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The methods which are to be discussed in this review are designed for the
purpose of analysing series of statistical observations taken at regular intervals
in time. The methods have a wide range of applications. We can cite astronomy
[18], meteorology [9], seismology [21], oceanography [10], [12], communications
engineering and signal processing [17], the control of continuous process plants
[21], neurology and electroencephalography [1], [8], [26], and economics [11];
and this list is by no means complete.

The Frequency Domain and the Time Domain

The methods apply, in the main, to what are described as stationary or
non-evolutionary time series. Such series manifest statistical properties which
are invariant throughout time, so that the behaviour during one epoch is the
same as it would be during any other.

When we speak of a weakly stationary or covariance-stationary process,
we have in mind a sequence of random variables y(t) = {yt; t = 0,±1,±2, . . .},
representing the potential observations of the process, which have a common
finite expected value E(yt) = µ and a set of autocovariances C(yt, ys) = E{(yt−
µ)(ys−µ)} = γ|t−s| which depend only on the temporal separation τ = |t−s| of
the dates t and s and not on their absolute values. We also commonly require
of such a process that lim(τ → ∞)γτ = 0 which is to say that the correlation
between increasingly remote elements of the sequence tends to zero. This is
a way of expressing the notion that the events of the past have a diminishing
effect upon the present as they recede in time. In an appendix to the chapter,
we review the definitions of mathematical expectations and covariances.

There are two distinct yet broadly equivalent modes of time-series anal-
ysis which may be pursued. On the one hand are the time-domain methods
which have their origin in the classical theory of correlation. Such methods
deal preponderantly with the autocovariance functions and the cross-covariance
functions of the series, and they lead inevitably towards the construction of
structural or parametric models of the autoregressive moving-average type for
single series and of the transfer-function type for two or more causally related
series. Many of the methods which are used to estimate the parameters of
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these models can be viewed as sophisticated variants of the method of linear
regression.

On the other hand are the frequency-domain methods of spectral analysis.
These are based on an extension of the methods of Fourier analysis which
originate in the idea that, over a finite interval, any analytic function can be
approximated, to whatever degree of accuracy is desired, by taking a weighted
sum of sine and cosine functions of harmonically increasing frequencies.

Harmonic Analysis

The astronomers are usually given credit for being the first to apply the
methods of Fourier analysis to time series. Their endeavours could be described
as the search for hidden periodicities within astronomical data. Typical exam-
ples were the attempts to uncover periodicities within the activities recorded
by the Wolfer sunspot index and in the indices of luminosity of variable stars.

The relevant methods were developed over a long period of time. Lagrange
[14] suggested methods for detecting hidden periodicities in 1772 and 1778.
The Dutchman Buijs-Ballot [6] propounded effective computational procedures
for the statistical analysis of astronomical data in 1847. However, we should
probably credit Sir Arthur Schuster [18], who in 1889 propounded the technique
of periodogram analysis, with being the progenitor of the modern methods for
analysing time series in the frequency domain.

In essence, these frequency-domain methods envisaged a model underlying
the observations which takes the form of

(1)

y(t) =
∑

j

ρj cos(ωjt − θj) + ε(t)

=
∑

j

{
αj cos(ωjt) + βj sin(ωjt)

}
+ ε(t),

where αj = ρj cos θj and βj = ρj sin θj , and where ε(t) is a sequence of indepen-
dently and identically distributed random variables which we call a white-noise
process. Thus the model depicts the series y(t) as a weighted sum of perfectly
regular periodic components upon which is superimposed a random component.

The factor ρj = √(α2
j + β2

j ) is called the amplitude of the jth periodic
component, and it indicates the importance of that component within the sum.
Since the variance of a cosine function, which is also called its mean-square
deviation, is just one half, and since cosine functions at different frequencies
are uncorrelated, it follows that the variance of y(t) is expressible as V {y(t)} =
1
2

∑
j ρ2

j + σ2
ε where σ2

ε = V {ε(t)} is the variance of the noise.
The periodogram is simply a device for determining how much of the vari-

ance of y(t) is attributable to any given harmonic component. Its value at
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ωj = 2πj/T , calculated from a sample y0, . . . , yT−1 comprising T observations
on y(t), is given by

(2)
I(ωj) =

2
T

[{ ∑
t

yt cos(ωj)
}2

+
{ ∑

t

yt sin(ωj)
}2

]

=
T

2
{
a2(ωj) + b2(ωj)

}
.

