use empirical Bayesian
methods to estimate η1 and η2, the Gibbs sampler must be run for every (η1, η2) combination over
a two-dimensional grid. This need for computational simplicity motivates our use of approximate
methods for the necessary marginal likelihood calculation.

To this end, we use the Laplace-Metropolis estimator for the marginal likelihood (see, e.g., Raftery
(1996), page 171). In particular, if we first integrate the individual effects α out of the likelihood
function we obtain:

p
(
y|δ, σ2

ε , β, σ2
a

) ∝
N∏

i=1

|Ci|−
1
2 exp

[
−1

2
(yi − ιTiµi − Ziδ)

′ C−1
i (yi − ιTiµi − Ziδ)

]
, (27)

where µi = xiβ. Then a highly accurate approximation to the marginal likelihood is given by:

p (y) ≈ (2π)
1
2
(2N+kw+kz+2) |Ψ| 12 p

(
y|δ̂, σ̂2

ε , µ̂, σ̂2
a

)
p

(
δ̂, σ̂2

ε , µ̂, σ̂2
a

)
, (28)

where ·̂ denotes the posterior mode and Ψ is the posterior covariance matrix of
(
δ, σ2

ε , β, σ2
a

)
.10 Raftery

(1996) remarks that the Laplace-Metropolis approximation is often much more accurate than other
methods if the number of replications in the posterior simulator is relatively small.

10In practice, the simulated draws can be used to estimate the posterior mode and posterior covariance matrix.
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2.3 A Longitudinal Smooth Coefficient Model with an Endogeneity Problem

Most of the model presented here is the same as the one described in the previous section, but
additionally considers the issue where an explanatory variable at the second stage of the hierarchy is
endogenous. To this end, we expand the model of section 2.2 to include a reduced form equation for
the variable si

11

yit = αi + zitδ + εit (29)

αi = wiθ + f1(Ai) + sif2(Ai) + ui (30)

si = riπ + vi. (31)

In (31), ri is a kr vector of exogenous variables, possibly including wi and Ai, but also including one
or more instruments which are not present in (30). We consider a particular form of endogeneity
problem wherein ui and vi are potentially correlated. In terms of our application, the parameter αi is
interpreted as an “individual” effect describing if a person earns log hourly wages that are higher or
lower than expected, given the observable characteristics z. We can explain some of this variation in
individual effects through time-invariant observables wi (like parental education, etc.), ability Ai and
schooling si. However, individual-level characteristics like “motivation” or “drive” also presumably
affect one’s wages, and are captured in the error term ui. It is also reasonable to assume that this
unobserved motivation or drive is a factor that influences si, the quantity of schooling attained. As such
it is seemingly reasonable to embrace the potential for correlation between ui and vi in an empirical
analysis.

To intuitively describe how failure to account for this endogeneity problem may bias our results, first
note that αi is identifiable from the first stage of the hierarchy, and when Ti is reasonably large, the
marginal posterior for αi will tend to be dominated by data information from (29). To this end, let
us suppose for the moment that the αi are known. Equations (30) and (31) then constitute a trian-
gular simultaneous equations model. If ui and vi are sufficiently correlated, a cross-sectional smooth
coefficient analysis using only (30) (again treating αi as known) will yield biased and inconsistent
estimates of the parameters of interest. In this case, mean independence is violated as E(ui|si) �= 0.
In short, if we ignore endogeneity, the coefficient (function) on the schooling variable si captures both
the (structural) quantity of schooling return as well as the premium paid for unobserved “motivation”
or “drive.” As such, when failing to account for this potential endogeneity problem, we might expect
to obtain estimates of the return to education that are upward biased.

In the model in (29) - (31) we continue to assume εit
iid∼ N(0, σ2

ε) and now make the additional
assumption [

ui

vi

]
iid∼ N (02, Σ) where Σ ≡

[
σ2

u σuv

σuv σ2
v

]
.

11We consider this particular model specification as we will treat the schooling variable si as endogenous in our
application. Of course, the algorithm described in the appendix can be easily adapted to treat an element of wi as
endogenous, or to treat an element of zit as endogenous.
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To complete this model, we add the following priors:

Σ−1 ∼ W
(
[ρA]−1, ρ

)
(32)

π ∼ N(π, V π) (33)

β ∼ N(β, V β), (34)

where W (·, ·) denotes the Wishart density (e.g., Poirier 136-138), the typical conjugate prior for the
inverse covariance matrix. We retain the same priors for δ, and σ−2

ε , as given in (18) and (19).

