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Abstract. The conventional dyadic multiresolution analysis constructs a succession of
frequency intervals in the form of (π/2j , π/2j−1); j = 1, 2, . . . , n of which the bandwidths
are halved repeatedly in the descent from high frequencies to low frequencies. Whereas
this scheme provides an excellent framework for encoding and transmitting signals with
a high degree of data compression, it is less appropriate to statistical data analysis.

This paper describes a non-dyadic mixed-radix wavelet analysis which allows the wave
bands to be defined more flexibly than in the case of a conventional dyadic analysis. The
wavelets that form the basis vectors for the wave bands are derived from the Fourier
transforms of a variety of functions that specify the frequency responses of the filters
corresponding to the sequences of wavelet coefficients.

1. Introduction: Dyadic and Non-Dyadic Wavelet Analysis

The statistical analysis of time series can be pursued either in the time
domain or in the frequency domain, or in both. A time-domain analysis
will reveal the sequence of events within the data, so long as the events
do not coincide. A frequency-domain analysis, which describes the data in
terms of sinusoidal functions, will reveal its component sequences, whenever
they subsist in separate frequency bands. The analyses in both domains
are commonly based on the assumption of stationarity. If the assumption
is not satisfied, then, often, a transformation can be applied to the data to
make them resemble a stationary series. For a stationary series, the results
that are revealed in one domain can be transformed readily into equivalent
results in the other domain.

The revolution in statistical Fourier analysis that occurred in the middle
of the twentieth century established the equivalence of the two domains
under the weak assumption of statistical stationarity. Previously, it had
seemed that frequency-domain analysis was fully applicable only to strictly
periodic functions of a piecewise continuous nature. However, the addi-
tional flexibility of statistical Fourier analysis is not sufficient to cope with
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Figure 1. The partitioning of the time–frequency plane according to a dyadic
multiresolution analysis of a data sequence of T = 128 = 27 points.
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Figure 2. The Daubechies D4 wavelet function calculated via a recursive method.
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Figure 3. The Daubechies D4 scaling function calculated via a recursive method.
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phenomena that are truly evolving through time. A sufficient flexibility to
deal with evolutionary phenomena can be achieved by combining the time
domain and the frequency domain in a so-called wavelet analysis.

The replacement of classical Fourier analysis by wave packet analy-
sis occurred in the realms of quantum mechanics many years ago when
Schrödinger’s time-dependent wave equation became the model for all sorts
of electromagnetic phenomena. (See Dirac 1958, for example.) This was
when the dual wave-particle analogy of light superseded the classical wave
analogy that had displaced the ancient corpuscular theory. It is only re-
cently, at the end of the twentieth century, that formalisms that are similar
to those of quantum mechanics have penetrated statistical time-series anal-
ysis. The result has been the new and rapidly growing field of wavelet
analysis.

The common form of dyadic wavelet analysis entails a partition of the
time-frequency plane of the sort that is depicted in Figure 1, which relates
to the wavelet analysis of a sample of T = 27 = 128 points. The wavelets
are functions of continuous time that reside in a succession of horizontal
frequency bands. Each band contains a succession of wavelets, distributed
over time, of which the centres lie in the cells that partition the band.
Within a given band, the wavelets have a common frequency content and
a common temporal dispersion, but their amplitude, which is their vertical
scale, is free to vary. As we proceed down the frequency scale from one band
to the next, the bandwidth of the frequencies is halved and the temporal
dispersion of the wavelets, which is reflected in the width of the cells, is
doubled.

The wavelet bands are created by a recursive process of subdivision.
In the first round, the frequency range is divided in two. The upper band
[π/2, π] is populated by T/2 wavelets, separated, one from the next, by two
sampling intervals, and the lower band [0, π/2] is populated by the same
number of scaling functions in a similar sequence. Thus, there are as many
functions as there are data points. In the next round, the lower half of the
frequency range is subdivided into an upper band [π/4, π/2] of wavelets
and a lower band [0, π/4] of scaling functions, with both bands containing
T/4 functions, separated by four intervals. The process can be repeated
such that, in the jth round, the jth band is divided into an upper band of
wavelets and a lower hand of scaling functions, with T/2j functions in each.
If that number is no longer divisible by 2, then the process must terminate.
However, if T = 2n, as is the case for Figure 1, then it can be continued
through n rounds until the nth band contains a single wavelet, and there
is a constant function to accompany it in place of a scaling function.

The object of the wavelet analysis is to associate an amplitude coefficient
to each of the wavelets. The variation in the amplitude coefficients enables
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a wavelet analysis to reflect the changing structure of a non-stationary time
series. By contrast, the amplitude coefficients that are associated with the
sinusoidal basis functions of a Fourier analysis remain constant throughout
the sample.(Accounts of wavelet analysis, which place it within the context
of Fourier analysis, have been given by Newland (1993) and by Boggess and
Narcowich (2001). Other accessible accounts have been given by Burrus,
Gopinath and Guo (1998) and by Misiti, Misiti, Oppenheim and Poggi
(1997) in the user’s guide to the MATLAB Wavelets Toolbox.)

The wavelets that are employed within the dyadic scheme are usually
designed to be mutually orthogonal. They can be selected from a wide range
of wavelet families. The most commonly employed wavelets are from the
Daubechies (1988), (1992) family. Figures 2 and 3 display the level-1 D4
Daubechies wavelet and scaling function, which are generated on the first
division of the time-frequency plane, and which span the upper and the
lower halves of the frequency range [0, π], respectively. These are highly
localised continuous functions of a fractal nature that have finite supports
with a width of three sampling intervals. The Daubechies wavelets have
no available analytic forms, and they are not readily available in sampled
versions. They are defined, in effect, by the associated dilation coefficients.
These express a wavelet in one frequency band and a scaling function in the
band below—which has the same width and which stretches to zero—as a
linear combination of the more densely packed and less dispersed scaling
functions that form a basis for the two bands in combination.

The fact that the Daubechies wavelets are know only via their dila-
tion coefficients is no impediment to the discrete wavelet transform. This
transform generates the amplitude coefficients associated with the wavelet
decomposition of a data sequence; and it is accomplished via the pyramid
algorithm of Mallat (1989). The continuous-time wavelets are, in reality,
a shadowy accompaniment—and, in some ways, an inessential one—of
a discrete-time analysis that can be recognised as an application of the
techniques of multi-rate filtering, which are nowadays prevalent in commu-
nications engineering. (For examples, see Vaidyanathan 1993, Strang and
Nguyen 1997 and Vetterli and Kovacević 1995.) In this perspective, the
dilation coefficients of the wavelets and of the associated scaling functions
are nothing but the coefficients of a pair of quadrature mirror filters that are
applied in successive iterations of the pyramid algorithm. This uncommon
relationship between the continuous-time and the discrete-time aspects of
the analysis is undoubtedly the cause of many conceptual difficulties.

The Daubechies–Mallat paradigm has been very successful in applica-
tion to a wide range of signal processing problems, particularly in audio-
acoustic analysis and in the analysis of digitised picture images, which are
two-dimensional signals in other words. There are at least two reasons for
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Figure 4. International airline passengers: monthly totals (thousands of passengers)
January 1949–December 1960: 144 observations.
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Figure 5. The seasonal fluctuation in the airline passenger series, represented by the
residuals from fitting a quadratic function to the logarithms of the series.
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Figure 6. The periodogram of the seasonal fluctuations in the airline passenger series.
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this success. The first concerns the efficiency of the pyramid algorithm,
which is ideal for rapid processing in real time. The second reason lies in
the Daubechies wavelets themselves. Their restricted supports are a feature
that greatly assists the computations. This feature, allied to the sharp peaks
of the wavelets, also assists in the detection of edges and boundaries in
images.

The system of Daubechies and Mallat is not suited to all aspects of
statistical signal extraction. For a start, the Daubechies wavelets might
not be the appropriate ones to select. Their disjunct nature can contrast
with the smoother and more persistent motions that underlie the data.
The non-availability of their discretely sampled versions may prove to be
an impediment; and the asymmetric nature of the associated dilation co-
efficients might conflict with the requirement, which is commonly imposed
upon digital filters, that there should be no phase effects. (The absence
of phase effects is important when, for example, wavelets are used as an
adjunct to transfer-function modelling, as in the investigations of Ramsey
and Lampart 1998 and of Nason and Sapatinas 2002.) A more fundamental
difficulty lies in the nature of the dyadic decomposition. In statistical anal-
yses, the structures to be investigated are unlikely to fall neatly into dyadic
time and frequency bands, such as those of Figure 1; and the frequency
bands need to be placed wherever the phenomena of interest happen to be
located.

For an example of a statistical data series that requires a more flexible
form of wavelet analysis, we might consider the familiar monthly airline
passenger data of Box and Jenkins (1976), depicted in Figure 4, which
comprises T = 144 = 32 × 24 data points. The detrended series, which is
obtained by taking the residuals from fitting a quadratic function to the
logarithms of the data, is shown in Figure 5. The detrended data manifest
a clear pattern of seasonality, which is slowly evolving in a manner that
is readily intelligible if one thinks of the development of air travel over
the period in question—the summer peak in air travel was increasing rel-
ative to the winter peak throughout the period. The components of the
seasonal pattern lie in and around a set of harmonically related frequencies
{πj/6; j = 1, . . . , 6}. This can be seen in Figure 6, which displays the
periodogram of the seasonal fluctuations.