If y(t) does indeed comprise only a finite number of well-defined harmonic
components, then it can be shown that 2I(ωj)/T is a consistent estimator of
ρ2

j in the sense that it converges to the latter in probability as the size T of the
sample of the observations on y(t) increases.
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Figure 1. The graph of a sine function.
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Figure 2. Graph of a sine function with small random fluctuations superimposed.
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The process by which the ordinates of the periodogram converge upon the
squared values of the harmonic amplitudes was well expressed by Yule [25] in
a seminal article of 1927:

If we take a curve representing a simple harmonic function of time,
and superpose on the ordinates small random errors, the only effect is
to make the graph somewhat irregular, leaving the suggestion of peri-
odicity still clear to the eye. If the errors are increased in magnitude,
the graph becomes more irregular, the suggestion of periodicity more
obscure, and we have only sufficiently to increase the errors to mask
completely any appearance of periodicity. But, however large the er-
rors, periodogram analysis is applicable to such a curve, and, given
a sufficient number of periods, should yield a close approximation to
the period and amplitude of the underlying harmonic function.

We should not quote this passage without mentioning that Yule proceeded
to question whether the hypothesis underlying periodogram analysis, which
postulates the equation under (1), was an appropriate hypothesis for all cases.
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Figure 3. Wolfer’s Sunspot Numbers 1749–1924.
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A highly successful application of periodogram analysis was that of Whit-
taker and Robinson [23] who, in 1924, showed that the series recording the
brightness or magnitude of the star T. Ursa Major over 600 days could be fit-
ted almost exactly by the sum of two harmonic functions with periods of 24 and
29 days. This led to the suggestion that what was being observed was actu-
ally a two-star system wherein the larger star periodically masked the smaller
brighter star. Somewhat less successful were the attempts of Arthur Schuster
himself [19] in 1906 to substantiate the claim that there is an eleven-year cycle
in the activity recorded by the Wolfer sunspot index.

Other applications of the method of periodogram analysis were even less
successful; and one application which was a significant failure was its use by
William Beveridge [2, 3] in 1921 and 1922 to analyse a long series of European
wheat prices. The periodogram of this data had so many peaks that at least
twenty possible hidden periodicities could be picked out, and this seemed to be
many more than could be accounted for by plausible explanations within the
realm of economic history. Such experiences seemed to point to the inappro-
priateness to economic circumstances of a model containing perfectly regular
cycles. A classic expression of disbelief was made by Slutsky [20] in another
article of 1927:

Suppose we are inclined to believe in the reality of the strict periodicity
of the business cycle, such, for example, as the eight-year period pos-
tulated by Moore [15]. Then we should encounter another difficulty.
Wherein lies the source of this regularity? What is the mechanism of
causality which, decade after decade, reproduces the same sinusoidal
wave which rises and falls on the surface of the social ocean with the
regularity of day and night?

Autoregressive and Moving-Average Models

The next major episode in the history of the development of time-series
analysis took place in the time domain, and it began with the two articles of
1927 by Yule [25] and Slutsky [20] from which we have already quoted. In both
articles, we find a rejection of the model with deterministic harmonic compo-
nents in favour of models more firmly rooted in the notion of random causes. In
a wonderfully figurative exposition, Yule invited his readers to imagine a pen-
dulum attached to a recording device and left to swing. Then any deviations
from perfectly harmonic motion which might be recorded must be the result
of errors of observation which could be all but eliminated if a long sequence
of observations were subjected to a periodogram analysis. Next, Yule enjoined
the reader to imagine that the regular swing of the pendulum is interrupted by
small boys who get into the room and start pelting the pendulum with peas
sometimes from one side and sometimes from the other. The motion is now
affected not by superposed fluctuations but by true disturbances.
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In this example, Yule contrives a perfect analogy for the autoregressive
time-series model. To explain the analogy, let us begin by considering a homo-
geneous second-order difference equation of the form

(3) y(t) = φ1y(t − 1) + φ2y(t − 2).