2.3.1 Estimation and Testing in the Hierarchical Model with Endogeneity

Since estimation of models like this one, with a simultaneous equations format involving the individual
effects, has not received much attention in the literature, we spend a bit of time to derive the associated
likelihood function and joint posterior distribution. We defer specific details regarding the posterior
simulator to the appendix.

By Bayes Theorem, the joint posterior distribution is proportional to the product of the prior times
the likelihood:

p(α, δ, β, π, σ−2
ε , Σ−1|y, s) ∝ p(y, s|α, δ, β, π, σ2

ε , Σ
−1)p(α, δ, β, π, σ−2

ε , Σ−1), (35)

where the likelihood function is the joint density of y and the endogenous schooling variable s condi-
tioned on the model parameters. As for the prior specification given on the right hand side of (35),
our specifications in (29)-(34) imply:

p(α, δ, β, π, σ−2
ε ,Σ−1) = p(α|β, π,Σ−1)p(δ)p(β)p(π)p(σ−2

ε )p(Σ−1)

=

[
n∏

i=1

p(αi|β, π,Σ−1)

]
p(δ)p(β)p(π)p(σ−2

ε )p(Σ−1),

where the last line follows from the assumed conditional independence across observations. The density
p(αi|β, π,Σ−1) can be obtained by substituting out si from (30) using the reduced form equation in
(31).

As for the likelihood function in (35), first let Γ denote all the parameters in the model and note

p(y, s|Γ) =
N∏

i=1

p(yi1, · · · , yiTi , si|Γ) (36)

=
N∏

i=1

(
Ti∏

t=1

p(yit|αi, δ, σ
−2
ε )

)
p(si|αi, π,Σ−1, β), (37)

where the first line follows by the assumed independence across individuals, and the last equation
follows by noting that the density for yit does not depend on si given αi and that yit is assumed to be
independent over time given αi. When appropriate, we have also dropped irrelevant parameters from
the conditioning.
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Substituting the likelihood and prior into the expression in (35) we obtain the unnormalized joint
posterior

p(Γ|y, s) ∝
[

N∏
i=1

(
Ti∏

t=1

p(yit|αi, δ, σ
2
ε)

)
p(si, αi|π, Σ−1, β)

]
p(δ)p(β)p(π)p(σ2

ε)p(Σ−1). (38)

Despite the fact that this model handles both nonparametric estimation and endogeneity concerns
simultaneously, estimation is relatively-straight forward as all of the complete posterior conditionals
derived from (38) can be easily sampled, as described in detail in the appendix. Finally, testing and
empirical Bayesian selection of smoothing parameters can be conducted using the same procedure
described in Section 2.2 using the Laplace-Metropolis approximation.

3 The Data

The data used in our empirical work are taken from the National Longitudinal Survey of Youth
(NLSY). The NLSY is a panel data set providing a wealth of information on the earnings experience,
educational histories, and family backgrounds of a sample of young men and women in the U.S. The
NLSY panel used in this analysis begins in 1979, conducts annual interviews until 1994, and then
reports information from biannual surveys until 2000.

As discussed throughout this paper, we are primarily interested in flexibly exploring the relationship
between ability and log wages and the manner in which returns to education vary with ability. For-
tunately for this purpose, the NLSY reports scores on the 10 tests comprising the Armed Services
Vocational Aptitude Battery (ASVAB), which is administered to the NLSY participants in 1980 and
serves as a reasonable instrument for cognitive ability. To reduce the dimensionality of these ability
measures and fix our attention on a scalar “ability” variable, we follow Cawley, Conneely, Heckman
and Vytlacil (1997) and purge the 10 test scores of a linear age effect and then use the first principal
component of the resulting ten vectors of (standardized) residuals as our ability measure.12

Our time-varying characteristics consist of quadratics in total weeks of actual labor market experience
(denoted EXP and EXP2) and tenure on the current job (TENURE and TENURE2), an indicator
for residence in an urban area (URBAN) and a time trend (TREND). The actual weeks of labor
market experience variable is constructed by aggregating reported weeks of work between interview
dates. The dependent variable employed in the analysis is the log hourly wage. Our time-invariant
characteristics consist of our ability measure (ABILITY), highest grade completed by the respondent
(EDUC), highest grade completed by the respondent’s mother (MOMED) and father (DADED) and
number of siblings (NUMSIBS).