In order to capture the evolving seasonal pattern, one might apply a
wavelet analysis to some narrow bands surrounding the seasonal frequen-
cies. To isolate bands extending for 5 degrees on either side of the seasonal
frequencies, (excepting the frequency of π, where there is nothing above,)
one must begin by dividing the frequency range in 36 = 32×22 equal bands.
The requisite wavelets will be obtained by dilating the first-level wavelet by
a factor of 3 as well as by the dyadic factor of 2. These bands are indicated
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on Figure 6. The other choices for the bandwidths would be 6 degrees,
71

2 degrees 10, degrees and 15 degrees—the latter affording no interstices
between the bands.

2. The Aims of the Paper

The intention of this paper is to provide the framework for a flexible method
of wavelet analysis that is appropriate to nonstationary data that have
been generated by evolving structures that fall within non-dyadic frequency
bands. For this purpose, we have to consider collections of wavelets and
filters that are related to each other by dilation factors in addition to the
factor of 2. At the same time, we shall endeavour to accommodate samples
of all sizes, thereby relieving the restriction that T = 2n, which is necessary
for a complete dyadic decomposition.

We shall use the so-called Shannon wavelet as a prototype, since it
is readily amenable to dilations by arbitrary factors. Since the Shannon
wavelets are defined by a simple analytic function, their sampled versions
are readily available; and their ordinates constitute the coefficients of sym-
metric digital filters that have no phase effects. Thus, in the case of the
Shannon wavelets, the connection between the continuous-time analysis
and the discrete-time analysis is uniquely straightforward: the sampled
ordinates of the wavelets and scaling functions constitute the filter coef-
ficients of the discrete-time analysis, which are also the coefficients of the
dilation relationships. The orthogonality conditions that affect the Shan-
non wavelets are easy to demonstrate. The conditions are important in a
statistical analysis, since they enable the testing of hypotheses to proceed
on the basis of simple chi-square statistics.

The disadvantage of the Shannon wavelets is in their wide dispersion.
They have an infinite support, which is the entire real line. However, they
can be adapted to the analysis of a finite data sequence of T points by
wrapping their sampled coefficients around a circle of circumference T and
by adding the coincident coefficients. The wrapping is achieved by sampling
the corresponding energy functions in the frequency domain at regular
intervals. The wavelet coefficients in the time domain may be obtained by
applying the discrete Fourier transform to the square roots of the ordinates
sampled from the energy functions.

The band limitation of the energy functions enhances the efficiency of
computations performed in the frequency domain, which entail simple mul-
tiplications or modulations. At the same time, it prejudices the efficiency
of computations performed in the time domain, which entail the circular
convolutions of sequences of length T . For this reason, we choose to conduct
our filtering operations in the frequency domain. The mixed-radix fast
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Fourier transform of Pollock (1999) may be used to carry the data into
the frequency domain; and it may be used, in its inverse mode, to carry the
products of the filtering operations back to the time domain.

Despite the availability of these techniques for dealing with finite sam-
ples, the wide dispersion of the Shannon wavelets remains one of their
significant disadvantages. Therefore, we must also look for wavelets of lesser
dispersion. It is true that the Daubechies wavelets that have finite supports
can be adapted to a non-dyadic analysis. Nevertheless, we choose to look
elsewhere for our wavelets. Our recourse will be to derive the wavelets
from energy functions specified in the frequency domain. By increasing the
dispersion of these frequency-domain functions, we succeed in decreasing
the dispersion of the corresponding wavelets in the time domain.

Much of what transpires in this paper may be regarded as an attempt
to preserve the salient properties of the Shannon wavelets while reducing
their dispersion in the time domain. In particular, we shall endeavour to
maintain the conditions of sequential orthogonality between wavelets in the
same band that are manifest amongst the Shannon wavelets. We shall also
preserve the symmetry of the wavelets. The cost of doing so is that we must
forego the conditions of orthogonality between wavelets in adjacent bands.
However, the mutual orthogonality between wavelets in non-adjacent bands
will be preserved. The latter conditions are appropriate to the analysis
of spectral structures that are separated by intervening dead spaces. The
seasonal structures within the airline passenger data, revealed by Figure 6,
provide a case in point.

Before embarking on our own endeavours, we should make some refer-
ence to related work. First, it should be acknowledged that a considerable
amount of work has been done already in pursuit of a non-dyadic wavelet
analysis. The objective can be described as that of partitioning the time–
frequency plane in ways that differ from that of the standard dyadic anal-
ysis, represented in Figure 1, and of generating the wavelets to accompany
the various schemes.

A program for generalising the standard dyadic analysis has led to the
so-called wavelet packet analysis, of which Wickerhauser (1994) is one of
the principal exponents. An extensive account has also been provided by
Percival and Walden (2000). The essential aim, at the outset, is to decom-
pose the frequency interval [0, π] into 2j equal intervals. Thereafter, a rich
variety of strategies are available.

An alternative approach has been developed under the rubric of M -band
wavelet analysis. This uses a particular type of filter bank architecture to
create M equal subdivisions of each of the octave bands of a dyadic analysis.
Seminal contributions have been made by Gopinath and Burrus (1992) and
by Steppen, Heller, Gopinath and Burrus (1993). The work of Vaidyanathan
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(1990), (1993) on filter banks has also been influential in this connection.
Next, there is the matter of the uses of wavelets in statistical analysis.

Here, the developments have been far too diverse and extensive for us to give
a reasonable list of citations. However, it is appropriate to draw attention
to a special issue of the Philosophical Transactions of the Royal Society of
London that has been devoted to the area. Amongst other pieces, it contains
an article by Ramsey (1999), which deals with application of wavelets to
financial matters, and a survey by Nason and von Sachs (1999), which
covers a wide range of statistical issues.

3. The Shannon Wavelets

The Shannon wavelet, which is also known as the sinc function, arises from
an attempt to derive a time-localised function from an ordinary trigono-
metrical function. It is the result of applying a hyperbolic taper to the sine
wave to give

sinc(ωt) =
sin(ωt)

πt
. (1)

Woodward (1953) was responsible for naming the sinc function. It has
been called the Shannon function in recognition of its central role in the
Shannon–Nyquist sampling theory—see, for example, Shannon and Weaver
(1964) or Boggess and Narcowich (2001).

The Figures 7–9 plot the functions

φ(0)(t) =
sin(πt)

πt
, (2)

φ(1)(t) =
sin(πt/2)

πt
,

ψ(1)(t) =
cos(πt) sin(πt/2)

πt
,

both for t ∈ R, which is the real line, and for t ∈ I = {0,±1,±2, . . .},
which is the set of integers representing the points at which the data are
sampled. Here, φ(0)(t) is the fundamental scaling function, whereas φ(1)(t)
is the scaling function at level 1 and ψ(1)(t) is the level-1 wavelet.

These time-domain functions with t ∈ R are the Fourier transforms
of the following square-wave or boxcar functions defined in the frequency
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domain:

φ(0)(ω) =






1, if |ω| ∈ (0, π);

1/2, if ω = ±π,

0, otherwise

φ(1)(ω) =






1, if |ω| ∈ (0, π/2);

1/
√

2, if ω = ±π/2,

0, otherwise

ψ(1)(ω) =






1, if |ω| ∈ (π/2, π);

1/
√

2, if ω = ±π/2,

1/2, if ω = ±π,

0, otherwise

(3)

Here and elsewhere, we are using the same symbols to denote the time-
domain functions and the frequency-domain functions that are their Fourier
transforms. The arguments of the functions alone will serve to make the
distinctions.

Within the frequency interval [−π, π] on the real line, the points ±π
and ±π/2 constitute a set of measure zero. Therefore, any finite values
can be attributed to the ordinates of the functions at these points without
affecting the values of their transforms, which are the functions of (2). It is
when the frequency-domain functions are sampled at a finite set of points,
including the points in question, that it becomes crucial to adhere to the
precise specifications of (3).

When t ∈ I, the time-domain functions of (2) become sequences that
correspond to periodic functions in the frequency domain, with a period of
2π radians. These functions are derived by superimposing copies of the
aperiodic functions of (3) displaced successively by 2π radians in both
positive and negative directions. Thus, for example, the periodic function
derived from φ(0)(ω) is

φ̃(0)(ω) =
∞∑

j=−∞
φ(0)(ω + 2πj). (4)

which is just a constant function with a value of unity.
We are defining the periodic functions in terms of the closed intervals

[(2j − 1)π, (2j + 1)π]; j ∈ I, such that adjacent intervals have a common
endpoint. This is subject to the proviso that only half the value of the ordi-
nate at the common endpoint is attributed to each interval. An alternative
recourse, to which we resort elsewhere, is to define the periodic functions
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Figure 7. The scaling function φ(0)(t).
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Figure 8. The scaling function φ(1)(t) = φ(0)(t/2).
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Figure 9. The wavelet function ψ(1)(t) = cos(πt)φ(0)(t/2).
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in terms of the non-overlapping half-open intervals such as [2π[j − 1], 2πj)
and to attribute to the included endpoint the full value of its ordinate.