Given the initial values y−1 and y−2, this equation can be used recursively to
generate an ensuing sequence {y0, y1, . . .}. This sequence will show a regular
pattern of behaviour whose nature depends on the parameters φ1 and φ2. If
these parameters are such that the roots of the quadratic equation z2 − φ1z −
φ2 = 0 are complex and less than unity in modulus, then the sequence of values
will show a damped sinusoidal behaviour just as a clock pendulum will which
is left to swing without the assistance of the falling weights. In fact, in such a
case, the general solution to the difference equation will take the form of

(4) y(t) = αρt cos(ωt − θ),

where the modulus ρ, which has a value between 0 and 1, is now the damping
factor which is responsible for the attenuation of the swing as the time t elapses.

The autoregressive model which Yule was proposing takes the form of

(5) y(t) = φ1y(t − 1) + φ2y(t − 2) + ε(t),

where ε(t) is, once more, a white-noise sequence. Now, instead of masking
the regular periodicity of the pendulum, the white noise has actually become
the engine which drives the pendulum by striking it randomly in one direction
and another. Its haphazard influence has replaced the steady force of the
falling weights. Nevertheless, the pendulum will still manifest a deceptively
regular motion which is liable, if the sequence of observations is short and
contains insufficient contrary evidence, to be misinterpreted as the effect of an
underlying mechanism.

In his article of 1927, Yule attempted to explain the Wolfer index in terms
of the second-order autoregressive model of equation (5). From the empirical
autocovariances of the sample represented in Figure 3, he estimated the val-
ues φ1 = 1.343 and φ2 = −0.655. The general solution of the corresponding
homogeneous difference equation has a damping factor of ρ = 0.809 and an
angular velocity of ω = 33.96o The angular velocity indicates a period of 10.6
years which is a little shorter than the 11-year period obtained by Schuster
in his periodogram analysis of the same data. In Figure 4, we show a series
which has been generated artificially from the Yule’s equation together with a
series generated by the equation y(t) = 1.576y(t − 1) − 0.903y(t − 2) + ε(t).
The homogeneous difference equation which corresponds to the latter has the
same value of ω as before. Its damping factor has the value ρ = 0.95, and this
increase accounts for the greater regularity of the second series.
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Figure 4. A series generated by Yule’s equation

y(t) = 1.343y(t − 1) − 0.655y(t − 2) + ε(t).

 0 10 20 30 40 50 60 70 80 90

Figure 5. A series generated by the equation

y(t) = 1.576y(t − 1) − 0.903y(t − 2) + ε(t).

Neither of our two series accurately mimics the sunspot index; although
the second series seems closer to it than the series generated by Yule’s equation.
An obvious feature of the sunspot index which is not shared by the artificial
series is the fact that the numbers are constrained to be nonnegative. To relieve
this constraint, we might apply to Wolf’s numbers yt a transformation of the
form log(yt + λ) or of the more general form (yt + λ)κ−1, such as has been
advocated by Box and Cox [4]. A transformed series could be more closely
mimicked.

The contributions to time-series analysis made by Yule [25] and Slutsky
[20] in 1927 were complementary: in fact, the two authors grasped opposite
ends of the same pole. For ten years, Slutsky’s paper was available only in its
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original Russian version; but its contents became widely known within a much
shorter period.

Slutsky posed the same question as did Yule, and in much the same man-
ner. Was it possible, he asked, that a definite structure of a connection between
chaotically random elements could form them into a system of more or less regu-
lar waves? Slutsky proceeded to demonstrate this possibility by methods which
were partly analytic and partly inductive. He discriminated between coherent
series whose elements were serially correlated and incoherent or purely random
series of the sort which we have described as white noise. As to the coherent
series, he declared that

their origin may be extremely varied, but it seems probable that an
especially prominent role is played in nature by the process of moving
summation with weights of one kind or another; by this process coher-
ent series are obtained from other coherent series or from incoherent
series.