12Since students varied in age at the time the tests were administered, we regressed each test score on age and then
obtained and standardized the 10 residual vectors from these regressions. The eigenvector corresponding to the largest
eigenvalue of the residual correlation matrix serves as the weighting vector, and the ability measure we use is the product
of this weighting vector times the standardized residual scores. This resulting ability measure is then standardized to
have mean zero and unit variance for interpretation purposes. Finally, the 10 component tests of the ASVAB battery are
general science, arithmetic reasoning, word knowledge, paragraph comprehension, coding speed, numerical operations,
auto and shop information, mathematics knowledge, mechanical comprehension and electronics information.
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In keeping with the majority of this literature, we restrict our attention to the analysis of white males
in the NLSY, and specifically, we focus only on those white males from the cross-sectional samples. We
exclude observations when the hourly wage (in real 2000 dollars) is less than $1 or greater than $50,
when the respondent reports to be currently enrolled in high school or college in the given year and
when the quantity of schooling completed varies over time even after conditioning on those not enrolled
in school. We delete observations when the number of weeks worked since the last interview is less than
the reported increase in tenure with the given employer between interview dates, and when parental
or the individual’s own education is less than 9. We also require that each individual is observed for
at least 5 years throughout the sample period. This sample selection procedure yields a total of 3, 980
observations from 359 individuals. Thus, on average, each individual is observed for approximately
ten years of the panel, and for some individuals, we have as many as eighteen observations.

When dealing with endogeneity concerns, we require an instrument. This instrument must affect the
quantity of schooling attained by the individual, but not be correlated with the person-specific random
effect given the other controls we employ. Our choice in this regard is to use the quantity of schooling
obtained by the respondent’s oldest sibling (SIBED). Our argument for the use of this instrument is
that sibling’s education should be strongly correlated with one’s own education, as it proxies both
familial preferences toward the importance of education, and potentially, resources constraints faced
by the family. However, siblings education itself should play no structural role in the wage equation,
conditioned on one’s own schooling and our other controls for family background. When estimating
the model that controls for endogeneity, we impose further restrictions in our sample. Specifically, we
now consider only those individuals in the NLSY with a sibling, and also require that the oldest sibling
be at least 24 years of age in 197913 so that he/she is likely to have completed his/her schooling. This
sample selection scheme produced a total of 1,203 observations from 98 individuals. Finally, in the
model with endogenous schooling, we include ABILITY, MOMED, DADED, NUMSIBS and SIBED
in the reduced form schooling equation.

4 Empirical Results

In this section we illustrate how our methods can be applied in practice using both generated data
and data from the NLSY. We recognize that the NLSY data is longitudinal in nature and thus use
it to obtain results for the longitudinal smooth coefficient models with and without endogeneity, as
described in sections 2.2 and 2.3. For the cross-sectional smooth coefficient model, we choose to perform
generated data experiments to illustrate estimation, testing and smoothing parameter selection when
the data generating process is known.

13The question is asked to the NLSY respondents in 1979, the base year of the survey.
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4.1 Cross-Sectional Model

We perform two generated data experiments, the first of which generates artificial data from a highly
nonlinear model while the second generates data from a linear model. For the nonlinear data set, we
extend the data generating mechanism used in Yatchew (1998, Figure 3). In particular, for i = 1, .., 200
we generate

yi = 2wi + Ai cos(4πAi) + sin (2πAi) si + εi, (39)

where εi, Ai and wi i.i.d. random variables drawn from a N (0, 1) distribution and si
iid∼ U [0, 10], with

U denoting the uniform distribution.

In addition to carrying out posterior inference on all the parameters in the smooth coefficient model,
we calculate the Bayes factor comparing the smooth coefficient model to a particular parametric model
where all explanatory variables enter linearly:

yi = wiθ + λ0 + λ1Ai + λ2si + εi. (40)

Our general prior elicitation strategy is to use the smoothness prior for the nonparametric regression
lines (with smoothness parameters η1 and η2 chosen using empirical Bayesian methods), to select
proper but relatively noninformative priors for parameters which are present in one model but not
the other, and to choose noninformative (or virtually noninformative) priors for all parameters which
are common to both models. In terms of the NG(β, V β, s−2, ν) natural conjugate prior described in
Section 2.1 we set ν = 0 (and, with this value, s−2 is irrelevant). For θ (which is common to both
models) we use a virtually noninformative prior by setting the appropriate diagonal elements of V 1

to 1020 (see (8)). For the initial conditions (which appear only in the smooth coefficient model), we
set the appropriate diagonal elements of V 1 to 100. For the parametric model, the prior mean of
λ = (λ0, λ1, λ2) is set to zero and the prior covariance matrix to 100σ2

εI3. We use empirical Bayesian
methods to select η1 and η2 which yields η1 = 2 × 10−5 and η2 = 3 × 10−5.