The time-domain sequences also constitute the coefficients of the ideal
frequency-selective filters of which the above-mentioned periodic functions
constitute the frequency responses. Given that the frequency responses are
real-valued in consequence of the symmetry of the time-domain sequences,
they can also be described as the amplitude responses or the gain functions
of the filters. In the case of the Shannon wavelet, the periodic frequency
functions also represent the energy spectra of the wavelets.

The fundamental scaling function φ(0)(t) with t ∈ I, which is depicted
in Figure 7, is nothing but the unit impulse sequence. Therefore, the set
of sequences {φ(0)(t − k); t, k ∈ I}, obtained by integer displacements k of
φ(0)(t), constitute the ordinary Cartesian basis in the time domain for the
set of all real-valued time series.

The level-1 scaling function φ(1)(t) = φ(0)(t/2) of Figure 8 is derived
from the level 0 function by a dilation that entails doubling its temporal
dispersion. The level 1 wavelet function ψ(1)(t) of Figure 9 is derived from
φ(1)(t) by a process of frequency shifting, which involves multiplying the
latter by cos(πt), which is (−1)t when t ∈ I, which carries the function into
the upper half of the frequency range.

The set of displaced scaling sequences {φ(1)(t − 2k); t, k ∈ I}, which
are separated from each other by multiples of two points, provides a basis
for the space of all sequences that are band limited to the frequency range
(0, π/2). The corresponding set of wavelet sequences {ψ(1)(t − 2k); t, k ∈
I}, which is, in effect, a version of the scaling set that has undergone
a frequency translation, provides a basis for the upper frequency range
(π/2, π). From the fact that, with the exclusion of the boundary points,
the two ranges are non-overlapping, it follows that the two basis sets are
mutually orthogonal (since sinusoids at different frequencies are mutually
orthogonal.) Therefore, the two sets together span the full range (0, π).

The elements within the basis sets are also mutually orthogonal. To
see this, consider the fact that the boxcar frequency-response functions
are idempotent. When multiplied by themselves they do not change, albeit
that, with the resulting change of units, they come to represent the en-
ergy spectra of the wavelets. The time-domain operation corresponding to
this frequency-domain multiplication is autoconvolution. The time-domain
functions are real and symmetric, so their autoconvolution is the same as
their autocorrelation. Therefore, the discrete wavelet sequences are their
own autocorrelation functions. (We should say that, in this context, we are
talking of autocorrelations where, in strict parlance, a statistician might
talk of autocovariances.)

On inspecting the graphs of these functions, we see that there are zeros
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at the points indexed by k = 2t, which correspond to the conditions of
orthogonality. We may describe the mutual orthogonality of the displaced
wavelets as sequential orthogonality. Orthogonality conditions that extend
across frequency bands may be described as lateral orthogonality.

To represent these relationships algebraically, we may consider a wavelet
and its transform denoted by ψ(t) ←→ ψ(ω). The autoconvolution of the
wavelet gives the autocorrelation function ξψ(t) = ψ(t) ∗ ψ(−t) = ψ(t) ∗
ψ(t), where the second equality is in consequence of the symmetry of the
wavelet. The corresponding operation in the frequency domain gives the
modulation product ξψ(ω) = ψ(ω)ψ(−ω) = {ψ(ω)}2, where the second
equality is in consequence of the fact that the Fourier transform of a real-
valued symmetric sequence is also real-valued and symmetric. Thus, there
is

ξψ(t) = ψ(t) ∗ ψ(t) ←→ ξψ(ω) = {ψ(ω)}2, (5)

where ξψ(ω) is the energy spectrum of the wavelet. The peculiar feature
of the Shannon wavelet is that ψ(t) = ξψ(t), for all t. The corresponding
boxcar function has ψ(ω) = ξψ(ω), everywhere except at the points of
discontinuity.

The conventional dyadic multiresolution wavelet analysis, represented
by Figure 1, is concerned with a succession of frequency intervals in the
form of (π/2j , π/2j−1); j = 1, 2, . . . , n, of which the bandwidths are halved
repeatedly in the descent from high frequencies to low frequencies. By the
jth round, there will be j wavelet bands and one accompanying scaling-
function band.

By applying the scheme described by Mallat (1989), known as the pyra-
mid algorithm, to the discrete versions of the functions, φ(1)(t) and ψ(1)(t),
sets of wavelet sequences can be generated that span these bands. The
generic set at level j, denoted by {ψ(j)(t−2jk); t, k ∈ I}, contains mutually
orthogonal sequences that are separated by multiples of 2j points, and it is
accompanied by a set of scaling sequences {φ(j)(t−2jk); t, k ∈ I} that span
the lower frequency band [0, π/2j). (Here, as before, t is the index of the
sequence, whereas k is the index of its displacement relative to the other
wavelet sequences within the same band.)

A dyadic wave-packet analysis extends this scheme so that, by the jth
round, there are 2j bands of equal width spanning the intervals ([& −
1]π/2j , &π/2j); & = 1, . . . , 2j . Each such band is spanned by a set of or-
thogonal functions {ψ("/2j)(t − 2jk); t, k ∈ I} which are separated by mul-
tiples of 2j points. The first and the second of these bands—counting
in terms of rising frequencies, which reverses the dyadic convention—are
spanned by the functions {ψ(1/2j)(t− 2jk) = φ(j)(t− 2jk)} and {ψ(2/2j)(t−
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Figure 10. A wavelet within a frequency band of width π/2 running from 3π/8 to 7π/8.

2jk) = ψ(j)(t − 2jk)} respectively, which are also found in the dyadic
multiresolution wavelet analysis.

In order to generalise such schemes, we need to consider dividing the fre-
quency range by other prime numbers and their products. For this purpose,
we must consider the function defined in the frequency domain by

ψ(ω) =






1, if |ω| ∈ (α, β);

1/
√

2, if ω = ±α,±β,

0, otherwise

(6)

In case it is required to divide the range into p equal intervals, there will be
α = π(j−1)/p and β = πj/p; j = 1, . . . , p. The corresponding time-domain
function is

ψ(t) =
1
πt

{sin(βt) − sin(αt)} =
2
πt

cos{(α + β)t/2} sin{(β − α)t/2}

=
2
πt

cos(γt) sin(δt), (7)

where γ = (α + β)/2 is the centre of the pass band and δ = (β − α)/2 is
half its width. The equality, which follows from the identity sin(A + B) −
sin(A − B) = 2 cos A sin B, suggests two interpretations. On the LHS is
the difference between the coefficients of two lowpass filters with cut-off
frequencies of β and α respectively. On the RHS is the result of shifting a
lowpass filter with a cut-off frequency of δ so that its centre is moved from
ω = 0 to ω = γ.

The process of frequency shifting is best understood by taking account of
both positive and negative frequencies when considering the lowpass filter.
Then, the pass band covers the interval (−δ, δ). To convert to the bandpass
filter, two copies of the pass band are made that are shifted so that their
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NON-DYADIC WAVELET ANALYSIS 15

new centres lie at −γ and γ. The pass bands have twice the width that
one might expect. In the limiting case, the copies are shifted to the centres
−π and π. There they coincide, and we have ψ(t) = 2 cos(πt) sin(δt)/πt.
To reconcile this with formula for ψ(1)(t) of (2), wherein δ = π/2, we must
divide by 2.

We shall show, in Section 7, that, when the interval [0, π] is partitioned
by a sequence of p frequency bands of equal width, an orthogonal basis
can be obtained for each band by displacing its wavelets successively by p
elements at a time. We shall also show that, when such a band of width
π/p is shifted in frequency by an arbitrary amount, the conditions of or-
thogonality will be maintained amongst wavelets that are separated by 2p
elements.

This fact, which does not appear to have been recognised previously,
can be exploited in fitting pass bands around localised frequency struc-
tures that do not fall within the divisions of an even grid. For the present,
we shall do no more than illustrate the fact with Figure 10, which shows
the effect of translating the Shannon scaling function φ(1)(t) of width π/2
up the frequency scale by an arbitrary amount. It can be see that there
are orthogonality conditions affecting wavelets at displacements that are
multiples of 4 points.

4. Compound Filters

The algorithms of wavelet analysis owe their efficiency to the manner in
which the various bandpass filters can be constructed from elementary com-
ponent filters. The resulting filters may be described as compound filters.
The manner in which the filters are formed is expressed more readily in the
frequency domain than in the time domain. The subsequent translation
of the compound filters from the frequency domain to the time domain is
straightforward.

Figure 11 represents, in graphical terms, the construction of the second-
level scaling function φ(2ω)φ(ω) and wavelet ψ(2ω)φ(ω). These are shown
in the third row of the diagram. The fourth row of the diagram shows the
remaining wave-packet functions, which come from dividing the domain of
the (level-1) wavelet ψ(ω) in half. The functions, which are defined over the
real line, have a period of 2π. Therefore, they extend beyond the interval
[−π, π] which covers only the central segment. The serrated edges in the
diagram are to indicate the severance of the segment from the rest of the
function.