By taking, as his basis, a purely random series obtained by the People’s
Commissariat of Finance in drawing the numbers of a government lottery loan,
and by repeatedly taking moving summations, Slutsky was able to generate a
series which closely mimicked an index, of a distinctly undulatory nature, of
the English business cycle from 1855 to 1877.

The general form of Slutsky’s moving summation can be expressed by
writing

(6) y(t) = µ0ε(t) + µ1ε(t − 1) + · · · + µqε(t − q),

where ε(t) is a white-noise process. This is nowadays called a qth-order moving-
average process, and it is readily compared to an autoregressive process of the
sort depicted under (5). The more general pth-order autoregressive process can
be expressed by writing

(7) α0y(t) + α1y(t − 1) + · · · + αpy(t − p) = ε(t).

Thus, whereas the autoregressive process depends upon a linear combination
of the function y(t) with its own lagged values, the moving-average process
depends upon a similar combination of the function ε(t) with its lagged values.
The affinity of the two sorts of process is further confirmed when it is recognised
that an autoregressive process of finite order is equivalent to a moving-average
process of infinite order and that, conversely, a finite-order moving-average
process is just an infinite-order autoregressive process.
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Generalised Harmonic Analysis

The next step to be taken in the development of the theory of time series
was to generalise the traditional method of periodogram analysis in such a way
as to overcome the problems which arise when the model depicted under (1) is
clearly inappropriate.

At first sight, it would not seem possible to describe a covariance-station-
ary process, whose only regularities are statistical ones, as a linear combination
of perfectly regular periodic components. However any difficulties which we
might envisage can be overcome if we are prepared to accept a description
which is in terms of a nondenumerable infinity of periodic components. Thus,
on replacing the so-called Fourier sum within equation (1) by a Fourier integral,
and by deleting the term ε(t), whose effect is now absorbed by the integrand,
we obtain an expression in the form of

(8) y(t) =
∫ π

0

{
cos(ωt)dA(ω) + sin(ωt)dB(ω)

}
.

Here we write dA(ω) and dB(ω) rather than α(ω)dω and β(ω)dω because there
can be no presumption that the functions A(ω) and B(ω) are continuous. As it
stands, this expression is devoid of any statistical interpretation. Moreover, if
we are talking of only a single realisation of the process y(t), then the generalised
functions A(ω) and B(ω) will reflect the unique peculiarities of that realisation
and will not be amenable to any systematic description.

However, a fruitful interpretation can be given to these functions if we con-
sider the observable sequence y(t) = {yt; t = 0,±1,±2, . . .} to be a particular
realisation which has been drawn from an infinite population representing all
possible realisations of the process. For, if this population is subject to statis-
tical regularities, then it is reasonable to regard dA(ω) and dB(ω) as mutually
uncorrelated random variables with well-defined distributions which depend
upon the parameters of the population.

We may therefore assume that, for any value of ω,

(9)
E{dA(ω)} = E{dB(ω)} = 0 and

E{dA(ω)dB(ω)} = 0.

Moreover, to express the discontinuous nature of the generalised functions, we
assume that, for any two values ω and λ in their domain, we have

(10) E{dA(ω)dA(λ)} = E{dB(ω)dB(λ)} = 0,

which means that A(ω) and B(ω) are stochastic processes—indexed on the
frequency parameter ω rather than on time—which are uncorrelated in non-
overlapping intervals. Finally, we assume that dA(ω) and dB(ω) have a com-
mon variance so that

(11) V {dA(ω)} = V {dB(ω)} = dG(ω).
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Figure 6. The spectrum of the process y(t) = 1.343y(t−1)−0.655y(t−
2) + ε(t) which generated the series in Figure 4. A series of a more regular

nature would be generated if the spectrum were more narrowly concentrated

around its modal value.

Given the assumption of the mutual uncorrelatedness of dA(ω) and dB(ω),
it therefore follows from (8) that the variance of y(t) is expressible as

(12)
V {y(t)} =

∫ π

0

[
cos2(ωt)V {dA(ω)} + sin2(ωt)V {dB(ω)}

]
=

∫ π

0

dG(ω).