Empirical results from this first generated data experiment are sensible. The log of the Bayes factor
in favor of the smooth coefficient model is 221.79, indicating strong support for the smooth coefficient
model over the linear parametric model (which is far from the data generating process). In Figures
1 and 2 we present posterior means (which can be obtained analytically) of the two nonparametric
regression lines (solid) as well as the true relationships (dashed) that were used to generate the data.
It can be seen that the fitted nonparametric regression lines track the true lines quite well, despite the
fact that our data set is fairly small and we have included a fairly large random error component. To
see the latter, note that Figure 1 also plots the ”Data” defined as yi −wiE (θ|Data)−E (γ2i|Data) si.
Despite a large scattering of these ”data” points, the smooth coefficient model picks up the main
pattern very effectively.

We also generated a second cross-sectional data set that used (40) as the data generating process. To
be precise, this second data set is exactly equal to our first one, except the terms Ai cos(4πAi) and
sin (2πAi) si are deleted. All other modeling details, including the prior, are as described above. For
the sake of brevity, we do not present detailed results from this data set. Suffice it to note here that
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Figure 1: Fitted and True Regression lines for f1(A) = A cos(4πA).

the log of the Bayes factor in favor of the smooth coefficient model over the linear model given in
(40) is −12.91, indicating support for the (true) linear model. It is also worth mentioning that even
in this case the smooth coefficient model does a good job of fitting the data. That is, the empirical
Bayesian methods select very small values for η1 and η2 and the resulting fitted nonparametric lines
are very close to simply being horizontal lines at zero (as they should be). Of course, if one does have
a parsimonious parametric model that is known to fit the data well, then the use of nonparametric
methods may be superfluous. However, it is reassuring to see that our nonparametric methods work
well in both designs, and our flexible methods have the advantage that they are adaptable in applied
situations where the design is unknown.

4.2 Longitudinal Model without Endogeneity

In this section we turn to our application and present empirical results using the NLSY data described
in Section 3 and the model discussed in Section 2.2. The explanatory variables in the first (i.e. the
elements of zit in (16)) and second (i.e. the elements of wi following (17)) stages of the hierarchy
are discussed in Section 3. We are particularly in interested in investigating the following questions:
(1) What is the relationship between expected log wages and our measure of cognitive ability? (2)
Do returns to schooling vary with ability? and (3) Are standard parametric models adequate for
describing the relationships in the NLSY data?14

To investigate the last of these questions we calculate the Bayes factor comparing the smooth coefficient
14Given our focus on the hierarchical smooth coefficient model and its potential applicability, we do not address the

issue of time-varying returns to ability and/or education over this period. See Blackburn and Neumark (1993), Heckman
and Vytlacil (2001) and Taber (2001) for more on this particular issue.
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Figure 2: Fitted and True Regression Lines for Smooth Coefficient Term f2(A) = sin(2πA).

model to a parametric model where all explanatory variables enter linearly. That is, the first and second
stages of the hierarchy for the parametric model are given by (16) and (17) but the mean in the second
stage is now assumed to be linear in A and S:15

µi = wiθ + λ0 + λ1Ai + λ2si. (41)

Our general prior elicitation strategy remains the same as that described in section 4.1. That is, we
use empirical Bayesian methods to elicit the smoothness prior for the nonparametric regression lines,
we select proper but relatively noninformative priors for parameters which are present in one model
but not the other and we choose noninformative (or virtually noninformative) priors for all parameters
which are common to all models. Accordingly, using the notation of (18) - (20) we set δ = 0, V −1

δ = 0,
νε = 0 (and with this value, s−2

ε is irrelevant), s−2
α = 1 and να = .01 for both models. The structure of

β and V β for the parametric and nonparametric models is exactly as in the cross-sectional empirical
illustration (see Section 4.1).

Posterior results are produced using the MCMC algorithm described in (22) through (26).16 A two
dimensional grid search over values for η1 and η2 indicates support for small values of the smoothing
parameters, and specifically, our empirical Bayesian strategy yields η1 = η2 = 10−12 as the optimal
choice. This indicates that the nonparametric regression lines f1 and f2 are very smooth and can
be taken as informal evidence that a linear model is supported by the data. A more formal test in
this regard is provided by the Bayes factor comparing the smooth coefficient model to the parametric
model with the mean of the second stage of the hierarchy given by (41). The log of this Bayes factor
is −948.6, indicating strong evidence in favor of the parametric model. The reason for this is clear.