To represent the construction algebraically, we may use ψj/N (ω) to de-
note the jth filter in a sequence of N filters that divide the frequency range
into equal bands, running from low frequency to high frequency. Then, the
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Figure 11. The formation of second-level wavelets and scaling functions illustrated in
terms of their frequency-response functions.

1 2

1 2 2 1

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

0 8 16 24 32

Figure 12. The scheme for constructing compound filters in the dyadic case. The
diagram highlights the construction of the filter ψ23/32(ω).
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NON-DYADIC WAVELET ANALYSIS 17

level-1 scaling function is φ(1)(ω) = ψ1/2(ω) and the level-1 wavelet function
is ψ(1)(ω) = ψ2/2(ω). The second-level scaling function is φ(2)(ω) = φ1/4(ω),
whereas the second-level wavelet is ψ(2)(ω) = ψ2/4(ω). The algebra for the
second-level functions is as follows:

φ(2)(ω) = φ1/4(ω) = φ(1)(2ω)φ(1)(ω) = ψ1/2(2ω)ψ1/2(ω), (8)

ψ(2)(ω) = ψ2/4(ω) = ψ(1)(2ω)φ(1)(ω) = ψ2/2(2ω)ψ1/2(ω),

ψ3/4(ω) = ψ(1)(2ω)ψ(1)(ω) = ψ2/2(2ω)ψ2/2(ω),

ψ4/4(ω) = φ(1)(2ω)ψ(1)(ω) = ψ1/2(2ω)ψ2/2(ω).

The formulae for the filters at the (j + 1)th level of an ordinary dyadic
analysis, of the kind depicted in Figure 1, are

φ(j+1)(ω) = φ(j)(2ω)φ(1)(ω) = φ(1)(2jω)φ(j)(ω), (9)

ψ(j+1)(ω) = ψ(j)(2ω)φ(1)(ω) = ψ(1)(2jω)φ(j)(ω).

The equalities can be established via recursive expansions of the formulae.
Regardless of which of the forms are taken, we get

φ(j+1)(ω) =
j∏

i=0

φ(1)(2iω) and ψ(j+1)(ω) = ψ(1)(ω)
j∏

i=1

φ(1)(2iω). (10)

The formulae of (9) can be translated into the time domain. A mod-
ulation in the frequency domain corresponds to a convolution in the time
domain. Raising the frequency value of any function ψ(k)(ω) by a factor of n
entails interpolating n− 1 zeros between the elements of the corresponding
time-domain sequence ψ(k)(t) to give a sequence that may be denoted by
ψ(k)(t ↑ n). Thus, it can be seen that

φ(j+1)(t) = φ(j)(t ↑ 2) ∗ φ(1)(t) = φ(1)(t ↑ 2j) ∗ φ(j)(t), (11)

ψ(j+1)(t) = ψ(j)(t ↑ 2) ∗ φ(1)(t) = ψ(1)(t ↑ 2j) ∗ φ(j)(t).

As they stand, these time-domain formulae are not practical: the sequences
φ(1)(t) and ψ(1)(t) of the ordinates of the Shannon functions are infinite
and they converge none too rapidly. The practical finite-sample versions of
the formulae will be derived in the next section.

Figure 12 shows how the dyadic scheme for forming compound filters
can be extended through successive rounds; and it portrays the subdivision
of the wavelets bands to create a set of bands of equal width that cover the
entire frequency range. The figure represents five successive rounds; and
it highlights the construction of the bandpass filter which is the 23rd in
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18 POLLOCK AND LO CASCIO

a succession of 32 filters with pass bands of ascending frequency. In these
terms, the filter is

ψ23/32(ω) = ψ2/2(16ω)ψ1/2(8ω)ψ2/2(4ω)ψ2/2(2ω)ψ2/2(ω). (12)

The bold lines in Figure 12, which create a flight of steps descending
from right to left, relate to the pyramid algorithm of the ordinary dyadic
multiresolution analysis. In the jth round, the algorithm separates into two
components a filtered sequence that is associated with frequency interval
(0, π/2j−1). From the high-frequency component are derived the amplitude
coefficients of the wavelets of the jth level. The low-frequency component
is passed to the next round for further subdivision.

To see how the dyadic scheme may be generalised, consider the case
where the positive frequency range [0, π] is already divided into n equal
intervals, by virtue of n bandpass filters denoted ψ1/n(ω), . . . , ψn/n(ω). The
objective is to subdivide each interval into p sub intervals, where p is a
prime number.

Imagine that there also exists a set of p bandpass filters, ψ1/p(ω),
. . . , ψp/p(ω), that partition the interval [0, π] into p equal parts. Amongst
the latter, the ideal specification of the generic bandpass filter is

ψj/p(ω) =






1, if |ω| ∈I j ,

1/2 if |ω| = (j − 1)π/p, jπ/p,

0, if |ω| ∈I c
j ,

(13)

where the open interval Ij = ([j − 1]π/p, jπ/p) is the jth of the p subdi-
visions of [0, π], and where Ic

j is the complement within [0, π] of the closed
interval Ij∪{(j−1)π/p, jπ/p} that includes the endpoints. But the function
ψj/p(ω) is symmetric such that ψj/p(ω − π) = ψj/p(π − ω). It also has a
period of 2π such that ψj/p(ω−π) = ψj/p(ω+π). The two conditions imply
that ψj/p(π + ω) = ψj/p(π − ω). It follows that

ψj/p(π + ω) =
{

1, if |ω| ∈I p+1−j ,

0, if |ω| ∈I c
p+1−j ,

(14)

where Ic
p+1−j in the jth interval in the reverse sequence {Ip, Ip−1, . . . , I1}.

To subdivide the first of the n intervals, which is (0, π/n), into p parts,
the filters ψ1/p(nω), . . . , ψp/p(nω) are used, in which the argument ω has
been multiplied by n. These have the same effect on the first interval as
the original filters have on the interval [0, π]. To subdivide the second of
the n intervals, which is (π/n, 2π/n), the filters ψp/p(nω), . . . , ψ1/p(nω) are
used, which are in reversed order. For, in this case, ω ∈ (π/n, 2π/n) gives
nω = π + λ with λ ∈ (0, π); and, therefore, the conditions of (14) apply.
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Figure 13. The 22nd bandpass filter out of 30 factorised as
ψ22/30(ω) = ψ2/2(15ω)ψ2/3(5ω)ψ4/5(ω).
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Figure 14. The 22nd bandpass filter out of 30 factorised as
ψ22/30(ω) = ψ2/5(6ω)ψ2/3(2ω)ψ2/2(ω).
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Figure 15. The 22nd bandpass filter out of 30 factorised as
ψ22/30(ω) = ψ2/2(15ω)ψ1/5(3ω)ψ3/3(ω).
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20 POLLOCK AND LO CASCIO

Now we may recognise that the 2π periodicity of ψj/p(ω) implies that,
amongst the n intervals that are to be sub divided, all odd-numbered
intervals may be treated in the manner of the first interval, whereas all even-
numbered intervals may be treated in the manner of the second interval.

The generic compound filter, which has a pass band on the jth interval
out of np intervals, is specified by

ψj/pn(ω) = ψk/p(nω)ψ"/n(ω), (15)

where

& = (j div p) + 1 and k =
{

(j mod p), if & is odd;

p + 1 − (j mod p), if & is even.
(16)

Here, (j div p) is the quotient of the division of j by p and (j mod p) is
the remainder. (Reference to the first two rows of Figures 13–15 will help
in verifying this formula.)

Given a succession of prime factors, some of which may be repeated, the
formula of (15) may be used recursively to construct compound filters of a
correspondingly composite nature. However, whereas the prime factorisa-
tion of the sample size T = p1p2 · · · pq is unique, the order of the factors is
arbitrary. By permuting the order, one can find a variety of compositions
that amount to the same bandpass filter.

Figures 13–15 represent three ways of constructing the filter ψ22/30

from elementary components, which are from the sets {ψj/2, j = 1, 2},
{ψk/3, k = 1, 2, 3} and {ψ"/5, & = 1, 2, . . . , 5}. There are altogether 6 ways
in which the filter may be constructed; but it seems reasonable, to opt for
the construction, represented by Figure 13, that takes the prime factors in
order of descending magnitude. In practice, the filters are represented, in the
frequency domain, by the ordinates of their frequency response functions,
sampled at equal intervals; and the ordering of the factors by declining
magnitude will serve to minimise the number of multiplications entailed in
the process of compounding the filters. This is reflected in the fact that,
compared with the other figures, Figure 13 has the least highlighted area.

Raising the frequency value of ψk/p(ω) by a factor of n entails interpo-
lating n − 1 zeros between every point of the corresponding time-domain
sequence ψk/p(t). The following expression indicates the correspondence
between the equivalent operations of compounding the filter in the time
domain and the frequency domain:

ψj/np(t) = {ψk/p(t) ↑ n} ∗ ψ"/n(t) ←→ ψj/np(ω) = ψk/p(nω)ψ"/n(ω). (17)

When creating a compound filter via convolutions in the time domain, the
prime factors should be taken in ascending order of magnitude.
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In this section, we have described a method of generating the wavelets
by compounding a series of filters. In theory, the process can be pursued
either in the time domain, via convolutions, or in the frequency domain,
via modulations. In the case of the Shannon wavelets, the frequency do-
main specifications at all levels use the same rectangular template, which
is mapped onto the appropriate frequency intervals. Therefore, is makes no
difference whether the wavelets are produced via the compounding process
or directly from the template, appropriately scaled and located in frequency.