The function G(ω), which is called the spectral distribution, tells us how much
of the variance is attributable to the periodic components whose frequencies
range continuously from 0 to ω. If none of these components contributes more
than an infinitesimal amount to the total variance, then the function G(ω) is
absolutely continuous, and we can write dG(ω) = g(ω)dω under the integral
of equation (11). The new function g(ω), which is called the spectral den-
sity function or the spectrum, is directly analogous to the function expressing
the squared amplitude which is associated with each component in the simple
harmonic model discussed in our earlier sections.
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Smoothing the Periodogram

It might be imagined that there is little hope of obtaining worthwhile es-
timates of the parameters of the population from which the single available
realisation y(t) has been drawn. However, provided that y(t) is a stationary
process, and provided that the statistical dependencies between widely sep-
arated elements are weak, the single realisation contains all the information
which is necessary for the estimation of the spectral density function. In fact,
a modified version of the traditional periodogram analysis is sufficient for the
purpose of estimating the spectral density.

In some respects, the problems posed by the estimation of the spectral
density are similar to those posed by the estimation of a continuous probability
density function of unknown functional form. It is fruitless to attempt directly
to estimate the ordinates of such a function. Instead, we might set about our
task by constructing a histogram or bar chart to show the relative frequencies
with which the observations that have been drawn from the distribution fall
within broad intervals. Then, by passing a curve through the mid points of the
tops of the bars, we could construct an envelope that might approximate to
the sought-after density function. A more sophisticated estimation procedure
would not group the observations into the fixed intervals of a histogram; instead
it would record the number of observations falling within a moving interval.
Moreover, a consistent method of estimation, which aims at converging upon
the true function as the number of observations increases, would vary the width
of the moving interval with the size of the sample, diminishing it sufficiently
slowly as the sample size increases for the number of sample points falling
within any interval to increase without bound.

A common method for estimating the spectral density is very similar to
the one which we have described for estimating a probability density function.
Instead of basing itself on raw sample observations as does the method of
density-function estimation, it bases itself upon the ordinates of a periodogram
which has been fitted to the observations on y(t). This procedure for spectral
estimation is therefore called smoothing the periodogram.

A disadvantage of the procedure, which for many years inhibited its wide-
spread use, lies in the fact that calculating the periodogram by what would
seem to be the obvious methods by can be vastly time-consuming. Indeed, it
was not until the mid 1960’s that wholly practical computational methods were
developed.

The Equivalence of the Two Domains

It is remarkable that such a simple technique as smoothing the peri-
odogram should provide a theoretical resolution to the problems encountered
by Beveridge and others in their attempts to detect the hidden periodicities in
economic and astronomical data. Even more remarkable is the way in which
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the generalised harmonic analysis that gave rise to the concept of the spec-
tral density of a time series should prove itself to be wholly conformable with
the alternative methods of time-series analysis in the time domain which arose
largely as a consequence of the failure of the traditional methods of periodogram
analysis.

The synthesis of the two branches of time-series analysis was achieved in-
dependently and almost simultaneously in the early 1930’s by Norbert Wiener
[24] in America and A. Khintchine [13] in Russia. The Wiener–Khintchine
theorem indicates that there is a one-to-one relationship between the autoco-
variance function of a stationary process and its spectral density function. The
relationship is expressed, in one direction, by writing,

(13) g(ω) =
1
2π

∞∑
τ=−∞

γτ cos(ωτ) ; γτ = γ−τ ,

where g(ω) is the spectral density function and {γτ ; τ = 0, 1, 2, . . .} is the
sequence of the autocovariances of the series y(t).

The relationship is invertible in the sense that it is equally possible to
express each of the autocovariances as a function of the spectral density:

(14) γτ =
∫ π

ω=0

cos(ωτ)g(ω)dω.

If we set τ = 0, then cos(ωτ) = 1, and we obtain, once more, the equation (12)
which neatly expresses the way in which the variance γ0 = V {y(t)} of the series
y(t) is attributable to the constituent harmonic components; for g(ω) is simply
the expected value of the squared amplitude of the component at frequency ω.