15An alternative specification would include an interaction between Ai and si. We do not include this specification
since it receives little support from the data. However, it is worth stressing that this and other similar extensions are
trivial to handle in our framework.

16We run all MCMC algorithms for 11, 000 replications and discard the initial 1, 000 as burn-in replications. Our
results pass standard convergence diagnostics.
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The maximum value of the log likelihoods for these two models are the same (to one decimal place),
indicating the two models fit the data roughly equally. However, Bayes factors also have a reward for
parsimony built in, and this strongly favors the more parsimonious parametric model (note that the
smooth coefficient model has almost 2N more coefficients than the parametric model). Larger values
of the smoothing parameters yield a slight increase in the maximum of the likelihood function, but
this is more than counterbalanced by the increasing penalty associated with added parameterization
(i.e. larger values of η1 and η2 imply that the model can fit a wider range of data sets and, thus, is less
parsimonious). This is a general property of our approach and, we feel, a sensible one. Nonparametric
models are non-parsimonious, so receive little support unless the parametric alternative fits the data
very poorly.

For this application we do not find that parametric models fit the data poorly, and specifically, we
find that simpler parametric specifications provide an adequate description of the ability and ability-
schooling relationships in the NLSY data.17 Of course, the power and lure of nonparametric methods
is their ability to adapt to capture the shape of unknown regression functions. The fact that these
functions can be recovered by simpler methods for this application does not invalidate the use of the
smooth coefficient model; we obtain similar empirical results from both approaches, and our ability
to declare the parametric specification as “satisfactory” depends on the availability of more flexible
modeling alternatives.

Table 1: Posterior Results for First and Second Stage Parameters:
Hierarchical Model Without Endogeneity

Smooth Coefficient Model Parametric Model
Variable/ Post. Post. Post. Post.
Parameter Mean St. Dev. Mean St. Dev.

EXP 1.24 × 10−3 1.30 × 10−4 1.26 × 10−3 1.30 × 10−4

EXP2 −4.12 × 10−7 6.72 × 10−8 −4.14 × 10−7 6.81 × 10−8

First TENURE 6.67 × 10−4 8.15 × 10−5 6.70 × 10−4 8.04 × 10−5

Stage TENURE2 −6.82 × 10−7 1.03 × 10−7 −6.87 × 10−7 1.02 × 10−7

URBAN 0.079 0.017 0.077 0.017
TREND −6.68 × 10−3 4.68 × 10−3 −7.52 × 10−3 4.66 × 10−3

σ2
ε 0.090 0.003 0.090 0.003

MOMED −7.17 × 10−3 1.17 × 10−2 −6.11 × 10−3 1.17 × 10−2

DADED 0.021 0.009 0.022 0.009
Second NUMSIBS 0.020 0.010 0.020 0.010
Stage INTERCEPT −− −− 0.904 0.155

ABILITY −− −− 0.041 0.020
EDUC −− −− 0.064 8.73 × 10−3

σ2
α 0.101 0.008 0.103 0.009

17The graph in Figure 3 does suggest some slight nonlinearities in the ability log-wage relationship. We thus added
a quadratic ability term to our fully parametric model and found evidence that the quadratic term was “significant,”
as the quadratic coefficient had a high posterior probability of being positive. This finding of some nonlinearities is
consistent with the results in Cawley, Heckman and Vytlacil (1999) and Tobias (2003). In formal testing, both the linear
and quadratic models are strongly preferred over our smooth coefficient model given the high degree of parameterization
in the smooth coefficient model.
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Figure 3: Fitted Regression Line for Ability Term f1(A) in Hierarchical Model

To show the similarity between smooth coefficient results and those from a linear model, Table 1
presents coefficient posterior means and standard deviations from the smooth coefficient and paramet-
ric models. For all parameters which are common to both models, it can be seen that the posteriors are
virtually identical to one another. In Figure 3 and Figure 4 we present evidence relating to the parame-
ters which are not common to both models and plot estimates of f1(A) and f2(A) from the smooth coef-
ficient model. Figure 3 plots the posterior mean of f1(A) (solid) and E(f1(A)|Data)±2Std(f1(A)|Data)
(dashed), while Figure 4 similarly plots the posterior mean and posterior standard error bands asso-
ciated with f2.