For other wavelet specifications, a choice must be made. Either they are
generated by a process of compounding, which is generally pursued in the
time domain using a fixed set of dilation coefficients as the template, or else
they are generated in the frequency domain using a fixed energy-function
template. The results of the two choices may be quite different. It is the
latter choice that we shall make in the remainder of this paper.

Example. The Daubechies D4 wavelet and the scaling function of Figures
2 and 3 relate to a dyadic analysis that proceeds in the time domain on the
basis of a set of four dilation coefficients. The dilation coefficients for the
scaling function are p0 = (1 +

√
3)/4, p1 = (3 +

√
3)/4, p2 = (3 −

√
3)/4

and p3 = (
√

3−1)/4. The coefficients that are used in creating the wavelets
from the scaling functions are q0 = p3, q1 = −p3, q2 = p1 and q3 = −p0.
The sequences p(1)(t) = {pt} and q(1)(t) = {qt} may be compared to the
sequences of Shannon coefficients φ(1)(t) and ψ(1)(t) respectively. On that
basis, the following equations can be defined, which correspond to those of
(11):

p(j+1)(t) = p(j)(t ↑ 2) ∗ p(1)(t) = p(1)(t ↑ 2j) ∗ p(j)(t), (18)

q(j+1)(t) = p(j)(t ↑ 2) ∗ q(1)(t) = q(1)(t ↑ 2j) ∗ p(j)(t).

The first of the alternative forms, which entails the interpolation of a
zero between each of the coefficients of p(j)(t), corresponds to the recursive
system that has been used in generating Figures 2 and 3. That is to say, the
diagrams have been created by proceeding through a number of iterations
and then mapping the resulting coefficients, which number 2j+1 +2j − 2 at
the jth iteration, into the interval [0, 3]. The difference between the wavelets
and the scaling functions lies solely in the starting values. This algorithm
provides a way of seeking the fixed-point solution to the following dilation
equation that defines the D4 scaling function φD(t) with t ∈ R:

φD(t) = p0φD(2t) + p1φD(2t − 1) + p2φD(2t − 2) + p3φD(2t − 3). (19)

The second of the forms is implicated in the pyramid algorithm of Mallat
(1989). In this case, the difference between the wavelets and the scaling
functions lies solely in the final iteration.
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5. Adapting to Finite Samples

The wavelet sequences corresponding to the ideal bandpass filters are de-
fined on the entire set of integers {t = 0,±1,±2, . . .} whereas, in practice, a
discrete wavelet analysis concerns a sample of T data points. This disparity
can be overcome, in theory, by creating a periodic extension of the data
that replicates the sample in all intervals of the duration T that precede and
follow it. By this means, the data value at a point t /∈ {0, 1, . . . , T−1}, which
lies outside the sample, is provided by yt = y{t mod T}, where (t mod T ) lies
within the sample. With the periodic extension available, one can think of
multiplying the filter coefficients point by point with the data.

As an alternative to extending the data, one can think of creating a finite
sequence of filter coefficients by wrapping the infinite sequence ψ(t) = {ψt}
around a circle of circumference T and adding the overlying coefficients to
give

ψ◦
t =

∞∑

k=−∞
ψ{t+kT} for t = 0, 1, . . . , T − 1. (20)

The inner product of the resulting coefficients ψ◦
0, . . . , ψ

◦
T−1 with the

sample points y0, . . . , yT−1 will be identical to that of the original coeffi-
cients with the extended data. To show this, let ỹ(t) = {ỹt = y{t mod T}}
denote the infinite sequence that is the periodic extension of y0, . . . , yT−1.
Then,

∞∑

t=−∞
ψtỹt =

∞∑

k=−∞

{
T−1∑

t=0

ψ{t+kT}ỹ{t+kT}

}

(21)

=
T−1∑

t=0

yt






∞∑

k=−∞
ψ{t+kT}




 =
T−1∑

t=0

ytψ
◦
t .

Here, the first equality, which is the result of cutting the sequence {ψtỹt}
into segments of length T , is true in any circumstance, whilst the second
equality uses the fact that ỹ{t+kT} = y{t mod T} = yt. The final equality
invokes the definition of ψ◦

t .
In fact, the process of wrapping the filter coefficients should be con-

ducted in the frequency domain, where it is simple and efficient, rather
than in the time domain, where it entails the summation of infinite series.
We shall elucidate these matters while demonstrating the use of the discrete
Fourier transform in performing a wavelets analysis.
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To begin, let us consider the z-transforms of the filter sequence and the
data sequence:

ψ(z) =
∞∑

t=−∞
ψtz

t and y(z) =
T−1∑

t=0

ytz
t. (22)

Setting z = exp{−iω} in ψ(z) creates a continuous periodic function in the
frequency domain of period 2π, denoted by ψ(ω), which, by virtue of the
discrete-time Fourier transform, corresponds one-to-one with the doubly
infinite time-domain sequence of filter coefficients.

Setting z = zj = exp{−i2πj/T}; j = 0, 1, . . . , T − 1, is tantamount to
sampling the (piecewise) continuous function ψ(ω) at T points within the
frequency range of ω ∈ [0, 2π). (Given that the data sample is defined on a
set of positive integers, it is appropriate to replace the symmetric interval
[−π, π], considered hitherto, in which the endpoints are associated with
half the values of their ordinates, by the positive frequency interval [0, 2π),
which excludes the endpoint on the right and attributes the full value of
the ordinate at zero frequency to the left endpoint.) The powers of zj now
form a T -periodic sequence, with the result that

ψ(zj) =
∞∑

t=−∞
ψtz

t
j (23)

=
{ ∞∑

k=−∞
ψkT

}
+

{ ∞∑

k=−∞
ψ(kT+1)

}
zj + · · · +

{ ∞∑

k=−∞
ψ(kT+T−1)

}
zT−1
j

= ψ◦
0 + ψ◦

1zj + · · · + ψ◦
T−1z

T−1
j = ψ◦(zj).

There is now a one-to-one correspondence, via the discrete Fourier trans-
form, between the values ψ(zj); j = 0, 1, . . . , T − 1, sampled from ψ(ω) at
intervals of 2π/T , and the coefficients ψ◦

0, . . . , ψ
◦
T−1 of the circular wrapping

of ψ(t). Setting z = zj = exp{−i2πj/T}; j = 0, 1, . . . , T − 1, within y(z)
creates the discrete Fourier transform of the data sequence, which is com-
mensurate with the square roots of the ordinates sampled from the energy
function.

To elucidate the correspondence between operations in the two do-
mains, we may replace z in the equation of (22) by a circulant matrix
K = [e1, . . . , eT−1, e0], which is formed from the identity matrix IT =
[e0, e1, . . . , eT−1] of order T by moving the leading vector to the end of
the array. Since Kq = KT+q, the powers of the matrix form a T -periodic
sequence, as do the powers of z = exp{−i2πj/T}. (A full account of the
algebra of circulant matrices has been provided by Pollock 2002.)
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The matrix K is amenable to a spectral factorisation of the form K =
ŪDU , where

U = T−1/2W = T−1/2[exp{−i2πtj/T}; t, j = 0, . . . , T − 1] and

Ū = T−1/2W̄ = T−1/2[exp{i2πtj/T}; t, j = 0, . . . , T − 1] (24)

are unitary matrices such that UŪ = ŪU = IT , and where

D = diag{1, exp{−i2π/T}, . . . , exp{−i2π(T − 1)/T}} (25)

is a diagonal matrix whose elements are the T roots of unity, which are
found on the circumference of the unit circle in the complex plane.

Using K = ŪDU in place of z in (22) creates the following circulant
matrices:

Ψ◦ = ψ◦(K) = Ūψ◦(D)U and Y = y(K) = Ūy(D)U. (26)

The multiplication of two circulant matrices generates the circular convo-
lution of their elements. Thus the product

Ψ◦Y = {Ūψ◦(D)U}{Ūy(D)U} = Ūψ◦(D)y(D)U. (27)

is a matrix in which the leading vector contains the elements of the cir-
cular convolution of {ψ◦

0, . . . , ψ
◦
T−1} and {y0, . . . , yT−1}, of which the inner

product of (21) is the first element.
The leading vector of Ψ◦Y can be isolated by postmultiplying this

matrix by e0 = [1, 0, . . . , 0]′. But Ue0 = T−1/2We0 = T−1/2h, where
h = [1, 1, . . . , 1]′ is the summation vector. Therefore,

Ψ◦Y e0 = T−1W̄{ψ◦(D)y(D)h}, (28)

where ψ◦(D)y(D)h is a vector whose elements are the products of the
diagonal elements of ψ◦(D) and y(D). Equation (28) corresponds to the
usual matrix representation of an inverse discrete Fourier transform, which
maps a vector from the frequency domain into a vector of the time domain.