We have stated the relationships of the Wiener–Khintchine theorem in
terms of the theoretical spectral density function g(ω) and the true autocovari-
ance function {γτ ; τ = 0, 1, 2, . . .}. An analogous relationship holds between
the periodogram I(ωj) defined in (2) and the sample autocovariance function
{cτ ; τ = 0, 1, . . . , T − 1} where cτ =

∑
(yt − ȳ)(yt−τ − ȳ)/T . Thus, in the

appendix, we demonstrate the identity

(15) I(ωj) = 2
T−1∑

t=1−T

cτ cos(ωjτ) ; cτ = c−τ .

The upshot of the Wiener–Khintchine theorem is that many of the tech-
niques of time-series analysis can, in theory, be expressed in two mathematically
equivalent ways which may differ markedly in their conceptual qualities.

Often, a problem which appears to be intractable from the point of view
of one of the domains of time-series analysis becomes quite manageable when
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translated into the other domain. A good example is provided by the matter of
spectral estimation. Given that there are difficulties in computing all T of the
ordinates of the periodogram when the sample size is large, we are impelled to
look for a method of spectral estimation which depends not upon smoothing
the periodogram but upon performing some equivalent operation upon the se-
quence of autocovariances. The fact that there is a one-to-one correspondence
between the spectrum and the sequence of autocovariances assures us that this
equivalent operation must exist; though there is, of course, no guarantee that
it will be easy to perform.

0
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Figure 7. The periodogram of Wolfer’s Sunspot Numbers 1749–1924.

In fact, the operation which we perform upon the sample autocovariances is
simple. For, if the sequence of autocovariances {cτ ; τ = 0, 1, . . . , T − 1} in (15)
is replaced by a modified sequence {wτ cτ ; τ = 0, 1, . . . , T − 1} incorporating
a specially devised set of declining weights {wτ ; τ = 0, 1, . . . , T − 1}, then
an effect which is much the same as that of smoothing the periodogram can
be achieved. Moreover, it may be relatively straightforward to calculate the
weighted autocovariance function.

The task of devising appropriate sets of weights provided a major research
topic in time-series analysis in the 1950’s and early 1960’s. Together with the
task of devising equivalent procedures for smoothing the periodogram, it came
to be known as spectral carpentry.
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Figure 8. The spectrum of the sunspot numbers calculated from

the autocovariances using Parzen’s [16] system of weights.

The Maturing of Time-Series Analysis

In retrospect, it seems that time-series analysis reached its maturity in the
1970’s when significant developments occurred in both of its domains.

A major development in the frequency domain occurred when Cooley and
Tukey [7] described an algorithm which greatly reduces the effort involved in
computing the periodogram. The Fast Fourier Transform, as this algorithm has
come to be known, allied with advances in computer technology, has enabled the
routine analysis of extensive sets of data; and it has transformed the procedure
of smoothing the periodogram into a practical method of spectral estimation.

The contemporaneous developments in the time domain were influenced by
an important book by Box and Jenkins [5]. These authors developed the time-
domain methodology by collating some of its major themes and by applying it
to such important functions as forecasting and control. They demonstrated how
wide had become the scope of time-series analysis by applying it to problems
as diverse as the forecasting of airline passenger numbers and the analysis of
combustion processes in a gas furnace. They also adapted the methodology to
the computer.

Many of the current practitioners of time-series analysis have learnt their
skills in recent years during a time when the subject has been expanding rapidly.
Lacking a longer perspective, it is difficult for them to gauge the significance
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of the recent practical advances. One might be surprised to hear, for example,
that as late as 1971 Granger and Hughes [9] were capable of declaring that
Beveridge’s calculation of the Periodogram of the Wheat Price Index, com-
prising 300 ordinates, was the most extensive calculation of its type to date.
Nowadays, computations of this order are performed on a routine basis using
microcomputers containing specially designed chips which are dedicated to the
purpose.

The rapidity of the recent developments also belies the fact that time-series
analysis has had a long history. The frequency domain of time-series analy-
sis, to which the idea of the harmonic decomposition of a function is central,
is an inheritance from Euler (1707–1783), d’Alembert (1717–1783), Lagrange
(1736–1813) and Fourier (1768–1830). The search for hidden periodicities was
a dominant theme of 19th century science. It has been transmogrified through
the refinements of Wiener’s Generalised Harmonic Analysis which has enabled
us to understand how cyclical phenomena can arise out of the aggregation of
random causes. The parts of time-series analysis which bear a truly 20th-
century stamp are the time-domain models which originate with Slutsky and
Yule and the computational technology which renders the methods of both
domains practical.