These figures again reveal that the nonparametric and linear models are basically telling the same
story. We see some slight nonlinearities in Figure 3, though Figure 3 is not far different from a linear
model and results obtained from linear specification fall comfortably within the plotted standard
error bands. From Table 1, the parametric model says that an added year of schooling increases
hourly wages by about 6.5 percent with the ±2 Std. interval given by [0.049, 0.081]. By construction,
the parametric model imposes the same returns to schooling on individuals with different level of
ability. Though our flexible smooth coefficient model has the potential of allowing returns to schooling
to vary across individuals of differing ability, it estimates the return to education as being roughly
constant across individuals of varying ability.18 The smooth coefficient model yields a slightly lower
point estimate (roughly six percent), but relative to the size of posterior standard deviations, this
difference is negligible. The posterior standard deviations for returns to schooling in the smooth
coefficient model are also slightly larger than in the parametric model, which is to be expected given our
agnostic stance regarding the specification of the model. Despite these small differences, the parametric
and nonparametric models yield roughly the same posterior inferences for returns to schooling and
measured cognitive ability.

18In a related analysis that did not make use of the nonparametric techniques described here and required time-varying
schooling, Koop and Tobias (2002) found little evidence that measured ability played a significant role in explaining
variation in returns to schooling across individuals.
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Figure 4: Fitted Regression Line for Return to Schooling Term f2(A) in Hierarchical Model.

4.3 Longitudinal Model with Endogeneity

The longitudinal model with endogeneity is given in (29) through (31). Equations (29) and (30) retain
the same specifications that were used in section 4.2 with no endogeneity concerns. Equation (31)
includes an intercept, MOMED, DADED, NUMSIBS, ABILITY and SIBED as explanatory variables,
where sibling’s education (SIBED) is the instrument used to identify the model. As in the previous
section, we carry along a fully parametric specification and compare results from that specification to
those obtained from our smooth coefficient analysis. The first two equations of this parametric model
are the same as were used previously in the model without endogeneity (see (41)). The third equation
(equation 31) is the same in the parametric and smooth coefficient models.

For parameters that are common to both the models in section 4.2 and 4.3, we retain the same prior
specifications that were used in section 4.2. We use a noninformative prior for the coefficients in
reduced form schooling equation (i.e.,. we set V −1

π = 0 and, with this value, π is irrelevant). For the
prior in (32) we use relatively noninformative values19 of ρ = 9 and A = I2.

We again find little support for the flexibility afforded by the smooth coefficient model for this ap-
plication, since empirical Bayesian estimation selects very small values for the smoothing parameters,
η1 = η2 = 10−12. Like the previous section, this result suggests that our semiparametric estimates will
be sufficiently smooth so that simpler parametric models will do an adequate job at reproducing the
shapes of the regression curves. We do not view this preference for the simpler model as problematic in
any way, but instead are pleased with the fact that our smooth coefficient analysis successfully recre-
ates the findings of a well-fitting parametric model without requiring the assumption of a particular

19The value for ρ is the smallest which guarantees that prior means, variances and covariances exist. See Poirier (1995,
page 138) for related discussion.
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parametric form.

Table 2: Posterior Results for First and Second Stage Parameters (δ, σ2
ε)

Smooth Coefficient Model Parametric Model
Variable/ Post. Post. Post. Post.
Parameter Mean St. Dev. Mean St. Dev.

EXP 1.91 × 10−3 2.94 × 10−4 1.84 × 10−3 2.92 × 10−4

EXP2 −1.11 × 10−7 1.71 × 10−7 −1.07 × 10−6 1.74 × 10−7

First TENURE 7.39 × 10−4 1.70 × 10−4 7.64 × 10−4 1.71 × 10−4

Stage TENURE2 −8.67 × 10−7 2.24 × 10−7 −8.68 × 10−7 2.28 × 10−7

URBAN 0.280 0.049 0.274 0.050
TREND 6.71 × 10−3 1.13 × 10−2 6.97 × 10−3 1.14 × 10−3

σ2
ε 0.126 0.014 0.127 0.014

First Equation (Individual effect is dependent variable)
MOMED −0.017 0.029 −0.012 0.029
DADED 0.019 0.025 −4.35 × 10−3 0.024
NUMSIBS −0.028 0.026 −0.025 0.026
INTERCEPT −− −− 1.014 0.439
ABILITY −− −− −9.22 × 10−3 0.045

Second EDUC −− −− 0.062 0.028
Stage Second Equation (Schooling is dependent variable)