Observe that equation (27) also establishes the correspondence between
the operation of cyclical convolution in the time domain, represented by
the product of the matrices on the LHS, and the operation of modulation
in the frequency domain, represented by the pairwise multiplication of the
elements of two diagonal matrices. The correspondence can be represented
by writing Ψ◦Y ←→ ψ◦(D)y(D). Using such notation, we can represent
the finite-sample version of equation (17) by

ψ◦
j/np(K) = ψ◦

k/p(K
n)ψ◦

"/n(K) ←→ ψ◦
j/np(D) = ψ◦

k/p(D
n)ψ◦

"/n(D). (29)
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If α(z) is a polynomial of degree T − 1 and, if n is a factor of T , then
α(Kn) = Ūα(Dn)U is a circulant matrix of order T in which there are
T/n nonzero bands, with n − 1 bands of zeros lying between one nonzero
band and the next. The generic nonzero coefficient, which is on the tth
nonzero subdiagonal band, is α◦

t =
∑T/n

j=0 α{t+jn}. The jth diagonal ele-
ment of the matrix Dn, which is entailed in the spectral factorisation of
α(Kn), takes the values exp{−i2πnj/T}; j = 0, 1, . . . , T − 1. Compared to
the corresponding elements of D, its frequency values have been increased
by a factor of n.

In the case of a piecewise continuous energy function ξ(ω) = |ψ(ω)|2,
defined on the interval [−π, π], one can afford to ignore the endpoints of
the interval together with any points of discontinuity within the interval.
These constitute a set of measure zero in the context of the remaining
frequency values. When such points are taken in the context of a sample of
T frequency values, they can no longer be ignored, as the example at the
the end of this section indicates.

The method of coping with finite samples via a periodic extension of the
data is also a feature of a discrete Fourier analysis. It requires the data to
be free of an overall trend. Otherwise, there will be a radical disjunction in
passing from the end of one replication of the sample to the begining of the
next. Such disjunctions will affect all of the Fourier coefficients. However,
the effect upon the coefficients of a wavelet analysis will be limited to
the extent that the wavelets are localised in time. A disadvantage of the
Shannon wavelets is that they are widely dispersed; and, in the next section,
we shall be developing wavelets that are more localised.

Example: The Wrapped Shannon Wavelet. Consider a set of frequency-
domain ordinates sampled from a boxcar energy function, defined over the
interval [−π, π], at the points ωj = 2πj/T ; j = 1 − T/2, . . . , 0, . . . , T/2,
where T is even:

ξ◦j =






1, if j ∈ {1 − d, . . . , d − 1},
1/2, if j = ±d,

0, otherwise.

(30)

Here, d < T/2 is the index of the point of discontinuity. The (inverse)
Fourier transform of these ordinates constitutes the autocorrelation func-
tion of the wrapped Shannon wavelet. The transform of the square roots of
the ordinates is the wavelet itself.

The z-transform of the energy sequence is ξ◦(z) = {S+(z) + S−(z)}/2,
wherein
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S+(z) = z−d + · · · + z−1 + 1 + z + · · · + zd and (31)

S−(z) = z1−d + · · · + z−1 + 1 + z + · · · + zd−1.

Setting z = e−iω1t, where ω1 = 2π/T , and using the formula for the partial
sum of a geometric progression, gives the following Dirichlet kernels:

S+(t) =
sin{ω1t(d + 1/2)}

sin(ω1t/2)
, S−(t) =

sin{ω1t(d − 1/2)}
sin(ω1t/2)

. (32)

But sin(A + B) + sin(A − B) = 2 sinA cos B, so, with A = ω1td and B =
ω1t/2, we have

ξ◦(t) =
1

2T
{S+(t) + S−(t)} =

cos(ω1t/2) sin(dω1t)
T sin(ω1t/2)

, (33)

This expression gives the values of the circular autocorrelation function of
the wrapped wavelet at the points t = 1, . . . , T − 1. The value at t = 0 is
ξ◦0 = 2d/T , which comes from setting z = 1 in the expressions for S+(z)
and S−(z) of (31).

If d = T/4, such that the points of discontinuity are at ±π/2, as in the
specification of φ(0)(t) under (3), then sin(dω1t) = sin(πt/2) and ξ◦(2t) = 0
for t = 1, . . . , T −1. This confirms that the relevant conditions of sequential
orthogonality are indeed fulfilled by the wrapped wavelet.

The technique of frequency shifting may be applied to the formula of
(33). Let g be the index that marks the centre of the pass band. Then,
the autocorrelation function of the wrapped wavelet corresponding to a
bandpass filter with lower and upper cut-off points of a = g−d and b = g+d
is given by

ξ◦(t) = 2 cos(gω1t)
cos(ω1t/2) sin(dω1t)

T sin(ω1t/2)
. (34)

To find the wavelets themselves, we transform a set of frequency-domain
coefficients that are the square roots of those of the energy function. For the
wavelet corresponding to the ideal lowpass filter with a cut-off at j = ±d,
we have

Tφ◦(t) =
sin{ω1t(d − 1/2)}

sin(ω1t/2)
+

√
2 cos(dω1). (35)

For the wavelet corresponding to the ideal bandpass filter with a cut-off
points at j = ±a,±b, there is

Tψ◦(t) = 2 cos{(a + b)ω1t/2}sin{(b − a − 1)ω1t/2}
sin(ω1t/2)

(36)

+
√

2{cos(aω1) + cos(bω1)}.
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6. Conditions of Sequential Orthogonality in the Dyadic Case

The advantage of the Shannon wavelets is that they provide us with a
ready-made orthogonal bases for the frequency bands that accompany a
multiresolution analysis or a wave packet analysis. We have illustrated
this feature, in Section 3, with the case of the infinite wavelet and scaling
function sequences that correspond to the first level of a dyadic analysis.

The conditions of orthogonality also prevail in the case of the wrapped
wavelet sequence. This may be demonstrated with reference to the au-
tocorrelation functions of (33) and (34). The only restriction is that the
bandwidth 2δ = β − α must divide the frequency range [0, π) an integral
number of times, say q times. In that case, the orthogonal basis of each
of the bands that partition the range will be formed by displacing the
corresponding Shannon wavelet by q elements at a time.

In this section, we shall look for the general conditions that are necessary
to ensure that the displaced wavelet sequences are mutually orthogonal. The
conditions of orthogonality will be stated in terms of the frequency-domain
energy function and its square root, which is the Fourier transform of the
time-domain wavelet function.

To avoid unnecessary complexity, we shall deal in terms of the continu-
ous frequency-domain function rather the sampled version, which has been
the subject of section 5. Except in cases where the energy function has an
absolute discontinuity or a saltus, as in the case of the boxcar function asso-
ciated with Shannon wavelets, the results can be applied without hesitation
to the sampled function.

We may begin, in this section, by considering the first of the prime
numbers which is q = 2, which is the case of the dyadic wavelets. This is
the only even prime number; and, therefore, it demands special treatment.
In the next section, we shall deal with the case where q is any other prime
number, beginning with the triadic case, where q = 3. This is a prototype
for all other cases.

Ignoring subscripts, let ξ(t) ←→ ξ(ω) denote the autocorrelation func-
tion, which may belong equally to a scaling function or to a wavelet,
together with its Fourier transform, which is the corresponding energy
spectrum. Then, the condition of orthogonality is that

ξ(2t) =
{

ξ0, if t = 0;

0, if t *= 0,
(37)

which is to say that ξ(2t) = ξ0δ(t), where δ(t) is the unit impulse function
in the time domain. The transform of the impulse function is a constant
function in the frequency domain: δ(t) ←→ 1. To see what this implies
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for the energy spectrum, define λ = 2ω and use the change of variable
technique to give

ξ(2t) =
1
2π

∫ π

−π
ξ(ω)eiω(2t)dω (38)

=
1
4π

∫ 2π

−2π
ξ(λ/2)eiλtdλ

=
1
4π

∫ −π

−2π
ξ(λ/2)eiλtdλ +

1
4π

∫ π

−π
ξ(λ/2)eiλtdλ +

1
4π

∫ 2π

π
ξ(λ/2)eiλtdλ.

But the Fourier transform of the sequence ξ(2t) is a periodic function with
one cycle in 2π radians. Therefore, the first integral must be translated
to the interval [0, π], by adding 2π to the argument, whereas the third
integral must be translated to the interval [−π, 0], by subtracting 2π from
the argument. After their translation, the first and the third integrands
combine to form the segment of the function ξ(π + λ/2) that falls in the
interval [−π, π]. The consequence is that

ξ(2t) =
1
4π

∫ π

−π
{ξ(λ/2) + ξ(π + λ/2)}eiλtdλ. (39)

This relationship can be denoted by ξ(2t) ←→ 1
2{ξ(λ/2)+ξ(π+λ/2)}. The

necessary condition for the orthogonality of the displaced wavelet sequences
is that the Fourier transform on the RHS is a constant function. In that
case, the argument λ/2 can be replaced by ω, and the condition becomes

{ξ(ω) + ξ(π + ω)} = c, (40)

where c is a constant.
It will be observed that, if ξ(ω) = ξ1/2(ω) stands for energy spectrum

of the dyadic scaling function, then ξ(ω + π) = ξ2/2(ω) will be the energy
spectrum of the wavelet. The condition ξ1/2(ω)+ξ2/2(ω) = 1, which actually
prevails, corresponds to the conservation of energy. Pairs of filters for which
the squared gains satisfy the condition are called quadrature mirror filters.