The effect of the revolution in digital electronic computing upon the practi-
cability of time-series analysis can be gauged by inspecting the purely mechan-
ical devices (such as the Henrici–Conradi and Michelson–Stratton harmonic
analysers invented in the 1890’s) which were once used, with very limited suc-
cess, to grapple with problems which are nowadays almost routine. These
devices, some of which are displayed in London’s Science Museum, also serve
to remind us that many of the developments of applied mathematics which
startle us with their modernity were foreshadowed many years ago.

Mathematical Appendix

Mathematical Expectations

The mathematical expectation or the expected value of a random variable
y is defined by

(i) E(x) =
∫ ∞

x=−∞
xdF (x),

where F (x) is the probability distribution function of x. The probability distri-
bution function is defined by the expression F (x∗) = P{x < x∗} which denotes
the probability that x assumes a value less than x∗. If F (x) is a differentiable
function, then we can write dF (x) = f(x)dx in equation (i). The function
f(x) = dF (x)/dx is called the probability density function.

If y(t) = {yt; t = 0,±1,±2, . . .} is a stationary stochastic process, then
E(yt) = µ is the same value for all t.
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If y0, . . . , yT−1 is a sample of T values generated by the process, then we
may estimate µ from the sample mean

(ii) ȳ =
1
T

T−1∑
t=0

yt.

Autocovariances

The autocovariance of lag τ of the a stationary stochastic process y(t) is
defined by

(iii) γτ = E{(yt − µ)(yt−τ − µ)}.

The autocovariance of lag τ provides a measure of the relatedness of the ele-
ments of the sequence y(t) which are separated by τ time periods.

The variance, which is denoted by V {y(t)} = γ0 and defined by

(iv) γ0 = E
{
(yt − µ)2

}
,

is a measure of the dispersion of the elements of y(t). It is formally the auto-
covariance of lag zero.

If yt and yt−τ are statistically independent, then their joint probability
density function is the product of their individual probability density functions
so that f(yt, yt−τ ) = f(yt)f(yt−τ ). It follows that

(v) γτ = E(yt − µ)E(yt−τ − µ) = 0 for all τ �= 0.

If y0, . . . , yT is a sample from the process, and if τ < T , then we may estimate
γτ from the sample autocovariance or empirical autocovariance of lag τ :

(vi) cτ =
1
T

T−1∑
t=τ

(yt − ȳ)(yt−τ − ȳ).

The periodogram and the autocovariance function

The periodogram is defined by

(vii) I(ωj) =
2
T

[{ T−1∑
t=0

cos(ωjt)(yt − ȳ)
}2

+
{ T−1∑

t=0

sin(ωjt)(yt − ȳ)
}2

]
.
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The identity
∑

t cos(ωjt)(yt − ȳ) =
∑

t cos(ωjt)yt follows from the fact that,
by construction,

∑
t cos(ωjt) = 0 for all j. Hence the above expression has the

same value as the expression in (2). Expanding the expression in (vii) gives

(viii)

I(ωj) =
2
T

{ ∑
t

∑
s

cos(ωjt) cos(ωjs)(yt − ȳ)(ys − ȳ)
}

+
2
T

{ ∑
t

∑
s

sin(ωjt) sin(ωjs)(yt − ȳ)(ys − ȳ)
}

,

and, by using the identity cos(A) cos(B) + sin(A) sin(B) = cos(A−B), we can
rewrite this as

(ix) I(ωj) =
2
T

{ ∑
t

∑
s

cos(ωj [t − s])(yt − ȳ)(ys − ȳ)
}

.

Next, on defining τ = t − s and writing cτ =
∑

t(yt − ȳ)(yt−τ − ȳ)/T , we can
reduce the latter expression to

(x) I(ωj) = 2
T−1∑

τ=1−T

cos(ωjτ)cτ ,

which appears in the text as equation (15).
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