INTERCEPT 6.404 0.392 6.458 0.396
MOMED 0.029 0.031 0.048 0.030
DADED 0.337 0.028 0.317 0.025
NUMSIBS −0.075 0.030 −0.056 0.027
ABILITY 0.273 0.049 0.245 0.049
SIBED 0.179 0.021 0.170 0.020
ρuv −0.237 0.398 −0.163 0.489

We present coefficient posterior means and standard deviations from both the parametric and smooth
coefficient models in Table 2. For parameters which are common to both models, Table 2 again
shows that the posteriors are very similar. It is also worth mentioning that the coefficient on our
instrument SIBED is reasonably large in magnitude and clearly “significant” in both the parametric
and smooth coefficient models, suggesting it plays an important role in determining the quantity of
schooling attained. For those quantities which are not common to both specifications (namely the
specification of ability and the ability-education interaction in the individual effect equation (30)) we
plot in Figures 5 and 6 our estimates of f1(A) and f2(A) from the smooth coefficient model.

The general shapes in Figures 5 and 6 differ from those reported in the model without endogeneity in
Figures 3 and 4. Specifically, Figure 6 suggests that returns to schooling are increasing with ability and
very low ability individuals receive virtually no returns to education. The downward slope of Figure
5 also appears to offset the upward slope of Figure 6, so that the overall shape of the relationship
between ability and log wages remains a bit unclear. To get a better sense of how log wages change
with changes in ability, we calculated the function f1(A)+f2(A)Ed for Ed = 12 and Ed = 16.20 These

20We do not present these figures here, though they are available upon request.
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Figure 5: Fitted Regression Line for Ability Term f1(A) in Hierarchical Model with Endogeneity

calculations revealed that log wages are clearly increasing in ability for those with a college education
(Ed = 16), but the ability-log wage relationship for those with just a high school degree was rather
flat with a small downturn at the far right-tail of the ability distribution.

Before we make too much of these differences, it is important to note that the disparity in results
obtained from sections 4.2 and 4.3 can arise from two sources. First, the endogeneity of schooling
could be an empirically important issue, and when formally controlling for endogeneity we simply
obtain different results. Second, the analysis of section 4.3 is based on a different and strictly smaller
data set owing to the necessary reduction in observations due to the use of SIBED as our instrument.
To distinguish between these two stories, we first note that the results of Table 2 do not suggest
strong evidence that endogeneity of schooling is an empirically important issue. The posterior mean
of the correlation coefficient between the errors in the two second stage equations - the source of
the endogeneity problem - is slightly negative, though its posterior standard deviation is huge. This
suggests that with this relatively small sample size21 we are not able to pin down this key correlation
parameter, and thus learn little regarding the empirical importance of endogeneity.

To investigate this issue a bit further, we took this smaller data set and re-estimated the model
in section 4.2 which does not control for endogeneity.22 Results from this analysis were similar to
those reported in this section - returns to schooling were increasing in ability and the ability-log wage
relationship in f1 was essentially flat and then dipped down around A = 0. Since analysis of this
restricted data set produces similar results when controlling for endogeneity or when abstracting from
the endogeneity problem, it seems that differences between Figures 3 and 4 and Figures 5 and 6 arise
from the use of different data sets. Given no clear evidence regarding the empirical importance of the
endogeneity of schooling in this application, we fall back on the the simpler specification in section 4.2

21Recall that we have only 98 individuals to estimate the bivariate relationship in (30) and (31).
22Of course, equation (31) is then omitted from the analysis.
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Figure 6: Fitted Regression Line for Ability Term f2(A) in Hierarchical Model with Endogeneity

which abstracts from the endogeneity problem and provides us with more observations to estimate the
bivariate relationship in (30) and (31). Finally, it is important to recognize that the model described in
this section and section 2.3 is quite operational and can be used in other situations where researchers
want both flexibility in the specification of the conditional mean function and the ability to control
for endogeneity problems.

5 Conclusion

In this paper we have described Bayesian procedures for estimation and testing in cross sectional and
longitudinal data smooth coefficient models. In the cross sectional model, estimation, testing and
smoothing parameter selection can be carried out analytically, thus making analysis of the smooth
coefficient model a simple yet flexible option for practitioners. In the hierarchical smooth coefficient
model and the hierarchical model with endogeneity concerns, estimation only requires iterative simu-
lation from standard distributions.