Example: The Triangular Energy Function. Consider the periodic
energy functions defined over the frequency interval [−π, π] by

ξ1/2(ω) =
{

1 − |ω|/π, if |ω| ∈ [0, π);

0, if ω = ±π,

ξ2/2(ω) =
{

|ω|/π, if |ω| ∈ [0, π/2);

1/2, if ω = ±π,

(41)

Here ξ1/2(ω) is a triangle that results from the autoconvolution in the
frequency domain of the box function φ(1)(ω) of (3), whilst ξ2/2(ω) is a

WRKLA.tex; 4/01/2006; 12:05; p.28



NON-DYADIC WAVELET ANALYSIS 29

version translated by π radians. It is manifest that these functions obey
the condition of (40), since ξ1/2(ω) + ξ2/2(ω) = 1.

The Fourier transforms are given by

ξ1/2(t) =
{sin(πt/2)

πt

}2

, (42)

ξ2/2(t) = cos(πt)ξ1/2(t).

Here, ξ1/2(t) is the square of the sinc function, whereas ξ2/2(t) is the result
of a frequency shifting operation applied to ξ1/2(t).

Example: The Chamfered Box. A generalisation of the function ξ1/2(ω)
of (41), which also obeys the condition of (40), is one that can be described
as a chamfered box or a split triangle, and which is defined by

ξ1/2(ω) =






1, if |ω| ∈ (0, π/2 − ε),

1 − |ω + ε − π/2|
2ε

, if |ω| = (π/2 − ε, π/2 + ε),

0, otherwise.

(43)

Setting ε = π/2 reduces this to the triangular function of (41). Also sub-
sumed under the sampled version of the present function is the sampled
version of the boxcar energy function, in which the problem caused by the
discontinuity at the cut-off point is handled, in effect, by chamfering the
edge. (When the edge of the box is chamfered in the slightest degree, the
two function values at the point of discontinuity, which are zero and unity,
will coincide at a value of one half.)

A function that has the same Fourier transform as the chamfered box
can be formed from the difference of two triangle functions. The first
triangle is defined in the frequency domain by

Λ1(ω) =






1
2

(
π

2ε
+ 1

)
− |ω|

2ε
, if |ω| ∈ (0, π/2 + ε),

0, otherwise.
(44)

The Fourier transform is

Λ1(t) =
{sin{(π/2 + ε)t}

πt

}2

, (45)

The second triangle is defined by

Λ2(ω) =






1
2

(
π

2ε
− 1

)
− |ω|

2ε
, if |ω| ∈ (0, π/2 − ε),

0, otherwise.
(46)
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Figure 16. A circulant wavelet sequence on 16 points corresponding to a cosine bell
energy function.

The Fourier transform for this one is

Λ2(t) =
{sin{(π/2 − ε)t}

πt

}2

. (47)

The Fourier transform of the function of ξ1/2(ω) of (43) is

ξ1/2(t) = Λ1(t) − Λ2(t). (48)

In the example above, the autocorrelation functions fulfil the orthog-
onality condition of (40) by virtue of their anti-symmetry in the vicinity
of the cut-off values ωc = ±π/2. For a sine wave the condition of anti-
symmetry is expressed in the identity sin(−ω) = − sin(ω). For the energy
functions, the points of symmetry have the coordinates (ωc, 0.5) and the
conditions of anti-symmetry, which prevail in the intervals (ωc − ε, ωc + ε),
where ε ≤ π/2, are expressed in the identity

0.5 − ξ(ωc − ω) = ξ(ωc + ω) − 0.5 for ω ∈ (−ε, ε) (49)

We may describe this as the condition of sigmoid anti-symmetry, or of S-
symmetry for short. The terminology is suggested by the following example
which uses an ordinary cosine in constructing the autocorrelation function.

Example: The Cosine Bell. The cosine bell, with a period of 2π, is
defined in the frequency domain by

ξ1/2(ω) = 0.5{1 + cos(ω)}. (50)

It is S-symmetric about the point π/2 in the frequency interval (0, π) and
about the point −π/2 in the frequency interval (−π, 0). The function is
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not band-limited in frequency domain—but it is band-limited in the time
domain. The Fourier transform of the continuous periodic function is the
three-point sequence {0.25, 0.5, 0.25}, which can be recognised as the auto-
correlation function of the discrete Haar scaling function. The transform of
the continuous periodic function ξ2/2(ω) = 0.5{1 − cos(ω)} is the sequence
{−0.25, 0.5,−0.25}, which can be recognised as the autocorrelation function
of the discrete Haar wavelet.

The Haar wavelet, which is the one with the minimum temporal disper-
sion, is defined, in discrete terms, on two points by

ψ(t) =






0.5, if t = 0,

−0.5, if t = 1,

0, otherwise.

(51)

The accompanying scaling function is

φ(t) =
{

0.5, if t = 0, 1,

0, otherwise.
(52)

Now consider a sequence of ordinates sampled from the energy function
ξ2/2(ω) = 0.5{1 − cos(ω)} at the Fourier frequencies ωj = 2π/T ; j =
0, 1, . . . , T − 1, which extend over the interval [0, 2π). The sequence will
be real-valued and even such that ξ2/2(ωj) = ξ2/2(ωT−j). The Fourier
transform of these ordinates will, likewise, be a real-valued even sequence
of T points of the form {0.5,−0.25, 0, . . . , 0,−0.25}. This can be envisaged
either as a single cycle of a periodic function or as a set of points distributed
evenly around a circle of circumference T . The sequence constitutes the
circular autocorrelation function of a wrapped Haar wavelet.

The Haar wavelet is not an even function. To derive a wavelet that is real
and even and which has the same autocorrelation function as the wrapped
Haar wavelet, we must transform into the time domain the square roots of
the ordinates sampled from the cosine bell energy function. An example of
such a wavelet is provided by Figure 16.

Example: The Split Cosine Bell. A derivative of the cosine bell, which
is band-limited in the frequency domain, is provided by the split cosine bell.
This has a horizontal segment interpolated at the apex of the bell which,
consequently, must show a more rapid transition in the vicinities of ±π/2.

ξ1/2(ω) =






1, if |ω| ∈ (0, π/2 − ε);

0.5
[
1 + cos

{
π

2ε
|ω + ε − π/2|

}]
, if |ω| ∈ (π/2 − ε, π/2 + ε),

0, otherwise
(53)
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Figure 17. A sampled energy function of 16 points in the shape of a chamfered box.
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Figure 18. A sampled energy function of 16 points in the shape of a split cosine bell.
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Figure 19. A sampled energy function of 16 points defined by a Butterworth function.
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Figure 20. A circulant wavelet sequence on 16 points corresponding to the energy
function of Figure 17, which is in the shape of a chamfered box.
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Figure 21. A circulant wavelet sequence on 16 points corresponding to the split cosine
bell energy function of Figure 18.
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Figure 22. A circulant wavelet sequence on 16 points corresponding to the Butterworth
energy function with n = 2 of Figure 19.
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Setting ε = π/2 reduces this to the cosine bell of (50).
Observe that, if ε divides π an even number of times, then the split

cosine bell can be expressed as a sum of cosine bells, each of width 4ε, at
displacements relative to each other that are multiples of 2ε. In that case,
the Fourier transform of the function has a particularly simple analytic
expression.

The split cosine bell has been advocated by Bloomfield (1976) as a
means of truncating and tapering the time-domain coefficients of an ideal
bandpass filter to create a practical FIR filter. Its advantage over the cham-
fered box in this connection lies in the fact that it possesses a first derivative
that is continuous everywhere. Its avoidance of discontinuities reduces the
spectral leakage. It is therefore to be expected that a wavelet derived from
a cosine bell energy function will have a lesser temporal dispersion than
one that has been derived from the corresponding chamfered box.

Example: The Butterworth Function. Another family of energy func-
tions from which the wavelets may be derived is provided by the function
that defines the frequency response of a digital Butterworth filter with a
cut-off point at ω = π/2:

ξ1/2(ω) = (1 + {tan(ω/2)}2n)−1, (54)

ξ2/2(ω) = 1 − ξ1/2(ω).

When n = 1, the Butterworth function is the square of a cosine. Increasing
the value of n increases the rate of the transition between the pass band
and the stop band of the filter, such that the function converges to the
boxcar function φ(1)(ω) of (3)—see Pollock (1999), for example.

In the context of the Butterworth digital filter, the integer parameter
n represents the degree of a polynomial operator. In the present context,
there is no reason why n should be restricted to take integer values. It
will be found, for example, that, when n = 0.65, the Butterworth function
provides a close approximation to the triangular energy function of (41).
This is shown in Figure 23 together with the effects of other values of the
parameter.

The Butterworth function, which satisfies the condition of S-symmetry,
appears to be preferable to the split cosine bell. The relative merits of
various families of wavelets proposed in this section can be assessed with
reference to Figures 17–22, which show the energy functions together with
the wavelets that are derived from them.