We illustrated the flexibility and practicality of our methods in generated data experiments and in an
application using data from the National Longitudinal Survey of Youth (NLSY). Using the NLSY we
investigated the issue of nonlinearities in the relationship between log wages and measured cognitive
ability and also flexibly modeled the dependence of returns to education on this ability measure.
Our results suggested that returns to education were roughly constant throughout the ability support
and that simpler (and often used) parametric specifications provide an adequate description of these
relationships.
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5.1 Posterior Simulator: Longitudinal Model with Endogeneity

The model is given as:

yit = αi + zitδ + εit (42)

αi = wiθ + f1(Ai) + sif2(Ai) + ui (43)

si = riπ + vi, (44)

where again, we let
µi = wiθ + f1(Ai) + sif2(Ai) = xiβ,

as described in section 2.1. The likelihood function, joint posterior distribution and priors used are
presented in Section 2.3. As a notational convention, we use Γ to denote all the parameters in the
model and, e.g., Γ−δ to denote all the parameters except for δ.

To fit this model we again employ a blocking step to sample first from the conditional for δ marginalized
over the random effects, and then to sample from the complete conditionals for the random effects.
We obtain:

δ|Data,Γ−α,δ ∼ N(Dδdδ, Dδ), (45)

where

Dδ =

(∑
i

Z ′
iΩ

−1
i Zi + V −1

δ

)−1

,

dδ =
∑

i

Z ′
iΩ

−1
i

(
yi − ιTi

[
µi +

σuv

σ2
v

(si − riπ)
])

+ V −1
δ δ

and
Ωi = σ2

u(1 − ρ2
uv)ιTiι

′
Ti

+ σ2
εITi .

We also obtain the complete conditional for the random effects:

αi|Γ−αi ,Data ind∼ N (DαidαiDαi) , i = 1, 2, · · ·N, (46)

where
Dαi =

[
Ti/σ2

ε + σ−2
u (1 − ρ2

uv)
−1

]−1

and

dαi =

[∑
y

(yit − zitδ)/σ2
ε

]
+ σ−2

u (1 − ρ2
uv)

−1

(
µi +

σuv

σ2
v

(si − riπ)
)

.

In equations (45) and (46), ιx denotes an x × 1 vector of ones, Zi and yi have been stacked over t

within i conformably, ρuv denotes the correlation between u and v, and xi and β are defined as in
section 2.1. These conditionals are derived from (38) after factoring the distribution for (si αi) into
the conditional for αi given si times the marginal for si and applying the result of Lindley and Smith
(1972).

We obtain the following posterior conditional for σ−2
ε :

σ−2
ε |Data, α, δ ∼ G

(
s−2
ε , νε

)
(47)
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where
νε =

∑
i

Ti + νε,

s2
ε =

∑
i(yi − αi − Ziδ)′(yi − αi − Ziδ) + νεs

2
ε

νε
.

As for the complete conditionals for the second-stage regression parameters and inverse covariance
matrix, let us first stack the triangular system in (43) and (44) together and introduce some new
notation. We stack the time-invariant components together as follows:[

α
s

]
=

[
X 0
0 R

] [
β
π

]
+

[
u
v

]
,

or equivalently
α̃ = X̃β̃ + ũ,

where α̃ = [α′ S′]′, β̃ = [β′ π′]′, ũ = [u′ v′]′ and X̃ is defined as the blocked diagonal design matrix
with X and R on the diagonals. We also note that E(ũũ|X̃) = Σ ⊗ In. Given this, it follows that

β̃|Γ−β̃,Data ∼ N
(
Dβ̃dβ̃, Dβ̃

)
, (48)

where
Dβ̃ =

(
X̃ ′(Σ−1 ⊗ IN )X̃ + Ṽ

−1

β̃

)−1
,

dβ̃ = X̃ ′(Σ−1 ⊗ IN )α̃ + Ṽ
−1

β̃ β̃,

Ṽ β̃ =
[

V β 0
0 V π

]
and β̃ =

[
β

π

]
.

Finally, consider the complete posterior conditional for Σ−1 and let

ψi = ψi(αi, β, π) =
[

αi − µi

si − riπ

]
=

[
ui

vi

]
.

Thus, conditioned on β and π, the second stage errors are effectively “known.” Given this, we obtain
the following posterior conditional

Σ−1|Γ−Σ−1 , Data ∼ W

⎡⎣(
N∑

i=1

ψiψ
′
i + ρA

)−1

, ρ + N

⎤⎦ . (49)

Posterior analysis can be performed by sequentially drawing from (45), (46), (47), (48) and (49).
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