A remarkable feature of the Butterworth wavelet is that, beyond a short
distance from the central point, where t = 0, the ordinates are virtually
zeros. The virtual zeros are indicated in Figure 22 by black dots, the first
of which corresponds to a value of ψ(t = 6) = −0.00096. Moreover, such
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Figure 23. The Butterworth function with the parameter values n = 0.62 (the triangle),
n = 1 (the bell) and n = 20 (the boxcar).

values are reduced as T increases and as the wavelet is wrapped around a
widening circle.

One might recall the fact that, for a non-circulant wavelet on a finite sup-
port, the condition of sequential orthogonality necessitates an even number
of points—see, for example, Percival and Walden (2000, p.69). This pre-
cludes the symmetry of the coefficients about a central value. Nevertheless,
the Butterworth wavelet, which satisfies the orthogonality conditions, has
virtually a finite support and is also symmetric.

7. Conditions of Orthogonality in the Non-dyadic Case

We shall now consider the general case where the wavelets subsist in q
bands within the frequency interval [0, π], where q is a prime number. We
shall begin by considering the triadic case where q = 3. This serves as a
prototype for all other cases. First, it is necessary to indicate the manner in
which the triadic wavelets may be constructed from various S-symmetric
energy functions, such as those that have been considered in the previous
section.

Consider an energy function B(ω) defined on the interval [−π, π] that
corresponds to a dyadic scaling function or, equally, to a half-band lowpass
filter with a nominal cut-off frequency of π/2. This function can be mapped,
via a compression of the frequency axis, onto an interval of length 2π/3 .
The effect is achieved by multiplying the frequency argument by a factor
of 3 to give B(3ω);ω ∈ [−π/3, π/3].

To construct the triadic lowpass wavelets, for which the nominal range of
the energy function is the interval (−π/3, π/3), copies of B(3ω) are placed
at the centres −π/6 and π/6. The result is the function defined on the
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Figure 24. The triadic energy functions, figures a–c. The segments of the latter, which
are demarcated by the dotted lines and which are each of length 2π/3, are dilated by a
factor of 3 and overlaid on the interval [−π, π] to form figures A–C.
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interval [−π, π] by

ξ1/3(ω) =
{

B(3ω + π/6) + B(3ω − π/6), if ω ∈ [−π/2, π/2],

0, otherwise.
(55)

Figure 24a shows the manner in which the copied functions are fused
together.

To construct the triadic bandpass wavelet, for which the nominal pass
band is the interval (π/3, 2π/3), the two copies of B(3ω) are translated to
centres at π/2 and −π/2 and combined to give

ξ2/3(ω) =






B(3ω + π/2), if ω ∈ [−5π/6,−π/6],

B(3ω − π/2), if ω ∈ [5π/6, π/6],

0, otherwise.

(56)

The result is shown in Figure 24b.
In the case of the triadic highpass wavelet, for which the nominal pass

band is the interval (2π/3, π), the two copies of B(3ω) are translated to
centres as 5π/6 and −5π/6 to give

ξ3/3(ω) =
{

B(3ω + 5π/6) + B(3ω − 5π/6), if ω ∈ [−π/2, π/2],

0, otherwise.
(57)

This can also be obtained simply by translating the centre of ξ1/3(ω) from
ω = 0 to ω = ±π. The feature becomes fully apparent only when the
interval [−π, π] is wrapped around the circle such that π and −π coincide
at the point diametrically opposite the point where ω = 0. The result is
shown in Figure 24c in terms of the linear interval.

Let ξ(t) ←→ ξ(ω) denote the autocorrelation function of any one of
the triadic wavelets together with the energy function, which is its Fourier
transform. Then, the relevant condition of sequential orthogonality is that
ξ(3t) = 0 if t *= 0. Define λ = 3ω. Then,

ξ(3t) =
1
2π

∫ π

−π
ξ(ω)eiω(3t)dω (58)

=
1
6π

∫ 3π

−3π
ξ(λ/3)eiλtdλ

=
1
6π

{∫ −π

−3π
ξ(λ/3)eiλtdλ +

∫ π

−π
ξ(λ/3)eiλtdλ +

∫ 3π

π
ξ(λ/3)eiλtdλ

}

=
1
6π

∫ −π

−π

1∑

j=−1

ξ([2πj + λ]/3)eiλtdλ.
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It follows that

ξ(3t) ←→
1∑

j=−1

1
3
ξ([2πj + λ]/3) = δ(ω). (59)

The condition of sequential orthogonality is that δ(ω) must be a constant
function such that its Fourier transform is the unit impulse. Figures 24(A–
C) show how the segments of the three energy functions that are demarcated
by the dotted lines are dilated and overlaid on the interval [−π, π]. In each
case, adding the segments produces the constant function δ(ω) = c. The
overlaying of the segments occurs when each is wrapped around the same
circle of circumference 2π. In fact, the segments need not be separated one
from another. They can be wrapped around the circle in one continuous
strip.

The condition of lateral orthogonality cannot be satisfied by wavelets in
adjacent frequency bands. This a consequence of the spectral leakage from
each band into the neighbouring bands. However, in the present triadic
specification, which interpolates a third band between the lowpass and
highpass bands and which limits the extent of the leakage on either side
to one half of the nominal bandwidth, conditions of lateral orthogonality
prevail between non-adjacent bands.

Now let us consider a bandpass filter with a nominal width of π/3
centered, in the positive frequency range, on some point θ ∈ [π/6, 5π/6]
that lies between the centres of the lowpass and the highpass filters. The
energy function of the filter is specified over the interval [−π, π] by

ξθ/3(ω) =






B(3ω + θ) if ω ∈ [θ − π/3, θ + π/3],

B(3ω − θ), if ω ∈ [−π/3 − θ, π/3 − θ],

0, otherwise.

(60)

It can be shown that, regardless of the actual value taken by θ within the
designated range, the condition ξθ/3(6t) = 0 prevails for all t *= 0, which is
to say that wavelets within the band that are separated by multiples of 6
points are mutually orthogonal.

To demonstrate this, we must consider the decomposition ξθ/3(ω) =
ξ+
θ/3(ω)+ ξ−θ/3(ω), where ξ+

θ/3(ω) has a zero segment in place of the segment
of B(3ω−θ), and where ξ−θ/3(ω) has a zero segment in place of the segment
of B(3ω + θ). Since θ is arbitrary, the interaction of ξ+

θ/3(ω) and ξ−θ/3(ω) is
undetermined, and we must treat the two functions separately.

In order that ξ+
θ/3(ω) should generate a uniform function over the in-

terval [−π, π] and beyond, it must be dilated by a factor of 6 before being
wrapped around the circle. Then, the pass band, which has a (nominal)
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Figure 25. The time–frequency plane for 144 data points partitioned with 24 frequency
intervals and 6 time periods.

width of π/3, will acquire a width of 2π, which is sufficient to encompass
the circle with a band of constant height. Equivalent conditions apply to
ξ−θ/3(ω). The upshot is that the wavelets that lie within a pass band of
width π/3, located at an arbitrary centre, are mutually orthogonal when
separated by multiples of 6 points.

The generalisations of the analysis of this section from q = 3 to cases of
other integers is immediate. For the case where the interval [0, π] is divided
in q > 2 bands of equal width, the condition for the sequential orthogonality
of wavelets separated by q points is that

ξ(qt) ←→
(q−1)/2∑

j=(1−q)/2

1
q
ξ([2πj + λ]/q) = c. (61)

For a band of width π/q, with q ≥ 2, centred on an arbitrary point θ within
[π/2q, π − π/2q], the proof that wavelets separated by multiples 2q points
are mutually orthogonal in indicated by the proof for the case where q = 3.
We shall conclude the paper with an example that shows of how these
conditions can be used in the analysis of the finite data sequence that was
described in the introduction.

Example. Figure 25 shows the time–frequency plane for 144 data points,
partitioned in a manner that is appropriate to the analysis of the monthly
airline passenger data of Figure 5. The bands that have been highlighted
cover the spectral structure of the seasonal fluctuations that is revealed by
the periodogram of Figure 6. On either side of the the seasonal frequencies
{πj/6; j = 1, . . . , 5}, there are adjacent bands of 71

2 degrees in width.
Altogether, there are 24 bands of equal width dividing the frequency range,

WRKLA.tex; 4/01/2006; 12:05; p.39



40 POLLOCK AND LO CASCIO

and the time span of the sample is divided into six sections, each of which
spans a two-year period.

With this partitioning, it should be possible to reveal the evolution of the
seasonal pattern by showing the progression of the amplitude coefficients
of the wavelets within the highlighted bands. In testing the statistical null
hypothesis of temporal homogeneity, which is liable to be rejected, it is
helpful to have wavelets that are mutually orthogonal.

The interstices between the highlighted bands are effective in ensuring
the lateral orthogonality of the wavelets, whenever they are derived from
one of the templates that have been provided in Section 6. However, the
wavelets in the contiguous bands that fall on either side of the frequencies
{πj/6; j = 1, . . . , 5} will not be mutually orthogonal. This problem can be
overcome by combining these bands. The combined bands will be populated
by twice as many wavelets as the original narrower bands. However, the
distances that separate orthogonal wavelets will remain the same at 24
points.
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